linux-stable/drivers/spi/atmel-quadspi.c
Uwe Kleine-König 4d70dd0a25
spi: atmel-quadspi: Convert to platform remove callback returning void
The .remove() callback for a platform driver returns an int which makes
many driver authors wrongly assume it's possible to do error handling by
returning an error code. However the value returned is (mostly) ignored
and this typically results in resource leaks. To improve here there is a
quest to make the remove callback return void. In the first step of this
quest all drivers are converted to .remove_new() which already returns
void.

Trivially convert this driver from always returning zero in the remove
callback to the void returning variant.

Signed-off-by: Uwe Kleine-König <u.kleine-koenig@pengutronix.de>
Reviewed-by: Tudor Ambarus <tudor.ambarus@linaro.org>
Link: https://lore.kernel.org/r/20230317084232.142257-4-u.kleine-koenig@pengutronix.de
Signed-off-by: Mark Brown <broonie@kernel.org>
2023-03-17 15:47:51 +00:00

846 lines
22 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for Atmel QSPI Controller
*
* Copyright (C) 2015 Atmel Corporation
* Copyright (C) 2018 Cryptera A/S
*
* Author: Cyrille Pitchen <cyrille.pitchen@atmel.com>
* Author: Piotr Bugalski <bugalski.piotr@gmail.com>
*
* This driver is based on drivers/mtd/spi-nor/fsl-quadspi.c from Freescale.
*/
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/pm_runtime.h>
#include <linux/spi/spi-mem.h>
/* QSPI register offsets */
#define QSPI_CR 0x0000 /* Control Register */
#define QSPI_MR 0x0004 /* Mode Register */
#define QSPI_RD 0x0008 /* Receive Data Register */
#define QSPI_TD 0x000c /* Transmit Data Register */
#define QSPI_SR 0x0010 /* Status Register */
#define QSPI_IER 0x0014 /* Interrupt Enable Register */
#define QSPI_IDR 0x0018 /* Interrupt Disable Register */
#define QSPI_IMR 0x001c /* Interrupt Mask Register */
#define QSPI_SCR 0x0020 /* Serial Clock Register */
#define QSPI_IAR 0x0030 /* Instruction Address Register */
#define QSPI_ICR 0x0034 /* Instruction Code Register */
#define QSPI_WICR 0x0034 /* Write Instruction Code Register */
#define QSPI_IFR 0x0038 /* Instruction Frame Register */
#define QSPI_RICR 0x003C /* Read Instruction Code Register */
#define QSPI_SMR 0x0040 /* Scrambling Mode Register */
#define QSPI_SKR 0x0044 /* Scrambling Key Register */
#define QSPI_WPMR 0x00E4 /* Write Protection Mode Register */
#define QSPI_WPSR 0x00E8 /* Write Protection Status Register */
#define QSPI_VERSION 0x00FC /* Version Register */
/* Bitfields in QSPI_CR (Control Register) */
#define QSPI_CR_QSPIEN BIT(0)
#define QSPI_CR_QSPIDIS BIT(1)
#define QSPI_CR_SWRST BIT(7)
#define QSPI_CR_LASTXFER BIT(24)
/* Bitfields in QSPI_MR (Mode Register) */
#define QSPI_MR_SMM BIT(0)
#define QSPI_MR_LLB BIT(1)
#define QSPI_MR_WDRBT BIT(2)
#define QSPI_MR_SMRM BIT(3)
#define QSPI_MR_CSMODE_MASK GENMASK(5, 4)
#define QSPI_MR_CSMODE_NOT_RELOADED (0 << 4)
#define QSPI_MR_CSMODE_LASTXFER (1 << 4)
#define QSPI_MR_CSMODE_SYSTEMATICALLY (2 << 4)
#define QSPI_MR_NBBITS_MASK GENMASK(11, 8)
#define QSPI_MR_NBBITS(n) ((((n) - 8) << 8) & QSPI_MR_NBBITS_MASK)
#define QSPI_MR_DLYBCT_MASK GENMASK(23, 16)
#define QSPI_MR_DLYBCT(n) (((n) << 16) & QSPI_MR_DLYBCT_MASK)
#define QSPI_MR_DLYCS_MASK GENMASK(31, 24)
#define QSPI_MR_DLYCS(n) (((n) << 24) & QSPI_MR_DLYCS_MASK)
/* Bitfields in QSPI_SR/QSPI_IER/QSPI_IDR/QSPI_IMR */
#define QSPI_SR_RDRF BIT(0)
#define QSPI_SR_TDRE BIT(1)
#define QSPI_SR_TXEMPTY BIT(2)
#define QSPI_SR_OVRES BIT(3)
#define QSPI_SR_CSR BIT(8)
#define QSPI_SR_CSS BIT(9)
#define QSPI_SR_INSTRE BIT(10)
#define QSPI_SR_QSPIENS BIT(24)
#define QSPI_SR_CMD_COMPLETED (QSPI_SR_INSTRE | QSPI_SR_CSR)
/* Bitfields in QSPI_SCR (Serial Clock Register) */
#define QSPI_SCR_CPOL BIT(0)
#define QSPI_SCR_CPHA BIT(1)
#define QSPI_SCR_SCBR_MASK GENMASK(15, 8)
#define QSPI_SCR_SCBR(n) (((n) << 8) & QSPI_SCR_SCBR_MASK)
#define QSPI_SCR_DLYBS_MASK GENMASK(23, 16)
#define QSPI_SCR_DLYBS(n) (((n) << 16) & QSPI_SCR_DLYBS_MASK)
/* Bitfields in QSPI_ICR (Read/Write Instruction Code Register) */
#define QSPI_ICR_INST_MASK GENMASK(7, 0)
#define QSPI_ICR_INST(inst) (((inst) << 0) & QSPI_ICR_INST_MASK)
#define QSPI_ICR_OPT_MASK GENMASK(23, 16)
#define QSPI_ICR_OPT(opt) (((opt) << 16) & QSPI_ICR_OPT_MASK)
/* Bitfields in QSPI_IFR (Instruction Frame Register) */
#define QSPI_IFR_WIDTH_MASK GENMASK(2, 0)
#define QSPI_IFR_WIDTH_SINGLE_BIT_SPI (0 << 0)
#define QSPI_IFR_WIDTH_DUAL_OUTPUT (1 << 0)
#define QSPI_IFR_WIDTH_QUAD_OUTPUT (2 << 0)
#define QSPI_IFR_WIDTH_DUAL_IO (3 << 0)
#define QSPI_IFR_WIDTH_QUAD_IO (4 << 0)
#define QSPI_IFR_WIDTH_DUAL_CMD (5 << 0)
#define QSPI_IFR_WIDTH_QUAD_CMD (6 << 0)
#define QSPI_IFR_INSTEN BIT(4)
#define QSPI_IFR_ADDREN BIT(5)
#define QSPI_IFR_OPTEN BIT(6)
#define QSPI_IFR_DATAEN BIT(7)
#define QSPI_IFR_OPTL_MASK GENMASK(9, 8)
#define QSPI_IFR_OPTL_1BIT (0 << 8)
#define QSPI_IFR_OPTL_2BIT (1 << 8)
#define QSPI_IFR_OPTL_4BIT (2 << 8)
#define QSPI_IFR_OPTL_8BIT (3 << 8)
#define QSPI_IFR_ADDRL BIT(10)
#define QSPI_IFR_TFRTYP_MEM BIT(12)
#define QSPI_IFR_SAMA5D2_WRITE_TRSFR BIT(13)
#define QSPI_IFR_CRM BIT(14)
#define QSPI_IFR_NBDUM_MASK GENMASK(20, 16)
#define QSPI_IFR_NBDUM(n) (((n) << 16) & QSPI_IFR_NBDUM_MASK)
#define QSPI_IFR_APBTFRTYP_READ BIT(24) /* Defined in SAM9X60 */
/* Bitfields in QSPI_SMR (Scrambling Mode Register) */
#define QSPI_SMR_SCREN BIT(0)
#define QSPI_SMR_RVDIS BIT(1)
/* Bitfields in QSPI_WPMR (Write Protection Mode Register) */
#define QSPI_WPMR_WPEN BIT(0)
#define QSPI_WPMR_WPKEY_MASK GENMASK(31, 8)
#define QSPI_WPMR_WPKEY(wpkey) (((wpkey) << 8) & QSPI_WPMR_WPKEY_MASK)
/* Bitfields in QSPI_WPSR (Write Protection Status Register) */
#define QSPI_WPSR_WPVS BIT(0)
#define QSPI_WPSR_WPVSRC_MASK GENMASK(15, 8)
#define QSPI_WPSR_WPVSRC(src) (((src) << 8) & QSPI_WPSR_WPVSRC)
struct atmel_qspi_caps {
bool has_qspick;
bool has_ricr;
};
struct atmel_qspi {
void __iomem *regs;
void __iomem *mem;
struct clk *pclk;
struct clk *qspick;
struct platform_device *pdev;
const struct atmel_qspi_caps *caps;
resource_size_t mmap_size;
u32 pending;
u32 mr;
u32 scr;
struct completion cmd_completion;
};
struct atmel_qspi_mode {
u8 cmd_buswidth;
u8 addr_buswidth;
u8 data_buswidth;
u32 config;
};
static const struct atmel_qspi_mode atmel_qspi_modes[] = {
{ 1, 1, 1, QSPI_IFR_WIDTH_SINGLE_BIT_SPI },
{ 1, 1, 2, QSPI_IFR_WIDTH_DUAL_OUTPUT },
{ 1, 1, 4, QSPI_IFR_WIDTH_QUAD_OUTPUT },
{ 1, 2, 2, QSPI_IFR_WIDTH_DUAL_IO },
{ 1, 4, 4, QSPI_IFR_WIDTH_QUAD_IO },
{ 2, 2, 2, QSPI_IFR_WIDTH_DUAL_CMD },
{ 4, 4, 4, QSPI_IFR_WIDTH_QUAD_CMD },
};
#ifdef VERBOSE_DEBUG
static const char *atmel_qspi_reg_name(u32 offset, char *tmp, size_t sz)
{
switch (offset) {
case QSPI_CR:
return "CR";
case QSPI_MR:
return "MR";
case QSPI_RD:
return "MR";
case QSPI_TD:
return "TD";
case QSPI_SR:
return "SR";
case QSPI_IER:
return "IER";
case QSPI_IDR:
return "IDR";
case QSPI_IMR:
return "IMR";
case QSPI_SCR:
return "SCR";
case QSPI_IAR:
return "IAR";
case QSPI_ICR:
return "ICR/WICR";
case QSPI_IFR:
return "IFR";
case QSPI_RICR:
return "RICR";
case QSPI_SMR:
return "SMR";
case QSPI_SKR:
return "SKR";
case QSPI_WPMR:
return "WPMR";
case QSPI_WPSR:
return "WPSR";
case QSPI_VERSION:
return "VERSION";
default:
snprintf(tmp, sz, "0x%02x", offset);
break;
}
return tmp;
}
#endif /* VERBOSE_DEBUG */
static u32 atmel_qspi_read(struct atmel_qspi *aq, u32 offset)
{
u32 value = readl_relaxed(aq->regs + offset);
#ifdef VERBOSE_DEBUG
char tmp[8];
dev_vdbg(&aq->pdev->dev, "read 0x%08x from %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
return value;
}
static void atmel_qspi_write(u32 value, struct atmel_qspi *aq, u32 offset)
{
#ifdef VERBOSE_DEBUG
char tmp[8];
dev_vdbg(&aq->pdev->dev, "write 0x%08x into %s\n", value,
atmel_qspi_reg_name(offset, tmp, sizeof(tmp)));
#endif /* VERBOSE_DEBUG */
writel_relaxed(value, aq->regs + offset);
}
static inline bool atmel_qspi_is_compatible(const struct spi_mem_op *op,
const struct atmel_qspi_mode *mode)
{
if (op->cmd.buswidth != mode->cmd_buswidth)
return false;
if (op->addr.nbytes && op->addr.buswidth != mode->addr_buswidth)
return false;
if (op->data.nbytes && op->data.buswidth != mode->data_buswidth)
return false;
return true;
}
static int atmel_qspi_find_mode(const struct spi_mem_op *op)
{
u32 i;
for (i = 0; i < ARRAY_SIZE(atmel_qspi_modes); i++)
if (atmel_qspi_is_compatible(op, &atmel_qspi_modes[i]))
return i;
return -ENOTSUPP;
}
static bool atmel_qspi_supports_op(struct spi_mem *mem,
const struct spi_mem_op *op)
{
if (!spi_mem_default_supports_op(mem, op))
return false;
if (atmel_qspi_find_mode(op) < 0)
return false;
/* special case not supported by hardware */
if (op->addr.nbytes == 2 && op->cmd.buswidth != op->addr.buswidth &&
op->dummy.nbytes == 0)
return false;
return true;
}
static int atmel_qspi_set_cfg(struct atmel_qspi *aq,
const struct spi_mem_op *op, u32 *offset)
{
u32 iar, icr, ifr;
u32 dummy_cycles = 0;
int mode;
iar = 0;
icr = QSPI_ICR_INST(op->cmd.opcode);
ifr = QSPI_IFR_INSTEN;
mode = atmel_qspi_find_mode(op);
if (mode < 0)
return mode;
ifr |= atmel_qspi_modes[mode].config;
if (op->dummy.nbytes)
dummy_cycles = op->dummy.nbytes * 8 / op->dummy.buswidth;
/*
* The controller allows 24 and 32-bit addressing while NAND-flash
* requires 16-bit long. Handling 8-bit long addresses is done using
* the option field. For the 16-bit addresses, the workaround depends
* of the number of requested dummy bits. If there are 8 or more dummy
* cycles, the address is shifted and sent with the first dummy byte.
* Otherwise opcode is disabled and the first byte of the address
* contains the command opcode (works only if the opcode and address
* use the same buswidth). The limitation is when the 16-bit address is
* used without enough dummy cycles and the opcode is using a different
* buswidth than the address.
*/
if (op->addr.buswidth) {
switch (op->addr.nbytes) {
case 0:
break;
case 1:
ifr |= QSPI_IFR_OPTEN | QSPI_IFR_OPTL_8BIT;
icr |= QSPI_ICR_OPT(op->addr.val & 0xff);
break;
case 2:
if (dummy_cycles < 8 / op->addr.buswidth) {
ifr &= ~QSPI_IFR_INSTEN;
ifr |= QSPI_IFR_ADDREN;
iar = (op->cmd.opcode << 16) |
(op->addr.val & 0xffff);
} else {
ifr |= QSPI_IFR_ADDREN;
iar = (op->addr.val << 8) & 0xffffff;
dummy_cycles -= 8 / op->addr.buswidth;
}
break;
case 3:
ifr |= QSPI_IFR_ADDREN;
iar = op->addr.val & 0xffffff;
break;
case 4:
ifr |= QSPI_IFR_ADDREN | QSPI_IFR_ADDRL;
iar = op->addr.val & 0x7ffffff;
break;
default:
return -ENOTSUPP;
}
}
/* offset of the data access in the QSPI memory space */
*offset = iar;
/* Set number of dummy cycles */
if (dummy_cycles)
ifr |= QSPI_IFR_NBDUM(dummy_cycles);
/* Set data enable and data transfer type. */
if (op->data.nbytes) {
ifr |= QSPI_IFR_DATAEN;
if (op->addr.nbytes)
ifr |= QSPI_IFR_TFRTYP_MEM;
}
/*
* If the QSPI controller is set in regular SPI mode, set it in
* Serial Memory Mode (SMM).
*/
if (aq->mr != QSPI_MR_SMM) {
atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
aq->mr = QSPI_MR_SMM;
}
/* Clear pending interrupts */
(void)atmel_qspi_read(aq, QSPI_SR);
/* Set QSPI Instruction Frame registers. */
if (op->addr.nbytes && !op->data.nbytes)
atmel_qspi_write(iar, aq, QSPI_IAR);
if (aq->caps->has_ricr) {
if (op->data.dir == SPI_MEM_DATA_IN)
atmel_qspi_write(icr, aq, QSPI_RICR);
else
atmel_qspi_write(icr, aq, QSPI_WICR);
} else {
if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
ifr |= QSPI_IFR_SAMA5D2_WRITE_TRSFR;
atmel_qspi_write(icr, aq, QSPI_ICR);
}
atmel_qspi_write(ifr, aq, QSPI_IFR);
return 0;
}
static int atmel_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
{
struct atmel_qspi *aq = spi_controller_get_devdata(mem->spi->controller);
u32 sr, offset;
int err;
/*
* Check if the address exceeds the MMIO window size. An improvement
* would be to add support for regular SPI mode and fall back to it
* when the flash memories overrun the controller's memory space.
*/
if (op->addr.val + op->data.nbytes > aq->mmap_size)
return -ENOTSUPP;
err = pm_runtime_resume_and_get(&aq->pdev->dev);
if (err < 0)
return err;
err = atmel_qspi_set_cfg(aq, op, &offset);
if (err)
goto pm_runtime_put;
/* Skip to the final steps if there is no data */
if (op->data.nbytes) {
/* Dummy read of QSPI_IFR to synchronize APB and AHB accesses */
(void)atmel_qspi_read(aq, QSPI_IFR);
/* Send/Receive data */
if (op->data.dir == SPI_MEM_DATA_IN)
memcpy_fromio(op->data.buf.in, aq->mem + offset,
op->data.nbytes);
else
memcpy_toio(aq->mem + offset, op->data.buf.out,
op->data.nbytes);
/* Release the chip-select */
atmel_qspi_write(QSPI_CR_LASTXFER, aq, QSPI_CR);
}
/* Poll INSTRuction End status */
sr = atmel_qspi_read(aq, QSPI_SR);
if ((sr & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED)
goto pm_runtime_put;
/* Wait for INSTRuction End interrupt */
reinit_completion(&aq->cmd_completion);
aq->pending = sr & QSPI_SR_CMD_COMPLETED;
atmel_qspi_write(QSPI_SR_CMD_COMPLETED, aq, QSPI_IER);
if (!wait_for_completion_timeout(&aq->cmd_completion,
msecs_to_jiffies(1000)))
err = -ETIMEDOUT;
atmel_qspi_write(QSPI_SR_CMD_COMPLETED, aq, QSPI_IDR);
pm_runtime_put:
pm_runtime_mark_last_busy(&aq->pdev->dev);
pm_runtime_put_autosuspend(&aq->pdev->dev);
return err;
}
static const char *atmel_qspi_get_name(struct spi_mem *spimem)
{
return dev_name(spimem->spi->dev.parent);
}
static const struct spi_controller_mem_ops atmel_qspi_mem_ops = {
.supports_op = atmel_qspi_supports_op,
.exec_op = atmel_qspi_exec_op,
.get_name = atmel_qspi_get_name
};
static int atmel_qspi_setup(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->controller;
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
unsigned long src_rate;
u32 scbr;
int ret;
if (ctrl->busy)
return -EBUSY;
if (!spi->max_speed_hz)
return -EINVAL;
src_rate = clk_get_rate(aq->pclk);
if (!src_rate)
return -EINVAL;
/* Compute the QSPI baudrate */
scbr = DIV_ROUND_UP(src_rate, spi->max_speed_hz);
if (scbr > 0)
scbr--;
ret = pm_runtime_resume_and_get(ctrl->dev.parent);
if (ret < 0)
return ret;
aq->scr = QSPI_SCR_SCBR(scbr);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(ctrl->dev.parent);
pm_runtime_put_autosuspend(ctrl->dev.parent);
return 0;
}
static int atmel_qspi_set_cs_timing(struct spi_device *spi)
{
struct spi_controller *ctrl = spi->controller;
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
unsigned long clk_rate;
u32 cs_setup;
int delay;
int ret;
delay = spi_delay_to_ns(&spi->cs_setup, NULL);
if (delay <= 0)
return delay;
clk_rate = clk_get_rate(aq->pclk);
if (!clk_rate)
return -EINVAL;
cs_setup = DIV_ROUND_UP((delay * DIV_ROUND_UP(clk_rate, 1000000)),
1000);
ret = pm_runtime_resume_and_get(ctrl->dev.parent);
if (ret < 0)
return ret;
aq->scr |= QSPI_SCR_DLYBS(cs_setup);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(ctrl->dev.parent);
pm_runtime_put_autosuspend(ctrl->dev.parent);
return 0;
}
static void atmel_qspi_init(struct atmel_qspi *aq)
{
/* Reset the QSPI controller */
atmel_qspi_write(QSPI_CR_SWRST, aq, QSPI_CR);
/* Set the QSPI controller by default in Serial Memory Mode */
atmel_qspi_write(QSPI_MR_SMM, aq, QSPI_MR);
aq->mr = QSPI_MR_SMM;
/* Enable the QSPI controller */
atmel_qspi_write(QSPI_CR_QSPIEN, aq, QSPI_CR);
}
static irqreturn_t atmel_qspi_interrupt(int irq, void *dev_id)
{
struct atmel_qspi *aq = dev_id;
u32 status, mask, pending;
status = atmel_qspi_read(aq, QSPI_SR);
mask = atmel_qspi_read(aq, QSPI_IMR);
pending = status & mask;
if (!pending)
return IRQ_NONE;
aq->pending |= pending;
if ((aq->pending & QSPI_SR_CMD_COMPLETED) == QSPI_SR_CMD_COMPLETED)
complete(&aq->cmd_completion);
return IRQ_HANDLED;
}
static int atmel_qspi_probe(struct platform_device *pdev)
{
struct spi_controller *ctrl;
struct atmel_qspi *aq;
struct resource *res;
int irq, err = 0;
ctrl = devm_spi_alloc_host(&pdev->dev, sizeof(*aq));
if (!ctrl)
return -ENOMEM;
ctrl->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
ctrl->setup = atmel_qspi_setup;
ctrl->set_cs_timing = atmel_qspi_set_cs_timing;
ctrl->bus_num = -1;
ctrl->mem_ops = &atmel_qspi_mem_ops;
ctrl->num_chipselect = 1;
ctrl->dev.of_node = pdev->dev.of_node;
platform_set_drvdata(pdev, ctrl);
aq = spi_controller_get_devdata(ctrl);
init_completion(&aq->cmd_completion);
aq->pdev = pdev;
/* Map the registers */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_base");
aq->regs = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(aq->regs)) {
dev_err(&pdev->dev, "missing registers\n");
return PTR_ERR(aq->regs);
}
/* Map the AHB memory */
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "qspi_mmap");
aq->mem = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(aq->mem)) {
dev_err(&pdev->dev, "missing AHB memory\n");
return PTR_ERR(aq->mem);
}
aq->mmap_size = resource_size(res);
/* Get the peripheral clock */
aq->pclk = devm_clk_get(&pdev->dev, "pclk");
if (IS_ERR(aq->pclk))
aq->pclk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(aq->pclk)) {
dev_err(&pdev->dev, "missing peripheral clock\n");
return PTR_ERR(aq->pclk);
}
/* Enable the peripheral clock */
err = clk_prepare_enable(aq->pclk);
if (err) {
dev_err(&pdev->dev, "failed to enable the peripheral clock\n");
return err;
}
aq->caps = of_device_get_match_data(&pdev->dev);
if (!aq->caps) {
dev_err(&pdev->dev, "Could not retrieve QSPI caps\n");
err = -EINVAL;
goto disable_pclk;
}
if (aq->caps->has_qspick) {
/* Get the QSPI system clock */
aq->qspick = devm_clk_get(&pdev->dev, "qspick");
if (IS_ERR(aq->qspick)) {
dev_err(&pdev->dev, "missing system clock\n");
err = PTR_ERR(aq->qspick);
goto disable_pclk;
}
/* Enable the QSPI system clock */
err = clk_prepare_enable(aq->qspick);
if (err) {
dev_err(&pdev->dev,
"failed to enable the QSPI system clock\n");
goto disable_pclk;
}
}
/* Request the IRQ */
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
err = irq;
goto disable_qspick;
}
err = devm_request_irq(&pdev->dev, irq, atmel_qspi_interrupt,
0, dev_name(&pdev->dev), aq);
if (err)
goto disable_qspick;
pm_runtime_set_autosuspend_delay(&pdev->dev, 500);
pm_runtime_use_autosuspend(&pdev->dev);
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
pm_runtime_get_noresume(&pdev->dev);
atmel_qspi_init(aq);
err = spi_register_controller(ctrl);
if (err) {
pm_runtime_put_noidle(&pdev->dev);
pm_runtime_disable(&pdev->dev);
pm_runtime_set_suspended(&pdev->dev);
pm_runtime_dont_use_autosuspend(&pdev->dev);
goto disable_qspick;
}
pm_runtime_mark_last_busy(&pdev->dev);
pm_runtime_put_autosuspend(&pdev->dev);
return 0;
disable_qspick:
clk_disable_unprepare(aq->qspick);
disable_pclk:
clk_disable_unprepare(aq->pclk);
return err;
}
static void atmel_qspi_remove(struct platform_device *pdev)
{
struct spi_controller *ctrl = platform_get_drvdata(pdev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
spi_unregister_controller(ctrl);
ret = pm_runtime_get_sync(&pdev->dev);
if (ret >= 0) {
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
clk_disable(aq->qspick);
clk_disable(aq->pclk);
} else {
/*
* atmel_qspi_runtime_{suspend,resume} just disable and enable
* the two clks respectively. So after resume failed these are
* off, and we skip hardware access and disabling these clks again.
*/
dev_warn(&pdev->dev, "Failed to resume device on remove\n");
}
clk_unprepare(aq->qspick);
clk_unprepare(aq->pclk);
pm_runtime_disable(&pdev->dev);
pm_runtime_put_noidle(&pdev->dev);
}
static int __maybe_unused atmel_qspi_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = pm_runtime_resume_and_get(dev);
if (ret < 0)
return ret;
atmel_qspi_write(QSPI_CR_QSPIDIS, aq, QSPI_CR);
pm_runtime_mark_last_busy(dev);
pm_runtime_force_suspend(dev);
clk_unprepare(aq->qspick);
clk_unprepare(aq->pclk);
return 0;
}
static int __maybe_unused atmel_qspi_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
clk_prepare(aq->pclk);
clk_prepare(aq->qspick);
ret = pm_runtime_force_resume(dev);
if (ret < 0)
return ret;
atmel_qspi_init(aq);
atmel_qspi_write(aq->scr, aq, QSPI_SCR);
pm_runtime_mark_last_busy(dev);
pm_runtime_put_autosuspend(dev);
return 0;
}
static int __maybe_unused atmel_qspi_runtime_suspend(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
clk_disable(aq->qspick);
clk_disable(aq->pclk);
return 0;
}
static int __maybe_unused atmel_qspi_runtime_resume(struct device *dev)
{
struct spi_controller *ctrl = dev_get_drvdata(dev);
struct atmel_qspi *aq = spi_controller_get_devdata(ctrl);
int ret;
ret = clk_enable(aq->pclk);
if (ret)
return ret;
ret = clk_enable(aq->qspick);
if (ret)
clk_disable(aq->pclk);
return ret;
}
static const struct dev_pm_ops __maybe_unused atmel_qspi_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(atmel_qspi_suspend, atmel_qspi_resume)
SET_RUNTIME_PM_OPS(atmel_qspi_runtime_suspend,
atmel_qspi_runtime_resume, NULL)
};
static const struct atmel_qspi_caps atmel_sama5d2_qspi_caps = {};
static const struct atmel_qspi_caps atmel_sam9x60_qspi_caps = {
.has_qspick = true,
.has_ricr = true,
};
static const struct of_device_id atmel_qspi_dt_ids[] = {
{
.compatible = "atmel,sama5d2-qspi",
.data = &atmel_sama5d2_qspi_caps,
},
{
.compatible = "microchip,sam9x60-qspi",
.data = &atmel_sam9x60_qspi_caps,
},
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, atmel_qspi_dt_ids);
static struct platform_driver atmel_qspi_driver = {
.driver = {
.name = "atmel_qspi",
.of_match_table = atmel_qspi_dt_ids,
.pm = pm_ptr(&atmel_qspi_pm_ops),
},
.probe = atmel_qspi_probe,
.remove_new = atmel_qspi_remove,
};
module_platform_driver(atmel_qspi_driver);
MODULE_AUTHOR("Cyrille Pitchen <cyrille.pitchen@atmel.com>");
MODULE_AUTHOR("Piotr Bugalski <bugalski.piotr@gmail.com");
MODULE_DESCRIPTION("Atmel QSPI Controller driver");
MODULE_LICENSE("GPL v2");