linux-stable/drivers/target/target_core_user.c
Linus Torvalds 9ff9b0d392 networking changes for the 5.10 merge window
Add redirect_neigh() BPF packet redirect helper, allowing to limit stack
 traversal in common container configs and improving TCP back-pressure.
 Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.
 
 Expand netlink policy support and improve policy export to user space.
 (Ge)netlink core performs request validation according to declared
 policies. Expand the expressiveness of those policies (min/max length
 and bitmasks). Allow dumping policies for particular commands.
 This is used for feature discovery by user space (instead of kernel
 version parsing or trial and error).
 
 Support IGMPv3/MLDv2 multicast listener discovery protocols in bridge.
 
 Allow more than 255 IPv4 multicast interfaces.
 
 Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
 packets of TCPv6.
 
 In Multi-patch TCP (MPTCP) support concurrent transmission of data
 on multiple subflows in a load balancing scenario. Enhance advertising
 addresses via the RM_ADDR/ADD_ADDR options.
 
 Support SMC-Dv2 version of SMC, which enables multi-subnet deployments.
 
 Allow more calls to same peer in RxRPC.
 
 Support two new Controller Area Network (CAN) protocols -
 CAN-FD and ISO 15765-2:2016.
 
 Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit
 kernel problem.
 
 Add TC actions for implementing MPLS L2 VPNs.
 
 Improve nexthop code - e.g. handle various corner cases when nexthop
 objects are removed from groups better, skip unnecessary notifications
 and make it easier to offload nexthops into HW by converting
 to a blocking notifier.
 
 Support adding and consuming TCP header options by BPF programs,
 opening the doors for easy experimental and deployment-specific
 TCP option use.
 
 Reorganize TCP congestion control (CC) initialization to simplify life
 of TCP CC implemented in BPF.
 
 Add support for shipping BPF programs with the kernel and loading them
 early on boot via the User Mode Driver mechanism, hence reusing all the
 user space infra we have.
 
 Support sleepable BPF programs, initially targeting LSM and tracing.
 
 Add bpf_d_path() helper for returning full path for given 'struct path'.
 
 Make bpf_tail_call compatible with bpf-to-bpf calls.
 
 Allow BPF programs to call map_update_elem on sockmaps.
 
 Add BPF Type Format (BTF) support for type and enum discovery, as
 well as support for using BTF within the kernel itself (current use
 is for pretty printing structures).
 
 Support listing and getting information about bpf_links via the bpf
 syscall.
 
 Enhance kernel interfaces around NIC firmware update. Allow specifying
 overwrite mask to control if settings etc. are reset during update;
 report expected max time operation may take to users; support firmware
 activation without machine reboot incl. limits of how much impact
 reset may have (e.g. dropping link or not).
 
 Extend ethtool configuration interface to report IEEE-standard
 counters, to limit the need for per-vendor logic in user space.
 
 Adopt or extend devlink use for debug, monitoring, fw update
 in many drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw,
 mv88e6xxx, dpaa2-eth).
 
 In mlxsw expose critical and emergency SFP module temperature alarms.
 Refactor port buffer handling to make the defaults more suitable and
 support setting these values explicitly via the DCBNL interface.
 
 Add XDP support for Intel's igb driver.
 
 Support offloading TC flower classification and filtering rules to
 mscc_ocelot switches.
 
 Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as
 fixed interval period pulse generator and one-step timestamping in
 dpaa-eth.
 
 Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3)
 offload.
 
 Add Lynx PHY/PCS MDIO module, and convert various drivers which have
 this HW to use it. Convert mvpp2 to split PCS.
 
 Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as
 7-port Mediatek MT7531 IP.
 
 Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver,
 and wcn3680 support in wcn36xx.
 
 Improve performance for packets which don't require much offloads
 on recent Mellanox NICs by 20% by making multiple packets share
 a descriptor entry.
 
 Move chelsio inline crypto drivers (for TLS and IPsec) from the crypto
 subtree to drivers/net. Move MDIO drivers out of the phy directory.
 
 Clean up a lot of W=1 warnings, reportedly the actively developed
 subsections of networking drivers should now build W=1 warning free.
 
 Make sure drivers don't use in_interrupt() to dynamically adapt their
 code. Convert tasklets to use new tasklet_setup API (sadly this
 conversion is not yet complete).
 
 Signed-off-by: Jakub Kicinski <kuba@kernel.org>
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCAAdFiEE6jPA+I1ugmIBA4hXMUZtbf5SIrsFAl+ItRwACgkQMUZtbf5S
 IrtTMg//UxpdR/MirT1DatBU0K/UGAZY82hV7F/UC8tPgjfHZeHvWlDFxfi3YP81
 PtPKbhRZ7DhwBXefUp6nY3UdvjftrJK2lJm8prJUPSsZRye8Wlcb7y65q7/P2y2U
 Efucyopg6RUrmrM0DUsIGYGJgylQLHnMYUl/keCsD4t5Bp4ksyi9R2t5eitGoWzh
 r3QGdbSa0AuWx4iu0i+tqp6Tj0ekMBMXLVb35dtU1t0joj2KTNEnSgABN3prOa8E
 iWYf2erOau68Ogp3yU3miCy0ZU4p/7qGHTtzbcp677692P/ekak6+zmfHLT9/Pjy
 2Stq2z6GoKuVxdktr91D9pA3jxG4LxSJmr0TImcGnXbvkMP3Ez3g9RrpV5fn8j6F
 mZCH8TKZAoD5aJrAJAMkhZmLYE1pvDa7KolSk8WogXrbCnTEb5Nv8FHTS1Qnk3yl
 wSKXuvutFVNLMEHCnWQLtODbTST9DI/aOi6EctPpuOA/ZyL1v3pl+gfp37S+LUTe
 owMnT/7TdvKaTD0+gIyU53M6rAWTtr5YyRQorX9awIu/4Ha0F0gYD7BJZQUGtegp
 HzKt59NiSrFdbSH7UdyemdBF4LuCgIhS7rgfeoUXMXmuPHq7eHXyHZt5dzPPa/xP
 81P0MAvdpFVwg8ij2yp2sHS7sISIRKq17fd1tIewUabxQbjXqPc=
 =bc1U
 -----END PGP SIGNATURE-----

Merge tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next

Pull networking updates from Jakub Kicinski:

 - Add redirect_neigh() BPF packet redirect helper, allowing to limit
   stack traversal in common container configs and improving TCP
   back-pressure.

   Daniel reports ~10Gbps => ~15Gbps single stream TCP performance gain.

 - Expand netlink policy support and improve policy export to user
   space. (Ge)netlink core performs request validation according to
   declared policies. Expand the expressiveness of those policies
   (min/max length and bitmasks). Allow dumping policies for particular
   commands. This is used for feature discovery by user space (instead
   of kernel version parsing or trial and error).

 - Support IGMPv3/MLDv2 multicast listener discovery protocols in
   bridge.

 - Allow more than 255 IPv4 multicast interfaces.

 - Add support for Type of Service (ToS) reflection in SYN/SYN-ACK
   packets of TCPv6.

 - In Multi-patch TCP (MPTCP) support concurrent transmission of data on
   multiple subflows in a load balancing scenario. Enhance advertising
   addresses via the RM_ADDR/ADD_ADDR options.

 - Support SMC-Dv2 version of SMC, which enables multi-subnet
   deployments.

 - Allow more calls to same peer in RxRPC.

 - Support two new Controller Area Network (CAN) protocols - CAN-FD and
   ISO 15765-2:2016.

 - Add xfrm/IPsec compat layer, solving the 32bit user space on 64bit
   kernel problem.

 - Add TC actions for implementing MPLS L2 VPNs.

 - Improve nexthop code - e.g. handle various corner cases when nexthop
   objects are removed from groups better, skip unnecessary
   notifications and make it easier to offload nexthops into HW by
   converting to a blocking notifier.

 - Support adding and consuming TCP header options by BPF programs,
   opening the doors for easy experimental and deployment-specific TCP
   option use.

 - Reorganize TCP congestion control (CC) initialization to simplify
   life of TCP CC implemented in BPF.

 - Add support for shipping BPF programs with the kernel and loading
   them early on boot via the User Mode Driver mechanism, hence reusing
   all the user space infra we have.

 - Support sleepable BPF programs, initially targeting LSM and tracing.

 - Add bpf_d_path() helper for returning full path for given 'struct
   path'.

 - Make bpf_tail_call compatible with bpf-to-bpf calls.

 - Allow BPF programs to call map_update_elem on sockmaps.

 - Add BPF Type Format (BTF) support for type and enum discovery, as
   well as support for using BTF within the kernel itself (current use
   is for pretty printing structures).

 - Support listing and getting information about bpf_links via the bpf
   syscall.

 - Enhance kernel interfaces around NIC firmware update. Allow
   specifying overwrite mask to control if settings etc. are reset
   during update; report expected max time operation may take to users;
   support firmware activation without machine reboot incl. limits of
   how much impact reset may have (e.g. dropping link or not).

 - Extend ethtool configuration interface to report IEEE-standard
   counters, to limit the need for per-vendor logic in user space.

 - Adopt or extend devlink use for debug, monitoring, fw update in many
   drivers (dsa loop, ice, ionic, sja1105, qed, mlxsw, mv88e6xxx,
   dpaa2-eth).

 - In mlxsw expose critical and emergency SFP module temperature alarms.
   Refactor port buffer handling to make the defaults more suitable and
   support setting these values explicitly via the DCBNL interface.

 - Add XDP support for Intel's igb driver.

 - Support offloading TC flower classification and filtering rules to
   mscc_ocelot switches.

 - Add PTP support for Marvell Octeontx2 and PP2.2 hardware, as well as
   fixed interval period pulse generator and one-step timestamping in
   dpaa-eth.

 - Add support for various auth offloads in WiFi APs, e.g. SAE (WPA3)
   offload.

 - Add Lynx PHY/PCS MDIO module, and convert various drivers which have
   this HW to use it. Convert mvpp2 to split PCS.

 - Support Marvell Prestera 98DX3255 24-port switch ASICs, as well as
   7-port Mediatek MT7531 IP.

 - Add initial support for QCA6390 and IPQ6018 in ath11k WiFi driver,
   and wcn3680 support in wcn36xx.

 - Improve performance for packets which don't require much offloads on
   recent Mellanox NICs by 20% by making multiple packets share a
   descriptor entry.

 - Move chelsio inline crypto drivers (for TLS and IPsec) from the
   crypto subtree to drivers/net. Move MDIO drivers out of the phy
   directory.

 - Clean up a lot of W=1 warnings, reportedly the actively developed
   subsections of networking drivers should now build W=1 warning free.

 - Make sure drivers don't use in_interrupt() to dynamically adapt their
   code. Convert tasklets to use new tasklet_setup API (sadly this
   conversion is not yet complete).

* tag 'net-next-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/netdev/net-next: (2583 commits)
  Revert "bpfilter: Fix build error with CONFIG_BPFILTER_UMH"
  net, sockmap: Don't call bpf_prog_put() on NULL pointer
  bpf, selftest: Fix flaky tcp_hdr_options test when adding addr to lo
  bpf, sockmap: Add locking annotations to iterator
  netfilter: nftables: allow re-computing sctp CRC-32C in 'payload' statements
  net: fix pos incrementment in ipv6_route_seq_next
  net/smc: fix invalid return code in smcd_new_buf_create()
  net/smc: fix valid DMBE buffer sizes
  net/smc: fix use-after-free of delayed events
  bpfilter: Fix build error with CONFIG_BPFILTER_UMH
  cxgb4/ch_ipsec: Replace the module name to ch_ipsec from chcr
  net: sched: Fix suspicious RCU usage while accessing tcf_tunnel_info
  bpf: Fix register equivalence tracking.
  rxrpc: Fix loss of final ack on shutdown
  rxrpc: Fix bundle counting for exclusive connections
  netfilter: restore NF_INET_NUMHOOKS
  ibmveth: Identify ingress large send packets.
  ibmveth: Switch order of ibmveth_helper calls.
  cxgb4: handle 4-tuple PEDIT to NAT mode translation
  selftests: Add VRF route leaking tests
  ...
2020-10-15 18:42:13 -07:00

3056 lines
76 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2013 Shaohua Li <shli@kernel.org>
* Copyright (C) 2014 Red Hat, Inc.
* Copyright (C) 2015 Arrikto, Inc.
* Copyright (C) 2017 Chinamobile, Inc.
*/
#include <linux/spinlock.h>
#include <linux/module.h>
#include <linux/idr.h>
#include <linux/kernel.h>
#include <linux/timer.h>
#include <linux/parser.h>
#include <linux/vmalloc.h>
#include <linux/uio_driver.h>
#include <linux/radix-tree.h>
#include <linux/stringify.h>
#include <linux/bitops.h>
#include <linux/highmem.h>
#include <linux/configfs.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <net/genetlink.h>
#include <scsi/scsi_common.h>
#include <scsi/scsi_proto.h>
#include <target/target_core_base.h>
#include <target/target_core_fabric.h>
#include <target/target_core_backend.h>
#include <linux/target_core_user.h>
/**
* DOC: Userspace I/O
* Userspace I/O
* -------------
*
* Define a shared-memory interface for LIO to pass SCSI commands and
* data to userspace for processing. This is to allow backends that
* are too complex for in-kernel support to be possible.
*
* It uses the UIO framework to do a lot of the device-creation and
* introspection work for us.
*
* See the .h file for how the ring is laid out. Note that while the
* command ring is defined, the particulars of the data area are
* not. Offset values in the command entry point to other locations
* internal to the mmap-ed area. There is separate space outside the
* command ring for data buffers. This leaves maximum flexibility for
* moving buffer allocations, or even page flipping or other
* allocation techniques, without altering the command ring layout.
*
* SECURITY:
* The user process must be assumed to be malicious. There's no way to
* prevent it breaking the command ring protocol if it wants, but in
* order to prevent other issues we must only ever read *data* from
* the shared memory area, not offsets or sizes. This applies to
* command ring entries as well as the mailbox. Extra code needed for
* this may have a 'UAM' comment.
*/
#define TCMU_TIME_OUT (30 * MSEC_PER_SEC)
/* For cmd area, the size is fixed 8MB */
#define CMDR_SIZE (8 * 1024 * 1024)
/*
* For data area, the block size is PAGE_SIZE and
* the total size is 256K * PAGE_SIZE.
*/
#define DATA_BLOCK_SIZE PAGE_SIZE
#define DATA_BLOCK_SHIFT PAGE_SHIFT
#define DATA_BLOCK_BITS_DEF (256 * 1024)
#define TCMU_MBS_TO_BLOCKS(_mbs) (_mbs << (20 - DATA_BLOCK_SHIFT))
#define TCMU_BLOCKS_TO_MBS(_blocks) (_blocks >> (20 - DATA_BLOCK_SHIFT))
/*
* Default number of global data blocks(512K * PAGE_SIZE)
* when the unmap thread will be started.
*/
#define TCMU_GLOBAL_MAX_BLOCKS_DEF (512 * 1024)
static u8 tcmu_kern_cmd_reply_supported;
static u8 tcmu_netlink_blocked;
static struct device *tcmu_root_device;
struct tcmu_hba {
u32 host_id;
};
#define TCMU_CONFIG_LEN 256
static DEFINE_MUTEX(tcmu_nl_cmd_mutex);
static LIST_HEAD(tcmu_nl_cmd_list);
struct tcmu_dev;
struct tcmu_nl_cmd {
/* wake up thread waiting for reply */
struct completion complete;
struct list_head nl_list;
struct tcmu_dev *udev;
int cmd;
int status;
};
struct tcmu_dev {
struct list_head node;
struct kref kref;
struct se_device se_dev;
char *name;
struct se_hba *hba;
#define TCMU_DEV_BIT_OPEN 0
#define TCMU_DEV_BIT_BROKEN 1
#define TCMU_DEV_BIT_BLOCKED 2
#define TCMU_DEV_BIT_TMR_NOTIFY 3
unsigned long flags;
struct uio_info uio_info;
struct inode *inode;
struct tcmu_mailbox *mb_addr;
uint64_t dev_size;
u32 cmdr_size;
u32 cmdr_last_cleaned;
/* Offset of data area from start of mb */
/* Must add data_off and mb_addr to get the address */
size_t data_off;
size_t data_size;
uint32_t max_blocks;
size_t ring_size;
struct mutex cmdr_lock;
struct list_head qfull_queue;
struct list_head tmr_queue;
uint32_t dbi_max;
uint32_t dbi_thresh;
unsigned long *data_bitmap;
struct radix_tree_root data_blocks;
struct idr commands;
struct timer_list cmd_timer;
unsigned int cmd_time_out;
struct list_head inflight_queue;
struct timer_list qfull_timer;
int qfull_time_out;
struct list_head timedout_entry;
struct tcmu_nl_cmd curr_nl_cmd;
char dev_config[TCMU_CONFIG_LEN];
int nl_reply_supported;
};
#define TCMU_DEV(_se_dev) container_of(_se_dev, struct tcmu_dev, se_dev)
#define CMDR_OFF sizeof(struct tcmu_mailbox)
struct tcmu_cmd {
struct se_cmd *se_cmd;
struct tcmu_dev *tcmu_dev;
struct list_head queue_entry;
uint16_t cmd_id;
/* Can't use se_cmd when cleaning up expired cmds, because if
cmd has been completed then accessing se_cmd is off limits */
uint32_t dbi_cnt;
uint32_t dbi_bidi_cnt;
uint32_t dbi_cur;
uint32_t *dbi;
uint32_t data_len_bidi;
unsigned long deadline;
#define TCMU_CMD_BIT_EXPIRED 0
unsigned long flags;
};
struct tcmu_tmr {
struct list_head queue_entry;
uint8_t tmr_type;
uint32_t tmr_cmd_cnt;
int16_t tmr_cmd_ids[0];
};
/*
* To avoid dead lock the mutex lock order should always be:
*
* mutex_lock(&root_udev_mutex);
* ...
* mutex_lock(&tcmu_dev->cmdr_lock);
* mutex_unlock(&tcmu_dev->cmdr_lock);
* ...
* mutex_unlock(&root_udev_mutex);
*/
static DEFINE_MUTEX(root_udev_mutex);
static LIST_HEAD(root_udev);
static DEFINE_SPINLOCK(timed_out_udevs_lock);
static LIST_HEAD(timed_out_udevs);
static struct kmem_cache *tcmu_cmd_cache;
static atomic_t global_db_count = ATOMIC_INIT(0);
static struct delayed_work tcmu_unmap_work;
static int tcmu_global_max_blocks = TCMU_GLOBAL_MAX_BLOCKS_DEF;
static int tcmu_set_global_max_data_area(const char *str,
const struct kernel_param *kp)
{
int ret, max_area_mb;
ret = kstrtoint(str, 10, &max_area_mb);
if (ret)
return -EINVAL;
if (max_area_mb <= 0) {
pr_err("global_max_data_area must be larger than 0.\n");
return -EINVAL;
}
tcmu_global_max_blocks = TCMU_MBS_TO_BLOCKS(max_area_mb);
if (atomic_read(&global_db_count) > tcmu_global_max_blocks)
schedule_delayed_work(&tcmu_unmap_work, 0);
else
cancel_delayed_work_sync(&tcmu_unmap_work);
return 0;
}
static int tcmu_get_global_max_data_area(char *buffer,
const struct kernel_param *kp)
{
return sprintf(buffer, "%d\n", TCMU_BLOCKS_TO_MBS(tcmu_global_max_blocks));
}
static const struct kernel_param_ops tcmu_global_max_data_area_op = {
.set = tcmu_set_global_max_data_area,
.get = tcmu_get_global_max_data_area,
};
module_param_cb(global_max_data_area_mb, &tcmu_global_max_data_area_op, NULL,
S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(global_max_data_area_mb,
"Max MBs allowed to be allocated to all the tcmu device's "
"data areas.");
static int tcmu_get_block_netlink(char *buffer,
const struct kernel_param *kp)
{
return sprintf(buffer, "%s\n", tcmu_netlink_blocked ?
"blocked" : "unblocked");
}
static int tcmu_set_block_netlink(const char *str,
const struct kernel_param *kp)
{
int ret;
u8 val;
ret = kstrtou8(str, 0, &val);
if (ret < 0)
return ret;
if (val > 1) {
pr_err("Invalid block netlink value %u\n", val);
return -EINVAL;
}
tcmu_netlink_blocked = val;
return 0;
}
static const struct kernel_param_ops tcmu_block_netlink_op = {
.set = tcmu_set_block_netlink,
.get = tcmu_get_block_netlink,
};
module_param_cb(block_netlink, &tcmu_block_netlink_op, NULL, S_IWUSR | S_IRUGO);
MODULE_PARM_DESC(block_netlink, "Block new netlink commands.");
static int tcmu_fail_netlink_cmd(struct tcmu_nl_cmd *nl_cmd)
{
struct tcmu_dev *udev = nl_cmd->udev;
if (!tcmu_netlink_blocked) {
pr_err("Could not reset device's netlink interface. Netlink is not blocked.\n");
return -EBUSY;
}
if (nl_cmd->cmd != TCMU_CMD_UNSPEC) {
pr_debug("Aborting nl cmd %d on %s\n", nl_cmd->cmd, udev->name);
nl_cmd->status = -EINTR;
list_del(&nl_cmd->nl_list);
complete(&nl_cmd->complete);
}
return 0;
}
static int tcmu_set_reset_netlink(const char *str,
const struct kernel_param *kp)
{
struct tcmu_nl_cmd *nl_cmd, *tmp_cmd;
int ret;
u8 val;
ret = kstrtou8(str, 0, &val);
if (ret < 0)
return ret;
if (val != 1) {
pr_err("Invalid reset netlink value %u\n", val);
return -EINVAL;
}
mutex_lock(&tcmu_nl_cmd_mutex);
list_for_each_entry_safe(nl_cmd, tmp_cmd, &tcmu_nl_cmd_list, nl_list) {
ret = tcmu_fail_netlink_cmd(nl_cmd);
if (ret)
break;
}
mutex_unlock(&tcmu_nl_cmd_mutex);
return ret;
}
static const struct kernel_param_ops tcmu_reset_netlink_op = {
.set = tcmu_set_reset_netlink,
};
module_param_cb(reset_netlink, &tcmu_reset_netlink_op, NULL, S_IWUSR);
MODULE_PARM_DESC(reset_netlink, "Reset netlink commands.");
/* multicast group */
enum tcmu_multicast_groups {
TCMU_MCGRP_CONFIG,
};
static const struct genl_multicast_group tcmu_mcgrps[] = {
[TCMU_MCGRP_CONFIG] = { .name = "config", },
};
static struct nla_policy tcmu_attr_policy[TCMU_ATTR_MAX+1] = {
[TCMU_ATTR_DEVICE] = { .type = NLA_STRING },
[TCMU_ATTR_MINOR] = { .type = NLA_U32 },
[TCMU_ATTR_CMD_STATUS] = { .type = NLA_S32 },
[TCMU_ATTR_DEVICE_ID] = { .type = NLA_U32 },
[TCMU_ATTR_SUPP_KERN_CMD_REPLY] = { .type = NLA_U8 },
};
static int tcmu_genl_cmd_done(struct genl_info *info, int completed_cmd)
{
struct tcmu_dev *udev = NULL;
struct tcmu_nl_cmd *nl_cmd;
int dev_id, rc, ret = 0;
if (!info->attrs[TCMU_ATTR_CMD_STATUS] ||
!info->attrs[TCMU_ATTR_DEVICE_ID]) {
printk(KERN_ERR "TCMU_ATTR_CMD_STATUS or TCMU_ATTR_DEVICE_ID not set, doing nothing\n");
return -EINVAL;
}
dev_id = nla_get_u32(info->attrs[TCMU_ATTR_DEVICE_ID]);
rc = nla_get_s32(info->attrs[TCMU_ATTR_CMD_STATUS]);
mutex_lock(&tcmu_nl_cmd_mutex);
list_for_each_entry(nl_cmd, &tcmu_nl_cmd_list, nl_list) {
if (nl_cmd->udev->se_dev.dev_index == dev_id) {
udev = nl_cmd->udev;
break;
}
}
if (!udev) {
pr_err("tcmu nl cmd %u/%d completion could not find device with dev id %u.\n",
completed_cmd, rc, dev_id);
ret = -ENODEV;
goto unlock;
}
list_del(&nl_cmd->nl_list);
pr_debug("%s genl cmd done got id %d curr %d done %d rc %d stat %d\n",
udev->name, dev_id, nl_cmd->cmd, completed_cmd, rc,
nl_cmd->status);
if (nl_cmd->cmd != completed_cmd) {
pr_err("Mismatched commands on %s (Expecting reply for %d. Current %d).\n",
udev->name, completed_cmd, nl_cmd->cmd);
ret = -EINVAL;
goto unlock;
}
nl_cmd->status = rc;
complete(&nl_cmd->complete);
unlock:
mutex_unlock(&tcmu_nl_cmd_mutex);
return ret;
}
static int tcmu_genl_rm_dev_done(struct sk_buff *skb, struct genl_info *info)
{
return tcmu_genl_cmd_done(info, TCMU_CMD_REMOVED_DEVICE);
}
static int tcmu_genl_add_dev_done(struct sk_buff *skb, struct genl_info *info)
{
return tcmu_genl_cmd_done(info, TCMU_CMD_ADDED_DEVICE);
}
static int tcmu_genl_reconfig_dev_done(struct sk_buff *skb,
struct genl_info *info)
{
return tcmu_genl_cmd_done(info, TCMU_CMD_RECONFIG_DEVICE);
}
static int tcmu_genl_set_features(struct sk_buff *skb, struct genl_info *info)
{
if (info->attrs[TCMU_ATTR_SUPP_KERN_CMD_REPLY]) {
tcmu_kern_cmd_reply_supported =
nla_get_u8(info->attrs[TCMU_ATTR_SUPP_KERN_CMD_REPLY]);
printk(KERN_INFO "tcmu daemon: command reply support %u.\n",
tcmu_kern_cmd_reply_supported);
}
return 0;
}
static const struct genl_small_ops tcmu_genl_ops[] = {
{
.cmd = TCMU_CMD_SET_FEATURES,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.flags = GENL_ADMIN_PERM,
.doit = tcmu_genl_set_features,
},
{
.cmd = TCMU_CMD_ADDED_DEVICE_DONE,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.flags = GENL_ADMIN_PERM,
.doit = tcmu_genl_add_dev_done,
},
{
.cmd = TCMU_CMD_REMOVED_DEVICE_DONE,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.flags = GENL_ADMIN_PERM,
.doit = tcmu_genl_rm_dev_done,
},
{
.cmd = TCMU_CMD_RECONFIG_DEVICE_DONE,
.validate = GENL_DONT_VALIDATE_STRICT | GENL_DONT_VALIDATE_DUMP,
.flags = GENL_ADMIN_PERM,
.doit = tcmu_genl_reconfig_dev_done,
},
};
/* Our generic netlink family */
static struct genl_family tcmu_genl_family __ro_after_init = {
.module = THIS_MODULE,
.hdrsize = 0,
.name = "TCM-USER",
.version = 2,
.maxattr = TCMU_ATTR_MAX,
.policy = tcmu_attr_policy,
.mcgrps = tcmu_mcgrps,
.n_mcgrps = ARRAY_SIZE(tcmu_mcgrps),
.netnsok = true,
.small_ops = tcmu_genl_ops,
.n_small_ops = ARRAY_SIZE(tcmu_genl_ops),
};
#define tcmu_cmd_set_dbi_cur(cmd, index) ((cmd)->dbi_cur = (index))
#define tcmu_cmd_reset_dbi_cur(cmd) tcmu_cmd_set_dbi_cur(cmd, 0)
#define tcmu_cmd_set_dbi(cmd, index) ((cmd)->dbi[(cmd)->dbi_cur++] = (index))
#define tcmu_cmd_get_dbi(cmd) ((cmd)->dbi[(cmd)->dbi_cur++])
static void tcmu_cmd_free_data(struct tcmu_cmd *tcmu_cmd, uint32_t len)
{
struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
uint32_t i;
for (i = 0; i < len; i++)
clear_bit(tcmu_cmd->dbi[i], udev->data_bitmap);
}
static inline int tcmu_get_empty_block(struct tcmu_dev *udev,
struct tcmu_cmd *tcmu_cmd,
int prev_dbi, int *iov_cnt)
{
struct page *page;
int ret, dbi;
dbi = find_first_zero_bit(udev->data_bitmap, udev->dbi_thresh);
if (dbi == udev->dbi_thresh)
return -1;
page = radix_tree_lookup(&udev->data_blocks, dbi);
if (!page) {
if (atomic_add_return(1, &global_db_count) >
tcmu_global_max_blocks)
schedule_delayed_work(&tcmu_unmap_work, 0);
/* try to get new page from the mm */
page = alloc_page(GFP_NOIO);
if (!page)
goto err_alloc;
ret = radix_tree_insert(&udev->data_blocks, dbi, page);
if (ret)
goto err_insert;
}
if (dbi > udev->dbi_max)
udev->dbi_max = dbi;
set_bit(dbi, udev->data_bitmap);
tcmu_cmd_set_dbi(tcmu_cmd, dbi);
if (dbi != prev_dbi + 1)
*iov_cnt += 1;
return dbi;
err_insert:
__free_page(page);
err_alloc:
atomic_dec(&global_db_count);
return -1;
}
static int tcmu_get_empty_blocks(struct tcmu_dev *udev,
struct tcmu_cmd *tcmu_cmd, int dbi_cnt)
{
/* start value of dbi + 1 must not be a valid dbi */
int dbi = -2;
int i, iov_cnt = 0;
for (i = 0; i < dbi_cnt; i++) {
dbi = tcmu_get_empty_block(udev, tcmu_cmd, dbi, &iov_cnt);
if (dbi < 0)
return -1;
}
return iov_cnt;
}
static inline struct page *
tcmu_get_block_page(struct tcmu_dev *udev, uint32_t dbi)
{
return radix_tree_lookup(&udev->data_blocks, dbi);
}
static inline void tcmu_free_cmd(struct tcmu_cmd *tcmu_cmd)
{
if (tcmu_cmd->se_cmd)
tcmu_cmd->se_cmd->priv = NULL;
kfree(tcmu_cmd->dbi);
kmem_cache_free(tcmu_cmd_cache, tcmu_cmd);
}
static inline void tcmu_cmd_set_block_cnts(struct tcmu_cmd *cmd)
{
int i, len;
struct se_cmd *se_cmd = cmd->se_cmd;
cmd->dbi_cnt = DIV_ROUND_UP(se_cmd->data_length, DATA_BLOCK_SIZE);
if (se_cmd->se_cmd_flags & SCF_BIDI) {
BUG_ON(!(se_cmd->t_bidi_data_sg && se_cmd->t_bidi_data_nents));
for (i = 0, len = 0; i < se_cmd->t_bidi_data_nents; i++)
len += se_cmd->t_bidi_data_sg[i].length;
cmd->dbi_bidi_cnt = DIV_ROUND_UP(len, DATA_BLOCK_SIZE);
cmd->dbi_cnt += cmd->dbi_bidi_cnt;
cmd->data_len_bidi = len;
}
}
static int new_block_to_iov(struct tcmu_dev *udev, struct tcmu_cmd *cmd,
struct iovec **iov, int prev_dbi, int *remain)
{
/* Get the next dbi */
int dbi = tcmu_cmd_get_dbi(cmd);
/* Do not add more than DATA_BLOCK_SIZE to iov */
int len = min_t(int, DATA_BLOCK_SIZE, *remain);
*remain -= len;
/*
* The following code will gather and map the blocks to the same iovec
* when the blocks are all next to each other.
*/
if (dbi != prev_dbi + 1) {
/* dbi is not next to previous dbi, so start new iov */
if (prev_dbi >= 0)
(*iov)++;
/* write offset relative to mb_addr */
(*iov)->iov_base = (void __user *)
(udev->data_off + dbi * DATA_BLOCK_SIZE);
}
(*iov)->iov_len += len;
return dbi;
}
static void tcmu_setup_iovs(struct tcmu_dev *udev, struct tcmu_cmd *cmd,
struct iovec **iov, int data_length)
{
/* start value of dbi + 1 must not be a valid dbi */
int dbi = -2;
/* We prepare the IOVs for DMA_FROM_DEVICE transfer direction */
while (data_length > 0)
dbi = new_block_to_iov(udev, cmd, iov, dbi, &data_length);
}
static struct tcmu_cmd *tcmu_alloc_cmd(struct se_cmd *se_cmd)
{
struct se_device *se_dev = se_cmd->se_dev;
struct tcmu_dev *udev = TCMU_DEV(se_dev);
struct tcmu_cmd *tcmu_cmd;
tcmu_cmd = kmem_cache_zalloc(tcmu_cmd_cache, GFP_NOIO);
if (!tcmu_cmd)
return NULL;
INIT_LIST_HEAD(&tcmu_cmd->queue_entry);
tcmu_cmd->se_cmd = se_cmd;
tcmu_cmd->tcmu_dev = udev;
tcmu_cmd_set_block_cnts(tcmu_cmd);
tcmu_cmd->dbi = kcalloc(tcmu_cmd->dbi_cnt, sizeof(uint32_t),
GFP_NOIO);
if (!tcmu_cmd->dbi) {
kmem_cache_free(tcmu_cmd_cache, tcmu_cmd);
return NULL;
}
return tcmu_cmd;
}
static inline void tcmu_flush_dcache_range(void *vaddr, size_t size)
{
unsigned long offset = offset_in_page(vaddr);
void *start = vaddr - offset;
size = round_up(size+offset, PAGE_SIZE);
while (size) {
flush_dcache_page(vmalloc_to_page(start));
start += PAGE_SIZE;
size -= PAGE_SIZE;
}
}
/*
* Some ring helper functions. We don't assume size is a power of 2 so
* we can't use circ_buf.h.
*/
static inline size_t spc_used(size_t head, size_t tail, size_t size)
{
int diff = head - tail;
if (diff >= 0)
return diff;
else
return size + diff;
}
static inline size_t spc_free(size_t head, size_t tail, size_t size)
{
/* Keep 1 byte unused or we can't tell full from empty */
return (size - spc_used(head, tail, size) - 1);
}
static inline size_t head_to_end(size_t head, size_t size)
{
return size - head;
}
#define UPDATE_HEAD(head, used, size) smp_store_release(&head, ((head % size) + used) % size)
static void scatter_data_area(struct tcmu_dev *udev, struct tcmu_cmd *tcmu_cmd,
struct iovec **iov)
{
struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
/* start value of dbi + 1 must not be a valid dbi */
int i, dbi = -2;
int block_remaining = 0;
int data_len = se_cmd->data_length;
void *from, *to = NULL;
size_t copy_bytes, offset;
struct scatterlist *sg;
struct page *page = NULL;
for_each_sg(se_cmd->t_data_sg, sg, se_cmd->t_data_nents, i) {
int sg_remaining = sg->length;
from = kmap_atomic(sg_page(sg)) + sg->offset;
while (sg_remaining > 0) {
if (block_remaining == 0) {
if (to) {
flush_dcache_page(page);
kunmap_atomic(to);
}
/* get next dbi and add to IOVs */
dbi = new_block_to_iov(udev, tcmu_cmd, iov, dbi,
&data_len);
page = tcmu_get_block_page(udev, dbi);
to = kmap_atomic(page);
block_remaining = DATA_BLOCK_SIZE;
}
copy_bytes = min_t(size_t, sg_remaining,
block_remaining);
offset = DATA_BLOCK_SIZE - block_remaining;
memcpy(to + offset, from + sg->length - sg_remaining,
copy_bytes);
sg_remaining -= copy_bytes;
block_remaining -= copy_bytes;
}
kunmap_atomic(from - sg->offset);
}
if (to) {
flush_dcache_page(page);
kunmap_atomic(to);
}
}
static void gather_data_area(struct tcmu_dev *udev, struct tcmu_cmd *cmd,
bool bidi, uint32_t read_len)
{
struct se_cmd *se_cmd = cmd->se_cmd;
int i, dbi;
int block_remaining = 0;
void *from = NULL, *to;
size_t copy_bytes, offset;
struct scatterlist *sg, *data_sg;
struct page *page;
unsigned int data_nents;
uint32_t count = 0;
if (!bidi) {
data_sg = se_cmd->t_data_sg;
data_nents = se_cmd->t_data_nents;
} else {
/*
* For bidi case, the first count blocks are for Data-Out
* buffer blocks, and before gathering the Data-In buffer
* the Data-Out buffer blocks should be skipped.
*/
count = cmd->dbi_cnt - cmd->dbi_bidi_cnt;
data_sg = se_cmd->t_bidi_data_sg;
data_nents = se_cmd->t_bidi_data_nents;
}
tcmu_cmd_set_dbi_cur(cmd, count);
for_each_sg(data_sg, sg, data_nents, i) {
int sg_remaining = sg->length;
to = kmap_atomic(sg_page(sg)) + sg->offset;
while (sg_remaining > 0 && read_len > 0) {
if (block_remaining == 0) {
if (from)
kunmap_atomic(from);
block_remaining = DATA_BLOCK_SIZE;
dbi = tcmu_cmd_get_dbi(cmd);
page = tcmu_get_block_page(udev, dbi);
from = kmap_atomic(page);
flush_dcache_page(page);
}
copy_bytes = min_t(size_t, sg_remaining,
block_remaining);
if (read_len < copy_bytes)
copy_bytes = read_len;
offset = DATA_BLOCK_SIZE - block_remaining;
memcpy(to + sg->length - sg_remaining, from + offset,
copy_bytes);
sg_remaining -= copy_bytes;
block_remaining -= copy_bytes;
read_len -= copy_bytes;
}
kunmap_atomic(to - sg->offset);
if (read_len == 0)
break;
}
if (from)
kunmap_atomic(from);
}
static inline size_t spc_bitmap_free(unsigned long *bitmap, uint32_t thresh)
{
return thresh - bitmap_weight(bitmap, thresh);
}
/*
* We can't queue a command until we have space available on the cmd ring.
*
* Called with ring lock held.
*/
static bool is_ring_space_avail(struct tcmu_dev *udev, size_t cmd_size)
{
struct tcmu_mailbox *mb = udev->mb_addr;
size_t space, cmd_needed;
u32 cmd_head;
tcmu_flush_dcache_range(mb, sizeof(*mb));
cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
/*
* If cmd end-of-ring space is too small then we need space for a NOP plus
* original cmd - cmds are internally contiguous.
*/
if (head_to_end(cmd_head, udev->cmdr_size) >= cmd_size)
cmd_needed = cmd_size;
else
cmd_needed = cmd_size + head_to_end(cmd_head, udev->cmdr_size);
space = spc_free(cmd_head, udev->cmdr_last_cleaned, udev->cmdr_size);
if (space < cmd_needed) {
pr_debug("no cmd space: %u %u %u\n", cmd_head,
udev->cmdr_last_cleaned, udev->cmdr_size);
return false;
}
return true;
}
/*
* We have to allocate data buffers before we can queue a command.
* Returns -1 on error (not enough space) or number of needed iovs on success
*
* Called with ring lock held.
*/
static int tcmu_alloc_data_space(struct tcmu_dev *udev, struct tcmu_cmd *cmd,
int *iov_bidi_cnt)
{
int space, iov_cnt = 0, ret = 0;
if (!cmd->dbi_cnt)
goto wr_iov_cnts;
/* try to check and get the data blocks as needed */
space = spc_bitmap_free(udev->data_bitmap, udev->dbi_thresh);
if (space < cmd->dbi_cnt) {
unsigned long blocks_left =
(udev->max_blocks - udev->dbi_thresh) + space;
if (blocks_left < cmd->dbi_cnt) {
pr_debug("no data space: only %lu available, but ask for %lu\n",
blocks_left * DATA_BLOCK_SIZE,
cmd->dbi_cnt * DATA_BLOCK_SIZE);
return -1;
}
udev->dbi_thresh += cmd->dbi_cnt;
if (udev->dbi_thresh > udev->max_blocks)
udev->dbi_thresh = udev->max_blocks;
}
iov_cnt = tcmu_get_empty_blocks(udev, cmd,
cmd->dbi_cnt - cmd->dbi_bidi_cnt);
if (iov_cnt < 0)
return -1;
if (cmd->dbi_bidi_cnt) {
ret = tcmu_get_empty_blocks(udev, cmd, cmd->dbi_bidi_cnt);
if (ret < 0)
return -1;
}
wr_iov_cnts:
*iov_bidi_cnt = ret;
return iov_cnt + ret;
}
static inline size_t tcmu_cmd_get_base_cmd_size(size_t iov_cnt)
{
return max(offsetof(struct tcmu_cmd_entry, req.iov[iov_cnt]),
sizeof(struct tcmu_cmd_entry));
}
static inline size_t tcmu_cmd_get_cmd_size(struct tcmu_cmd *tcmu_cmd,
size_t base_command_size)
{
struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
size_t command_size;
command_size = base_command_size +
round_up(scsi_command_size(se_cmd->t_task_cdb),
TCMU_OP_ALIGN_SIZE);
WARN_ON(command_size & (TCMU_OP_ALIGN_SIZE-1));
return command_size;
}
static void tcmu_setup_cmd_timer(struct tcmu_cmd *tcmu_cmd, unsigned int tmo,
struct timer_list *timer)
{
if (!tmo)
return;
tcmu_cmd->deadline = round_jiffies_up(jiffies + msecs_to_jiffies(tmo));
if (!timer_pending(timer))
mod_timer(timer, tcmu_cmd->deadline);
pr_debug("Timeout set up for cmd %p, dev = %s, tmo = %lu\n", tcmu_cmd,
tcmu_cmd->tcmu_dev->name, tmo / MSEC_PER_SEC);
}
static int add_to_qfull_queue(struct tcmu_cmd *tcmu_cmd)
{
struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
unsigned int tmo;
/*
* For backwards compat if qfull_time_out is not set use
* cmd_time_out and if that's not set use the default time out.
*/
if (!udev->qfull_time_out)
return -ETIMEDOUT;
else if (udev->qfull_time_out > 0)
tmo = udev->qfull_time_out;
else if (udev->cmd_time_out)
tmo = udev->cmd_time_out;
else
tmo = TCMU_TIME_OUT;
tcmu_setup_cmd_timer(tcmu_cmd, tmo, &udev->qfull_timer);
list_add_tail(&tcmu_cmd->queue_entry, &udev->qfull_queue);
pr_debug("adding cmd %p on dev %s to ring space wait queue\n",
tcmu_cmd, udev->name);
return 0;
}
static uint32_t ring_insert_padding(struct tcmu_dev *udev, size_t cmd_size)
{
struct tcmu_cmd_entry_hdr *hdr;
struct tcmu_mailbox *mb = udev->mb_addr;
uint32_t cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
/* Insert a PAD if end-of-ring space is too small */
if (head_to_end(cmd_head, udev->cmdr_size) < cmd_size) {
size_t pad_size = head_to_end(cmd_head, udev->cmdr_size);
hdr = (void *) mb + CMDR_OFF + cmd_head;
tcmu_hdr_set_op(&hdr->len_op, TCMU_OP_PAD);
tcmu_hdr_set_len(&hdr->len_op, pad_size);
hdr->cmd_id = 0; /* not used for PAD */
hdr->kflags = 0;
hdr->uflags = 0;
tcmu_flush_dcache_range(hdr, sizeof(*hdr));
UPDATE_HEAD(mb->cmd_head, pad_size, udev->cmdr_size);
tcmu_flush_dcache_range(mb, sizeof(*mb));
cmd_head = mb->cmd_head % udev->cmdr_size; /* UAM */
WARN_ON(cmd_head != 0);
}
return cmd_head;
}
/**
* queue_cmd_ring - queue cmd to ring or internally
* @tcmu_cmd: cmd to queue
* @scsi_err: TCM error code if failure (-1) returned.
*
* Returns:
* -1 we cannot queue internally or to the ring.
* 0 success
* 1 internally queued to wait for ring memory to free.
*/
static int queue_cmd_ring(struct tcmu_cmd *tcmu_cmd, sense_reason_t *scsi_err)
{
struct tcmu_dev *udev = tcmu_cmd->tcmu_dev;
struct se_cmd *se_cmd = tcmu_cmd->se_cmd;
size_t base_command_size, command_size;
struct tcmu_mailbox *mb = udev->mb_addr;
struct tcmu_cmd_entry *entry;
struct iovec *iov;
int iov_cnt, iov_bidi_cnt, cmd_id;
uint32_t cmd_head;
uint64_t cdb_off;
/* size of data buffer needed */
size_t data_length = (size_t)tcmu_cmd->dbi_cnt * DATA_BLOCK_SIZE;
*scsi_err = TCM_NO_SENSE;
if (test_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags)) {
*scsi_err = TCM_LUN_BUSY;
return -1;
}
if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags)) {
*scsi_err = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
return -1;
}
if (!list_empty(&udev->qfull_queue))
goto queue;
if (data_length > udev->data_size) {
pr_warn("TCMU: Request of size %zu is too big for %zu data area\n",
data_length, udev->data_size);
*scsi_err = TCM_INVALID_CDB_FIELD;
return -1;
}
iov_cnt = tcmu_alloc_data_space(udev, tcmu_cmd, &iov_bidi_cnt);
if (iov_cnt < 0)
goto free_and_queue;
/*
* Must be a certain minimum size for response sense info, but
* also may be larger if the iov array is large.
*/
base_command_size = tcmu_cmd_get_base_cmd_size(iov_cnt);
command_size = tcmu_cmd_get_cmd_size(tcmu_cmd, base_command_size);
if (command_size > (udev->cmdr_size / 2)) {
pr_warn("TCMU: Request of size %zu is too big for %u cmd ring\n",
command_size, udev->cmdr_size);
tcmu_cmd_free_data(tcmu_cmd, tcmu_cmd->dbi_cur);
*scsi_err = TCM_INVALID_CDB_FIELD;
return -1;
}
if (!is_ring_space_avail(udev, command_size))
/*
* Don't leave commands partially setup because the unmap
* thread might need the blocks to make forward progress.
*/
goto free_and_queue;
cmd_id = idr_alloc(&udev->commands, tcmu_cmd, 1, USHRT_MAX, GFP_NOWAIT);
if (cmd_id < 0) {
pr_err("tcmu: Could not allocate cmd id.\n");
tcmu_cmd_free_data(tcmu_cmd, tcmu_cmd->dbi_cnt);
*scsi_err = TCM_OUT_OF_RESOURCES;
return -1;
}
tcmu_cmd->cmd_id = cmd_id;
pr_debug("allocated cmd id %u for cmd %p dev %s\n", tcmu_cmd->cmd_id,
tcmu_cmd, udev->name);
cmd_head = ring_insert_padding(udev, command_size);
entry = (void *) mb + CMDR_OFF + cmd_head;
memset(entry, 0, command_size);
tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_CMD);
/* prepare iov list and copy data to data area if necessary */
tcmu_cmd_reset_dbi_cur(tcmu_cmd);
iov = &entry->req.iov[0];
if (se_cmd->data_direction == DMA_TO_DEVICE ||
se_cmd->se_cmd_flags & SCF_BIDI)
scatter_data_area(udev, tcmu_cmd, &iov);
else
tcmu_setup_iovs(udev, tcmu_cmd, &iov, se_cmd->data_length);
entry->req.iov_cnt = iov_cnt - iov_bidi_cnt;
/* Handle BIDI commands */
if (se_cmd->se_cmd_flags & SCF_BIDI) {
iov++;
tcmu_setup_iovs(udev, tcmu_cmd, &iov, tcmu_cmd->data_len_bidi);
entry->req.iov_bidi_cnt = iov_bidi_cnt;
}
tcmu_setup_cmd_timer(tcmu_cmd, udev->cmd_time_out, &udev->cmd_timer);
entry->hdr.cmd_id = tcmu_cmd->cmd_id;
tcmu_hdr_set_len(&entry->hdr.len_op, command_size);
/* All offsets relative to mb_addr, not start of entry! */
cdb_off = CMDR_OFF + cmd_head + base_command_size;
memcpy((void *) mb + cdb_off, se_cmd->t_task_cdb, scsi_command_size(se_cmd->t_task_cdb));
entry->req.cdb_off = cdb_off;
tcmu_flush_dcache_range(entry, command_size);
UPDATE_HEAD(mb->cmd_head, command_size, udev->cmdr_size);
tcmu_flush_dcache_range(mb, sizeof(*mb));
list_add_tail(&tcmu_cmd->queue_entry, &udev->inflight_queue);
/* TODO: only if FLUSH and FUA? */
uio_event_notify(&udev->uio_info);
return 0;
free_and_queue:
tcmu_cmd_free_data(tcmu_cmd, tcmu_cmd->dbi_cur);
tcmu_cmd_reset_dbi_cur(tcmu_cmd);
queue:
if (add_to_qfull_queue(tcmu_cmd)) {
*scsi_err = TCM_OUT_OF_RESOURCES;
return -1;
}
return 1;
}
/**
* queue_tmr_ring - queue tmr info to ring or internally
* @udev: related tcmu_dev
* @tmr: tcmu_tmr containing tmr info to queue
*
* Returns:
* 0 success
* 1 internally queued to wait for ring memory to free.
*/
static int
queue_tmr_ring(struct tcmu_dev *udev, struct tcmu_tmr *tmr)
{
struct tcmu_tmr_entry *entry;
int cmd_size;
int id_list_sz;
struct tcmu_mailbox *mb = udev->mb_addr;
uint32_t cmd_head;
if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags))
goto out_free;
id_list_sz = sizeof(tmr->tmr_cmd_ids[0]) * tmr->tmr_cmd_cnt;
cmd_size = round_up(sizeof(*entry) + id_list_sz, TCMU_OP_ALIGN_SIZE);
if (!list_empty(&udev->tmr_queue) ||
!is_ring_space_avail(udev, cmd_size)) {
list_add_tail(&tmr->queue_entry, &udev->tmr_queue);
pr_debug("adding tmr %p on dev %s to TMR ring space wait queue\n",
tmr, udev->name);
return 1;
}
cmd_head = ring_insert_padding(udev, cmd_size);
entry = (void *)mb + CMDR_OFF + cmd_head;
memset(entry, 0, cmd_size);
tcmu_hdr_set_op(&entry->hdr.len_op, TCMU_OP_TMR);
tcmu_hdr_set_len(&entry->hdr.len_op, cmd_size);
entry->tmr_type = tmr->tmr_type;
entry->cmd_cnt = tmr->tmr_cmd_cnt;
memcpy(&entry->cmd_ids[0], &tmr->tmr_cmd_ids[0], id_list_sz);
tcmu_flush_dcache_range(entry, cmd_size);
UPDATE_HEAD(mb->cmd_head, cmd_size, udev->cmdr_size);
tcmu_flush_dcache_range(mb, sizeof(*mb));
uio_event_notify(&udev->uio_info);
out_free:
kfree(tmr);
return 0;
}
static sense_reason_t
tcmu_queue_cmd(struct se_cmd *se_cmd)
{
struct se_device *se_dev = se_cmd->se_dev;
struct tcmu_dev *udev = TCMU_DEV(se_dev);
struct tcmu_cmd *tcmu_cmd;
sense_reason_t scsi_ret = TCM_CHECK_CONDITION_ABORT_CMD;
int ret = -1;
tcmu_cmd = tcmu_alloc_cmd(se_cmd);
if (!tcmu_cmd)
return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
mutex_lock(&udev->cmdr_lock);
se_cmd->priv = tcmu_cmd;
if (!(se_cmd->transport_state & CMD_T_ABORTED))
ret = queue_cmd_ring(tcmu_cmd, &scsi_ret);
if (ret < 0)
tcmu_free_cmd(tcmu_cmd);
mutex_unlock(&udev->cmdr_lock);
return scsi_ret;
}
static void tcmu_set_next_deadline(struct list_head *queue,
struct timer_list *timer)
{
struct tcmu_cmd *cmd;
if (!list_empty(queue)) {
cmd = list_first_entry(queue, struct tcmu_cmd, queue_entry);
mod_timer(timer, cmd->deadline);
} else
del_timer(timer);
}
static int
tcmu_tmr_type(enum tcm_tmreq_table tmf)
{
switch (tmf) {
case TMR_ABORT_TASK: return TCMU_TMR_ABORT_TASK;
case TMR_ABORT_TASK_SET: return TCMU_TMR_ABORT_TASK_SET;
case TMR_CLEAR_ACA: return TCMU_TMR_CLEAR_ACA;
case TMR_CLEAR_TASK_SET: return TCMU_TMR_CLEAR_TASK_SET;
case TMR_LUN_RESET: return TCMU_TMR_LUN_RESET;
case TMR_TARGET_WARM_RESET: return TCMU_TMR_TARGET_WARM_RESET;
case TMR_TARGET_COLD_RESET: return TCMU_TMR_TARGET_COLD_RESET;
case TMR_LUN_RESET_PRO: return TCMU_TMR_LUN_RESET_PRO;
default: return TCMU_TMR_UNKNOWN;
}
}
static void
tcmu_tmr_notify(struct se_device *se_dev, enum tcm_tmreq_table tmf,
struct list_head *cmd_list)
{
int i = 0, cmd_cnt = 0;
bool unqueued = false;
uint16_t *cmd_ids = NULL;
struct tcmu_cmd *cmd;
struct se_cmd *se_cmd;
struct tcmu_tmr *tmr;
struct tcmu_dev *udev = TCMU_DEV(se_dev);
mutex_lock(&udev->cmdr_lock);
/* First we check for aborted commands in qfull_queue */
list_for_each_entry(se_cmd, cmd_list, state_list) {
i++;
if (!se_cmd->priv)
continue;
cmd = se_cmd->priv;
/* Commands on qfull queue have no id yet */
if (cmd->cmd_id) {
cmd_cnt++;
continue;
}
pr_debug("Removing aborted command %p from queue on dev %s.\n",
cmd, udev->name);
list_del_init(&cmd->queue_entry);
tcmu_free_cmd(cmd);
target_complete_cmd(se_cmd, SAM_STAT_TASK_ABORTED);
unqueued = true;
}
if (unqueued)
tcmu_set_next_deadline(&udev->qfull_queue, &udev->qfull_timer);
if (!test_bit(TCMU_DEV_BIT_TMR_NOTIFY, &udev->flags))
goto unlock;
pr_debug("TMR event %d on dev %s, aborted cmds %d, afflicted cmd_ids %d\n",
tcmu_tmr_type(tmf), udev->name, i, cmd_cnt);
tmr = kmalloc(sizeof(*tmr) + cmd_cnt * sizeof(*cmd_ids), GFP_KERNEL);
if (!tmr)
goto unlock;
tmr->tmr_type = tcmu_tmr_type(tmf);
tmr->tmr_cmd_cnt = cmd_cnt;
if (cmd_cnt != 0) {
cmd_cnt = 0;
list_for_each_entry(se_cmd, cmd_list, state_list) {
if (!se_cmd->priv)
continue;
cmd = se_cmd->priv;
if (cmd->cmd_id)
tmr->tmr_cmd_ids[cmd_cnt++] = cmd->cmd_id;
}
}
queue_tmr_ring(udev, tmr);
unlock:
mutex_unlock(&udev->cmdr_lock);
}
static void tcmu_handle_completion(struct tcmu_cmd *cmd, struct tcmu_cmd_entry *entry)
{
struct se_cmd *se_cmd = cmd->se_cmd;
struct tcmu_dev *udev = cmd->tcmu_dev;
bool read_len_valid = false;
uint32_t read_len;
/*
* cmd has been completed already from timeout, just reclaim
* data area space and free cmd
*/
if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) {
WARN_ON_ONCE(se_cmd);
goto out;
}
list_del_init(&cmd->queue_entry);
tcmu_cmd_reset_dbi_cur(cmd);
if (entry->hdr.uflags & TCMU_UFLAG_UNKNOWN_OP) {
pr_warn("TCMU: Userspace set UNKNOWN_OP flag on se_cmd %p\n",
cmd->se_cmd);
entry->rsp.scsi_status = SAM_STAT_CHECK_CONDITION;
goto done;
}
read_len = se_cmd->data_length;
if (se_cmd->data_direction == DMA_FROM_DEVICE &&
(entry->hdr.uflags & TCMU_UFLAG_READ_LEN) && entry->rsp.read_len) {
read_len_valid = true;
if (entry->rsp.read_len < read_len)
read_len = entry->rsp.read_len;
}
if (entry->rsp.scsi_status == SAM_STAT_CHECK_CONDITION) {
transport_copy_sense_to_cmd(se_cmd, entry->rsp.sense_buffer);
if (!read_len_valid )
goto done;
else
se_cmd->se_cmd_flags |= SCF_TREAT_READ_AS_NORMAL;
}
if (se_cmd->se_cmd_flags & SCF_BIDI) {
/* Get Data-In buffer before clean up */
gather_data_area(udev, cmd, true, read_len);
} else if (se_cmd->data_direction == DMA_FROM_DEVICE) {
gather_data_area(udev, cmd, false, read_len);
} else if (se_cmd->data_direction == DMA_TO_DEVICE) {
/* TODO: */
} else if (se_cmd->data_direction != DMA_NONE) {
pr_warn("TCMU: data direction was %d!\n",
se_cmd->data_direction);
}
done:
if (read_len_valid) {
pr_debug("read_len = %d\n", read_len);
target_complete_cmd_with_length(cmd->se_cmd,
entry->rsp.scsi_status, read_len);
} else
target_complete_cmd(cmd->se_cmd, entry->rsp.scsi_status);
out:
tcmu_cmd_free_data(cmd, cmd->dbi_cnt);
tcmu_free_cmd(cmd);
}
static int tcmu_run_tmr_queue(struct tcmu_dev *udev)
{
struct tcmu_tmr *tmr, *tmp;
LIST_HEAD(tmrs);
if (list_empty(&udev->tmr_queue))
return 1;
pr_debug("running %s's tmr queue\n", udev->name);
list_splice_init(&udev->tmr_queue, &tmrs);
list_for_each_entry_safe(tmr, tmp, &tmrs, queue_entry) {
list_del_init(&tmr->queue_entry);
pr_debug("removing tmr %p on dev %s from queue\n",
tmr, udev->name);
if (queue_tmr_ring(udev, tmr)) {
pr_debug("ran out of space during tmr queue run\n");
/*
* tmr was requeued, so just put all tmrs back in
* the queue
*/
list_splice_tail(&tmrs, &udev->tmr_queue);
return 0;
}
}
return 1;
}
static unsigned int tcmu_handle_completions(struct tcmu_dev *udev)
{
struct tcmu_mailbox *mb;
struct tcmu_cmd *cmd;
bool free_space = false;
if (test_bit(TCMU_DEV_BIT_BROKEN, &udev->flags)) {
pr_err("ring broken, not handling completions\n");
return 0;
}
mb = udev->mb_addr;
tcmu_flush_dcache_range(mb, sizeof(*mb));
while (udev->cmdr_last_cleaned != READ_ONCE(mb->cmd_tail)) {
struct tcmu_cmd_entry *entry = (void *) mb + CMDR_OFF + udev->cmdr_last_cleaned;
/*
* Flush max. up to end of cmd ring since current entry might
* be a padding that is shorter than sizeof(*entry)
*/
size_t ring_left = head_to_end(udev->cmdr_last_cleaned,
udev->cmdr_size);
tcmu_flush_dcache_range(entry, ring_left < sizeof(*entry) ?
ring_left : sizeof(*entry));
free_space = true;
if (tcmu_hdr_get_op(entry->hdr.len_op) == TCMU_OP_PAD ||
tcmu_hdr_get_op(entry->hdr.len_op) == TCMU_OP_TMR) {
UPDATE_HEAD(udev->cmdr_last_cleaned,
tcmu_hdr_get_len(entry->hdr.len_op),
udev->cmdr_size);
continue;
}
WARN_ON(tcmu_hdr_get_op(entry->hdr.len_op) != TCMU_OP_CMD);
cmd = idr_remove(&udev->commands, entry->hdr.cmd_id);
if (!cmd) {
pr_err("cmd_id %u not found, ring is broken\n",
entry->hdr.cmd_id);
set_bit(TCMU_DEV_BIT_BROKEN, &udev->flags);
break;
}
tcmu_handle_completion(cmd, entry);
UPDATE_HEAD(udev->cmdr_last_cleaned,
tcmu_hdr_get_len(entry->hdr.len_op),
udev->cmdr_size);
}
if (free_space)
free_space = tcmu_run_tmr_queue(udev);
if (atomic_read(&global_db_count) > tcmu_global_max_blocks &&
idr_is_empty(&udev->commands) && list_empty(&udev->qfull_queue)) {
/*
* Allocated blocks exceeded global block limit, currently no
* more pending or waiting commands so try to reclaim blocks.
*/
schedule_delayed_work(&tcmu_unmap_work, 0);
}
if (udev->cmd_time_out)
tcmu_set_next_deadline(&udev->inflight_queue, &udev->cmd_timer);
return free_space;
}
static void tcmu_check_expired_ring_cmd(struct tcmu_cmd *cmd)
{
struct se_cmd *se_cmd;
if (!time_after_eq(jiffies, cmd->deadline))
return;
set_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags);
list_del_init(&cmd->queue_entry);
se_cmd = cmd->se_cmd;
se_cmd->priv = NULL;
cmd->se_cmd = NULL;
pr_debug("Timing out inflight cmd %u on dev %s.\n",
cmd->cmd_id, cmd->tcmu_dev->name);
target_complete_cmd(se_cmd, SAM_STAT_CHECK_CONDITION);
}
static void tcmu_check_expired_queue_cmd(struct tcmu_cmd *cmd)
{
struct se_cmd *se_cmd;
if (!time_after_eq(jiffies, cmd->deadline))
return;
pr_debug("Timing out queued cmd %p on dev %s.\n",
cmd, cmd->tcmu_dev->name);
list_del_init(&cmd->queue_entry);
se_cmd = cmd->se_cmd;
tcmu_free_cmd(cmd);
target_complete_cmd(se_cmd, SAM_STAT_TASK_SET_FULL);
}
static void tcmu_device_timedout(struct tcmu_dev *udev)
{
spin_lock(&timed_out_udevs_lock);
if (list_empty(&udev->timedout_entry))
list_add_tail(&udev->timedout_entry, &timed_out_udevs);
spin_unlock(&timed_out_udevs_lock);
schedule_delayed_work(&tcmu_unmap_work, 0);
}
static void tcmu_cmd_timedout(struct timer_list *t)
{
struct tcmu_dev *udev = from_timer(udev, t, cmd_timer);
pr_debug("%s cmd timeout has expired\n", udev->name);
tcmu_device_timedout(udev);
}
static void tcmu_qfull_timedout(struct timer_list *t)
{
struct tcmu_dev *udev = from_timer(udev, t, qfull_timer);
pr_debug("%s qfull timeout has expired\n", udev->name);
tcmu_device_timedout(udev);
}
static int tcmu_attach_hba(struct se_hba *hba, u32 host_id)
{
struct tcmu_hba *tcmu_hba;
tcmu_hba = kzalloc(sizeof(struct tcmu_hba), GFP_KERNEL);
if (!tcmu_hba)
return -ENOMEM;
tcmu_hba->host_id = host_id;
hba->hba_ptr = tcmu_hba;
return 0;
}
static void tcmu_detach_hba(struct se_hba *hba)
{
kfree(hba->hba_ptr);
hba->hba_ptr = NULL;
}
static struct se_device *tcmu_alloc_device(struct se_hba *hba, const char *name)
{
struct tcmu_dev *udev;
udev = kzalloc(sizeof(struct tcmu_dev), GFP_KERNEL);
if (!udev)
return NULL;
kref_init(&udev->kref);
udev->name = kstrdup(name, GFP_KERNEL);
if (!udev->name) {
kfree(udev);
return NULL;
}
udev->hba = hba;
udev->cmd_time_out = TCMU_TIME_OUT;
udev->qfull_time_out = -1;
udev->max_blocks = DATA_BLOCK_BITS_DEF;
mutex_init(&udev->cmdr_lock);
INIT_LIST_HEAD(&udev->node);
INIT_LIST_HEAD(&udev->timedout_entry);
INIT_LIST_HEAD(&udev->qfull_queue);
INIT_LIST_HEAD(&udev->tmr_queue);
INIT_LIST_HEAD(&udev->inflight_queue);
idr_init(&udev->commands);
timer_setup(&udev->qfull_timer, tcmu_qfull_timedout, 0);
timer_setup(&udev->cmd_timer, tcmu_cmd_timedout, 0);
INIT_RADIX_TREE(&udev->data_blocks, GFP_KERNEL);
return &udev->se_dev;
}
static void run_qfull_queue(struct tcmu_dev *udev, bool fail)
{
struct tcmu_cmd *tcmu_cmd, *tmp_cmd;
LIST_HEAD(cmds);
sense_reason_t scsi_ret;
int ret;
if (list_empty(&udev->qfull_queue))
return;
pr_debug("running %s's cmdr queue forcefail %d\n", udev->name, fail);
list_splice_init(&udev->qfull_queue, &cmds);
list_for_each_entry_safe(tcmu_cmd, tmp_cmd, &cmds, queue_entry) {
list_del_init(&tcmu_cmd->queue_entry);
pr_debug("removing cmd %p on dev %s from queue\n",
tcmu_cmd, udev->name);
if (fail) {
/*
* We were not able to even start the command, so
* fail with busy to allow a retry in case runner
* was only temporarily down. If the device is being
* removed then LIO core will do the right thing and
* fail the retry.
*/
target_complete_cmd(tcmu_cmd->se_cmd, SAM_STAT_BUSY);
tcmu_free_cmd(tcmu_cmd);
continue;
}
ret = queue_cmd_ring(tcmu_cmd, &scsi_ret);
if (ret < 0) {
pr_debug("cmd %p on dev %s failed with %u\n",
tcmu_cmd, udev->name, scsi_ret);
/*
* Ignore scsi_ret for now. target_complete_cmd
* drops it.
*/
target_complete_cmd(tcmu_cmd->se_cmd,
SAM_STAT_CHECK_CONDITION);
tcmu_free_cmd(tcmu_cmd);
} else if (ret > 0) {
pr_debug("ran out of space during cmdr queue run\n");
/*
* cmd was requeued, so just put all cmds back in
* the queue
*/
list_splice_tail(&cmds, &udev->qfull_queue);
break;
}
}
tcmu_set_next_deadline(&udev->qfull_queue, &udev->qfull_timer);
}
static int tcmu_irqcontrol(struct uio_info *info, s32 irq_on)
{
struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
mutex_lock(&udev->cmdr_lock);
if (tcmu_handle_completions(udev))
run_qfull_queue(udev, false);
mutex_unlock(&udev->cmdr_lock);
return 0;
}
/*
* mmap code from uio.c. Copied here because we want to hook mmap()
* and this stuff must come along.
*/
static int tcmu_find_mem_index(struct vm_area_struct *vma)
{
struct tcmu_dev *udev = vma->vm_private_data;
struct uio_info *info = &udev->uio_info;
if (vma->vm_pgoff < MAX_UIO_MAPS) {
if (info->mem[vma->vm_pgoff].size == 0)
return -1;
return (int)vma->vm_pgoff;
}
return -1;
}
static struct page *tcmu_try_get_block_page(struct tcmu_dev *udev, uint32_t dbi)
{
struct page *page;
mutex_lock(&udev->cmdr_lock);
page = tcmu_get_block_page(udev, dbi);
if (likely(page)) {
mutex_unlock(&udev->cmdr_lock);
return page;
}
/*
* Userspace messed up and passed in a address not in the
* data iov passed to it.
*/
pr_err("Invalid addr to data block mapping (dbi %u) on device %s\n",
dbi, udev->name);
page = NULL;
mutex_unlock(&udev->cmdr_lock);
return page;
}
static vm_fault_t tcmu_vma_fault(struct vm_fault *vmf)
{
struct tcmu_dev *udev = vmf->vma->vm_private_data;
struct uio_info *info = &udev->uio_info;
struct page *page;
unsigned long offset;
void *addr;
int mi = tcmu_find_mem_index(vmf->vma);
if (mi < 0)
return VM_FAULT_SIGBUS;
/*
* We need to subtract mi because userspace uses offset = N*PAGE_SIZE
* to use mem[N].
*/
offset = (vmf->pgoff - mi) << PAGE_SHIFT;
if (offset < udev->data_off) {
/* For the vmalloc()ed cmd area pages */
addr = (void *)(unsigned long)info->mem[mi].addr + offset;
page = vmalloc_to_page(addr);
} else {
uint32_t dbi;
/* For the dynamically growing data area pages */
dbi = (offset - udev->data_off) / DATA_BLOCK_SIZE;
page = tcmu_try_get_block_page(udev, dbi);
if (!page)
return VM_FAULT_SIGBUS;
}
get_page(page);
vmf->page = page;
return 0;
}
static const struct vm_operations_struct tcmu_vm_ops = {
.fault = tcmu_vma_fault,
};
static int tcmu_mmap(struct uio_info *info, struct vm_area_struct *vma)
{
struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
vma->vm_ops = &tcmu_vm_ops;
vma->vm_private_data = udev;
/* Ensure the mmap is exactly the right size */
if (vma_pages(vma) != (udev->ring_size >> PAGE_SHIFT))
return -EINVAL;
return 0;
}
static int tcmu_open(struct uio_info *info, struct inode *inode)
{
struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
/* O_EXCL not supported for char devs, so fake it? */
if (test_and_set_bit(TCMU_DEV_BIT_OPEN, &udev->flags))
return -EBUSY;
udev->inode = inode;
kref_get(&udev->kref);
pr_debug("open\n");
return 0;
}
static void tcmu_dev_call_rcu(struct rcu_head *p)
{
struct se_device *dev = container_of(p, struct se_device, rcu_head);
struct tcmu_dev *udev = TCMU_DEV(dev);
kfree(udev->uio_info.name);
kfree(udev->name);
kfree(udev);
}
static int tcmu_check_and_free_pending_cmd(struct tcmu_cmd *cmd)
{
if (test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) {
kmem_cache_free(tcmu_cmd_cache, cmd);
return 0;
}
return -EINVAL;
}
static void tcmu_blocks_release(struct radix_tree_root *blocks,
int start, int end)
{
int i;
struct page *page;
for (i = start; i < end; i++) {
page = radix_tree_delete(blocks, i);
if (page) {
__free_page(page);
atomic_dec(&global_db_count);
}
}
}
static void tcmu_remove_all_queued_tmr(struct tcmu_dev *udev)
{
struct tcmu_tmr *tmr, *tmp;
list_for_each_entry_safe(tmr, tmp, &udev->tmr_queue, queue_entry) {
list_del_init(&tmr->queue_entry);
kfree(tmr);
}
}
static void tcmu_dev_kref_release(struct kref *kref)
{
struct tcmu_dev *udev = container_of(kref, struct tcmu_dev, kref);
struct se_device *dev = &udev->se_dev;
struct tcmu_cmd *cmd;
bool all_expired = true;
int i;
vfree(udev->mb_addr);
udev->mb_addr = NULL;
spin_lock_bh(&timed_out_udevs_lock);
if (!list_empty(&udev->timedout_entry))
list_del(&udev->timedout_entry);
spin_unlock_bh(&timed_out_udevs_lock);
/* Upper layer should drain all requests before calling this */
mutex_lock(&udev->cmdr_lock);
idr_for_each_entry(&udev->commands, cmd, i) {
if (tcmu_check_and_free_pending_cmd(cmd) != 0)
all_expired = false;
}
/* There can be left over TMR cmds. Remove them. */
tcmu_remove_all_queued_tmr(udev);
if (!list_empty(&udev->qfull_queue))
all_expired = false;
idr_destroy(&udev->commands);
WARN_ON(!all_expired);
tcmu_blocks_release(&udev->data_blocks, 0, udev->dbi_max + 1);
bitmap_free(udev->data_bitmap);
mutex_unlock(&udev->cmdr_lock);
call_rcu(&dev->rcu_head, tcmu_dev_call_rcu);
}
static int tcmu_release(struct uio_info *info, struct inode *inode)
{
struct tcmu_dev *udev = container_of(info, struct tcmu_dev, uio_info);
clear_bit(TCMU_DEV_BIT_OPEN, &udev->flags);
pr_debug("close\n");
/* release ref from open */
kref_put(&udev->kref, tcmu_dev_kref_release);
return 0;
}
static int tcmu_init_genl_cmd_reply(struct tcmu_dev *udev, int cmd)
{
struct tcmu_nl_cmd *nl_cmd = &udev->curr_nl_cmd;
if (!tcmu_kern_cmd_reply_supported)
return 0;
if (udev->nl_reply_supported <= 0)
return 0;
mutex_lock(&tcmu_nl_cmd_mutex);
if (tcmu_netlink_blocked) {
mutex_unlock(&tcmu_nl_cmd_mutex);
pr_warn("Failing nl cmd %d on %s. Interface is blocked.\n", cmd,
udev->name);
return -EAGAIN;
}
if (nl_cmd->cmd != TCMU_CMD_UNSPEC) {
mutex_unlock(&tcmu_nl_cmd_mutex);
pr_warn("netlink cmd %d already executing on %s\n",
nl_cmd->cmd, udev->name);
return -EBUSY;
}
memset(nl_cmd, 0, sizeof(*nl_cmd));
nl_cmd->cmd = cmd;
nl_cmd->udev = udev;
init_completion(&nl_cmd->complete);
INIT_LIST_HEAD(&nl_cmd->nl_list);
list_add_tail(&nl_cmd->nl_list, &tcmu_nl_cmd_list);
mutex_unlock(&tcmu_nl_cmd_mutex);
return 0;
}
static void tcmu_destroy_genl_cmd_reply(struct tcmu_dev *udev)
{
struct tcmu_nl_cmd *nl_cmd = &udev->curr_nl_cmd;
if (!tcmu_kern_cmd_reply_supported)
return;
if (udev->nl_reply_supported <= 0)
return;
mutex_lock(&tcmu_nl_cmd_mutex);
list_del(&nl_cmd->nl_list);
memset(nl_cmd, 0, sizeof(*nl_cmd));
mutex_unlock(&tcmu_nl_cmd_mutex);
}
static int tcmu_wait_genl_cmd_reply(struct tcmu_dev *udev)
{
struct tcmu_nl_cmd *nl_cmd = &udev->curr_nl_cmd;
int ret;
if (!tcmu_kern_cmd_reply_supported)
return 0;
if (udev->nl_reply_supported <= 0)
return 0;
pr_debug("sleeping for nl reply\n");
wait_for_completion(&nl_cmd->complete);
mutex_lock(&tcmu_nl_cmd_mutex);
nl_cmd->cmd = TCMU_CMD_UNSPEC;
ret = nl_cmd->status;
mutex_unlock(&tcmu_nl_cmd_mutex);
return ret;
}
static int tcmu_netlink_event_init(struct tcmu_dev *udev,
enum tcmu_genl_cmd cmd,
struct sk_buff **buf, void **hdr)
{
struct sk_buff *skb;
void *msg_header;
int ret = -ENOMEM;
skb = genlmsg_new(NLMSG_GOODSIZE, GFP_KERNEL);
if (!skb)
return ret;
msg_header = genlmsg_put(skb, 0, 0, &tcmu_genl_family, 0, cmd);
if (!msg_header)
goto free_skb;
ret = nla_put_string(skb, TCMU_ATTR_DEVICE, udev->uio_info.name);
if (ret < 0)
goto free_skb;
ret = nla_put_u32(skb, TCMU_ATTR_MINOR, udev->uio_info.uio_dev->minor);
if (ret < 0)
goto free_skb;
ret = nla_put_u32(skb, TCMU_ATTR_DEVICE_ID, udev->se_dev.dev_index);
if (ret < 0)
goto free_skb;
*buf = skb;
*hdr = msg_header;
return ret;
free_skb:
nlmsg_free(skb);
return ret;
}
static int tcmu_netlink_event_send(struct tcmu_dev *udev,
enum tcmu_genl_cmd cmd,
struct sk_buff *skb, void *msg_header)
{
int ret;
genlmsg_end(skb, msg_header);
ret = tcmu_init_genl_cmd_reply(udev, cmd);
if (ret) {
nlmsg_free(skb);
return ret;
}
ret = genlmsg_multicast_allns(&tcmu_genl_family, skb, 0,
TCMU_MCGRP_CONFIG, GFP_KERNEL);
/* Wait during an add as the listener may not be up yet */
if (ret == 0 ||
(ret == -ESRCH && cmd == TCMU_CMD_ADDED_DEVICE))
return tcmu_wait_genl_cmd_reply(udev);
else
tcmu_destroy_genl_cmd_reply(udev);
return ret;
}
static int tcmu_send_dev_add_event(struct tcmu_dev *udev)
{
struct sk_buff *skb = NULL;
void *msg_header = NULL;
int ret = 0;
ret = tcmu_netlink_event_init(udev, TCMU_CMD_ADDED_DEVICE, &skb,
&msg_header);
if (ret < 0)
return ret;
return tcmu_netlink_event_send(udev, TCMU_CMD_ADDED_DEVICE, skb,
msg_header);
}
static int tcmu_send_dev_remove_event(struct tcmu_dev *udev)
{
struct sk_buff *skb = NULL;
void *msg_header = NULL;
int ret = 0;
ret = tcmu_netlink_event_init(udev, TCMU_CMD_REMOVED_DEVICE,
&skb, &msg_header);
if (ret < 0)
return ret;
return tcmu_netlink_event_send(udev, TCMU_CMD_REMOVED_DEVICE,
skb, msg_header);
}
static int tcmu_update_uio_info(struct tcmu_dev *udev)
{
struct tcmu_hba *hba = udev->hba->hba_ptr;
struct uio_info *info;
char *str;
info = &udev->uio_info;
if (udev->dev_config[0])
str = kasprintf(GFP_KERNEL, "tcm-user/%u/%s/%s", hba->host_id,
udev->name, udev->dev_config);
else
str = kasprintf(GFP_KERNEL, "tcm-user/%u/%s", hba->host_id,
udev->name);
if (!str)
return -ENOMEM;
/* If the old string exists, free it */
kfree(info->name);
info->name = str;
return 0;
}
static int tcmu_configure_device(struct se_device *dev)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
struct uio_info *info;
struct tcmu_mailbox *mb;
int ret = 0;
ret = tcmu_update_uio_info(udev);
if (ret)
return ret;
info = &udev->uio_info;
mutex_lock(&udev->cmdr_lock);
udev->data_bitmap = bitmap_zalloc(udev->max_blocks, GFP_KERNEL);
mutex_unlock(&udev->cmdr_lock);
if (!udev->data_bitmap) {
ret = -ENOMEM;
goto err_bitmap_alloc;
}
udev->mb_addr = vzalloc(CMDR_SIZE);
if (!udev->mb_addr) {
ret = -ENOMEM;
goto err_vzalloc;
}
/* mailbox fits in first part of CMDR space */
udev->cmdr_size = CMDR_SIZE - CMDR_OFF;
udev->data_off = CMDR_SIZE;
udev->data_size = udev->max_blocks * DATA_BLOCK_SIZE;
udev->dbi_thresh = 0; /* Default in Idle state */
/* Initialise the mailbox of the ring buffer */
mb = udev->mb_addr;
mb->version = TCMU_MAILBOX_VERSION;
mb->flags = TCMU_MAILBOX_FLAG_CAP_OOOC |
TCMU_MAILBOX_FLAG_CAP_READ_LEN |
TCMU_MAILBOX_FLAG_CAP_TMR;
mb->cmdr_off = CMDR_OFF;
mb->cmdr_size = udev->cmdr_size;
WARN_ON(!PAGE_ALIGNED(udev->data_off));
WARN_ON(udev->data_size % PAGE_SIZE);
WARN_ON(udev->data_size % DATA_BLOCK_SIZE);
info->version = __stringify(TCMU_MAILBOX_VERSION);
info->mem[0].name = "tcm-user command & data buffer";
info->mem[0].addr = (phys_addr_t)(uintptr_t)udev->mb_addr;
info->mem[0].size = udev->ring_size = udev->data_size + CMDR_SIZE;
info->mem[0].memtype = UIO_MEM_NONE;
info->irqcontrol = tcmu_irqcontrol;
info->irq = UIO_IRQ_CUSTOM;
info->mmap = tcmu_mmap;
info->open = tcmu_open;
info->release = tcmu_release;
ret = uio_register_device(tcmu_root_device, info);
if (ret)
goto err_register;
/* User can set hw_block_size before enable the device */
if (dev->dev_attrib.hw_block_size == 0)
dev->dev_attrib.hw_block_size = 512;
/* Other attributes can be configured in userspace */
if (!dev->dev_attrib.hw_max_sectors)
dev->dev_attrib.hw_max_sectors = 128;
if (!dev->dev_attrib.emulate_write_cache)
dev->dev_attrib.emulate_write_cache = 0;
dev->dev_attrib.hw_queue_depth = 128;
/* If user didn't explicitly disable netlink reply support, use
* module scope setting.
*/
if (udev->nl_reply_supported >= 0)
udev->nl_reply_supported = tcmu_kern_cmd_reply_supported;
/*
* Get a ref incase userspace does a close on the uio device before
* LIO has initiated tcmu_free_device.
*/
kref_get(&udev->kref);
ret = tcmu_send_dev_add_event(udev);
if (ret)
goto err_netlink;
mutex_lock(&root_udev_mutex);
list_add(&udev->node, &root_udev);
mutex_unlock(&root_udev_mutex);
return 0;
err_netlink:
kref_put(&udev->kref, tcmu_dev_kref_release);
uio_unregister_device(&udev->uio_info);
err_register:
vfree(udev->mb_addr);
udev->mb_addr = NULL;
err_vzalloc:
bitmap_free(udev->data_bitmap);
udev->data_bitmap = NULL;
err_bitmap_alloc:
kfree(info->name);
info->name = NULL;
return ret;
}
static void tcmu_free_device(struct se_device *dev)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
/* release ref from init */
kref_put(&udev->kref, tcmu_dev_kref_release);
}
static void tcmu_destroy_device(struct se_device *dev)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
del_timer_sync(&udev->cmd_timer);
del_timer_sync(&udev->qfull_timer);
mutex_lock(&root_udev_mutex);
list_del(&udev->node);
mutex_unlock(&root_udev_mutex);
tcmu_send_dev_remove_event(udev);
uio_unregister_device(&udev->uio_info);
/* release ref from configure */
kref_put(&udev->kref, tcmu_dev_kref_release);
}
static void tcmu_unblock_dev(struct tcmu_dev *udev)
{
mutex_lock(&udev->cmdr_lock);
clear_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags);
mutex_unlock(&udev->cmdr_lock);
}
static void tcmu_block_dev(struct tcmu_dev *udev)
{
mutex_lock(&udev->cmdr_lock);
if (test_and_set_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags))
goto unlock;
/* complete IO that has executed successfully */
tcmu_handle_completions(udev);
/* fail IO waiting to be queued */
run_qfull_queue(udev, true);
unlock:
mutex_unlock(&udev->cmdr_lock);
}
static void tcmu_reset_ring(struct tcmu_dev *udev, u8 err_level)
{
struct tcmu_mailbox *mb;
struct tcmu_cmd *cmd;
int i;
mutex_lock(&udev->cmdr_lock);
idr_for_each_entry(&udev->commands, cmd, i) {
pr_debug("removing cmd %u on dev %s from ring (is expired %d)\n",
cmd->cmd_id, udev->name,
test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags));
idr_remove(&udev->commands, i);
if (!test_bit(TCMU_CMD_BIT_EXPIRED, &cmd->flags)) {
WARN_ON(!cmd->se_cmd);
list_del_init(&cmd->queue_entry);
if (err_level == 1) {
/*
* Userspace was not able to start the
* command or it is retryable.
*/
target_complete_cmd(cmd->se_cmd, SAM_STAT_BUSY);
} else {
/* hard failure */
target_complete_cmd(cmd->se_cmd,
SAM_STAT_CHECK_CONDITION);
}
}
tcmu_cmd_free_data(cmd, cmd->dbi_cnt);
tcmu_free_cmd(cmd);
}
mb = udev->mb_addr;
tcmu_flush_dcache_range(mb, sizeof(*mb));
pr_debug("mb last %u head %u tail %u\n", udev->cmdr_last_cleaned,
mb->cmd_tail, mb->cmd_head);
udev->cmdr_last_cleaned = 0;
mb->cmd_tail = 0;
mb->cmd_head = 0;
tcmu_flush_dcache_range(mb, sizeof(*mb));
clear_bit(TCMU_DEV_BIT_BROKEN, &udev->flags);
del_timer(&udev->cmd_timer);
/*
* ring is empty and qfull queue never contains aborted commands.
* So TMRs in tmr queue do not contain relevant cmd_ids.
* After a ring reset userspace should do a fresh start, so
* even LUN RESET message is no longer relevant.
* Therefore remove all TMRs from qfull queue
*/
tcmu_remove_all_queued_tmr(udev);
run_qfull_queue(udev, false);
mutex_unlock(&udev->cmdr_lock);
}
enum {
Opt_dev_config, Opt_dev_size, Opt_hw_block_size, Opt_hw_max_sectors,
Opt_nl_reply_supported, Opt_max_data_area_mb, Opt_err,
};
static match_table_t tokens = {
{Opt_dev_config, "dev_config=%s"},
{Opt_dev_size, "dev_size=%s"},
{Opt_hw_block_size, "hw_block_size=%d"},
{Opt_hw_max_sectors, "hw_max_sectors=%d"},
{Opt_nl_reply_supported, "nl_reply_supported=%d"},
{Opt_max_data_area_mb, "max_data_area_mb=%d"},
{Opt_err, NULL}
};
static int tcmu_set_dev_attrib(substring_t *arg, u32 *dev_attrib)
{
int val, ret;
ret = match_int(arg, &val);
if (ret < 0) {
pr_err("match_int() failed for dev attrib. Error %d.\n",
ret);
return ret;
}
if (val <= 0) {
pr_err("Invalid dev attrib value %d. Must be greater than zero.\n",
val);
return -EINVAL;
}
*dev_attrib = val;
return 0;
}
static int tcmu_set_max_blocks_param(struct tcmu_dev *udev, substring_t *arg)
{
int val, ret;
ret = match_int(arg, &val);
if (ret < 0) {
pr_err("match_int() failed for max_data_area_mb=. Error %d.\n",
ret);
return ret;
}
if (val <= 0) {
pr_err("Invalid max_data_area %d.\n", val);
return -EINVAL;
}
mutex_lock(&udev->cmdr_lock);
if (udev->data_bitmap) {
pr_err("Cannot set max_data_area_mb after it has been enabled.\n");
ret = -EINVAL;
goto unlock;
}
udev->max_blocks = TCMU_MBS_TO_BLOCKS(val);
if (udev->max_blocks > tcmu_global_max_blocks) {
pr_err("%d is too large. Adjusting max_data_area_mb to global limit of %u\n",
val, TCMU_BLOCKS_TO_MBS(tcmu_global_max_blocks));
udev->max_blocks = tcmu_global_max_blocks;
}
unlock:
mutex_unlock(&udev->cmdr_lock);
return ret;
}
static ssize_t tcmu_set_configfs_dev_params(struct se_device *dev,
const char *page, ssize_t count)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
char *orig, *ptr, *opts;
substring_t args[MAX_OPT_ARGS];
int ret = 0, token;
opts = kstrdup(page, GFP_KERNEL);
if (!opts)
return -ENOMEM;
orig = opts;
while ((ptr = strsep(&opts, ",\n")) != NULL) {
if (!*ptr)
continue;
token = match_token(ptr, tokens, args);
switch (token) {
case Opt_dev_config:
if (match_strlcpy(udev->dev_config, &args[0],
TCMU_CONFIG_LEN) == 0) {
ret = -EINVAL;
break;
}
pr_debug("TCMU: Referencing Path: %s\n", udev->dev_config);
break;
case Opt_dev_size:
ret = match_u64(&args[0], &udev->dev_size);
if (ret < 0)
pr_err("match_u64() failed for dev_size=. Error %d.\n",
ret);
break;
case Opt_hw_block_size:
ret = tcmu_set_dev_attrib(&args[0],
&(dev->dev_attrib.hw_block_size));
break;
case Opt_hw_max_sectors:
ret = tcmu_set_dev_attrib(&args[0],
&(dev->dev_attrib.hw_max_sectors));
break;
case Opt_nl_reply_supported:
ret = match_int(&args[0], &udev->nl_reply_supported);
if (ret < 0)
pr_err("match_int() failed for nl_reply_supported=. Error %d.\n",
ret);
break;
case Opt_max_data_area_mb:
ret = tcmu_set_max_blocks_param(udev, &args[0]);
break;
default:
break;
}
if (ret)
break;
}
kfree(orig);
return (!ret) ? count : ret;
}
static ssize_t tcmu_show_configfs_dev_params(struct se_device *dev, char *b)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
ssize_t bl = 0;
bl = sprintf(b + bl, "Config: %s ",
udev->dev_config[0] ? udev->dev_config : "NULL");
bl += sprintf(b + bl, "Size: %llu ", udev->dev_size);
bl += sprintf(b + bl, "MaxDataAreaMB: %u\n",
TCMU_BLOCKS_TO_MBS(udev->max_blocks));
return bl;
}
static sector_t tcmu_get_blocks(struct se_device *dev)
{
struct tcmu_dev *udev = TCMU_DEV(dev);
return div_u64(udev->dev_size - dev->dev_attrib.block_size,
dev->dev_attrib.block_size);
}
static sense_reason_t
tcmu_parse_cdb(struct se_cmd *cmd)
{
return passthrough_parse_cdb(cmd, tcmu_queue_cmd);
}
static ssize_t tcmu_cmd_time_out_show(struct config_item *item, char *page)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
return snprintf(page, PAGE_SIZE, "%lu\n", udev->cmd_time_out / MSEC_PER_SEC);
}
static ssize_t tcmu_cmd_time_out_store(struct config_item *item, const char *page,
size_t count)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = container_of(da->da_dev,
struct tcmu_dev, se_dev);
u32 val;
int ret;
if (da->da_dev->export_count) {
pr_err("Unable to set tcmu cmd_time_out while exports exist\n");
return -EINVAL;
}
ret = kstrtou32(page, 0, &val);
if (ret < 0)
return ret;
udev->cmd_time_out = val * MSEC_PER_SEC;
return count;
}
CONFIGFS_ATTR(tcmu_, cmd_time_out);
static ssize_t tcmu_qfull_time_out_show(struct config_item *item, char *page)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
return snprintf(page, PAGE_SIZE, "%ld\n", udev->qfull_time_out <= 0 ?
udev->qfull_time_out :
udev->qfull_time_out / MSEC_PER_SEC);
}
static ssize_t tcmu_qfull_time_out_store(struct config_item *item,
const char *page, size_t count)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
s32 val;
int ret;
ret = kstrtos32(page, 0, &val);
if (ret < 0)
return ret;
if (val >= 0) {
udev->qfull_time_out = val * MSEC_PER_SEC;
} else if (val == -1) {
udev->qfull_time_out = val;
} else {
printk(KERN_ERR "Invalid qfull timeout value %d\n", val);
return -EINVAL;
}
return count;
}
CONFIGFS_ATTR(tcmu_, qfull_time_out);
static ssize_t tcmu_max_data_area_mb_show(struct config_item *item, char *page)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
return snprintf(page, PAGE_SIZE, "%u\n",
TCMU_BLOCKS_TO_MBS(udev->max_blocks));
}
CONFIGFS_ATTR_RO(tcmu_, max_data_area_mb);
static ssize_t tcmu_dev_config_show(struct config_item *item, char *page)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
return snprintf(page, PAGE_SIZE, "%s\n", udev->dev_config);
}
static int tcmu_send_dev_config_event(struct tcmu_dev *udev,
const char *reconfig_data)
{
struct sk_buff *skb = NULL;
void *msg_header = NULL;
int ret = 0;
ret = tcmu_netlink_event_init(udev, TCMU_CMD_RECONFIG_DEVICE,
&skb, &msg_header);
if (ret < 0)
return ret;
ret = nla_put_string(skb, TCMU_ATTR_DEV_CFG, reconfig_data);
if (ret < 0) {
nlmsg_free(skb);
return ret;
}
return tcmu_netlink_event_send(udev, TCMU_CMD_RECONFIG_DEVICE,
skb, msg_header);
}
static ssize_t tcmu_dev_config_store(struct config_item *item, const char *page,
size_t count)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
int ret, len;
len = strlen(page);
if (!len || len > TCMU_CONFIG_LEN - 1)
return -EINVAL;
/* Check if device has been configured before */
if (target_dev_configured(&udev->se_dev)) {
ret = tcmu_send_dev_config_event(udev, page);
if (ret) {
pr_err("Unable to reconfigure device\n");
return ret;
}
strlcpy(udev->dev_config, page, TCMU_CONFIG_LEN);
ret = tcmu_update_uio_info(udev);
if (ret)
return ret;
return count;
}
strlcpy(udev->dev_config, page, TCMU_CONFIG_LEN);
return count;
}
CONFIGFS_ATTR(tcmu_, dev_config);
static ssize_t tcmu_dev_size_show(struct config_item *item, char *page)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
return snprintf(page, PAGE_SIZE, "%llu\n", udev->dev_size);
}
static int tcmu_send_dev_size_event(struct tcmu_dev *udev, u64 size)
{
struct sk_buff *skb = NULL;
void *msg_header = NULL;
int ret = 0;
ret = tcmu_netlink_event_init(udev, TCMU_CMD_RECONFIG_DEVICE,
&skb, &msg_header);
if (ret < 0)
return ret;
ret = nla_put_u64_64bit(skb, TCMU_ATTR_DEV_SIZE,
size, TCMU_ATTR_PAD);
if (ret < 0) {
nlmsg_free(skb);
return ret;
}
return tcmu_netlink_event_send(udev, TCMU_CMD_RECONFIG_DEVICE,
skb, msg_header);
}
static ssize_t tcmu_dev_size_store(struct config_item *item, const char *page,
size_t count)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
u64 val;
int ret;
ret = kstrtou64(page, 0, &val);
if (ret < 0)
return ret;
/* Check if device has been configured before */
if (target_dev_configured(&udev->se_dev)) {
ret = tcmu_send_dev_size_event(udev, val);
if (ret) {
pr_err("Unable to reconfigure device\n");
return ret;
}
}
udev->dev_size = val;
return count;
}
CONFIGFS_ATTR(tcmu_, dev_size);
static ssize_t tcmu_nl_reply_supported_show(struct config_item *item,
char *page)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
return snprintf(page, PAGE_SIZE, "%d\n", udev->nl_reply_supported);
}
static ssize_t tcmu_nl_reply_supported_store(struct config_item *item,
const char *page, size_t count)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
s8 val;
int ret;
ret = kstrtos8(page, 0, &val);
if (ret < 0)
return ret;
udev->nl_reply_supported = val;
return count;
}
CONFIGFS_ATTR(tcmu_, nl_reply_supported);
static ssize_t tcmu_emulate_write_cache_show(struct config_item *item,
char *page)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
return snprintf(page, PAGE_SIZE, "%i\n", da->emulate_write_cache);
}
static int tcmu_send_emulate_write_cache(struct tcmu_dev *udev, u8 val)
{
struct sk_buff *skb = NULL;
void *msg_header = NULL;
int ret = 0;
ret = tcmu_netlink_event_init(udev, TCMU_CMD_RECONFIG_DEVICE,
&skb, &msg_header);
if (ret < 0)
return ret;
ret = nla_put_u8(skb, TCMU_ATTR_WRITECACHE, val);
if (ret < 0) {
nlmsg_free(skb);
return ret;
}
return tcmu_netlink_event_send(udev, TCMU_CMD_RECONFIG_DEVICE,
skb, msg_header);
}
static ssize_t tcmu_emulate_write_cache_store(struct config_item *item,
const char *page, size_t count)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
u8 val;
int ret;
ret = kstrtou8(page, 0, &val);
if (ret < 0)
return ret;
/* Check if device has been configured before */
if (target_dev_configured(&udev->se_dev)) {
ret = tcmu_send_emulate_write_cache(udev, val);
if (ret) {
pr_err("Unable to reconfigure device\n");
return ret;
}
}
da->emulate_write_cache = val;
return count;
}
CONFIGFS_ATTR(tcmu_, emulate_write_cache);
static ssize_t tcmu_tmr_notification_show(struct config_item *item, char *page)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
return snprintf(page, PAGE_SIZE, "%i\n",
test_bit(TCMU_DEV_BIT_TMR_NOTIFY, &udev->flags));
}
static ssize_t tcmu_tmr_notification_store(struct config_item *item,
const char *page, size_t count)
{
struct se_dev_attrib *da = container_of(to_config_group(item),
struct se_dev_attrib, da_group);
struct tcmu_dev *udev = TCMU_DEV(da->da_dev);
u8 val;
int ret;
ret = kstrtou8(page, 0, &val);
if (ret < 0)
return ret;
if (val > 1)
return -EINVAL;
if (val)
set_bit(TCMU_DEV_BIT_TMR_NOTIFY, &udev->flags);
else
clear_bit(TCMU_DEV_BIT_TMR_NOTIFY, &udev->flags);
return count;
}
CONFIGFS_ATTR(tcmu_, tmr_notification);
static ssize_t tcmu_block_dev_show(struct config_item *item, char *page)
{
struct se_device *se_dev = container_of(to_config_group(item),
struct se_device,
dev_action_group);
struct tcmu_dev *udev = TCMU_DEV(se_dev);
if (test_bit(TCMU_DEV_BIT_BLOCKED, &udev->flags))
return snprintf(page, PAGE_SIZE, "%s\n", "blocked");
else
return snprintf(page, PAGE_SIZE, "%s\n", "unblocked");
}
static ssize_t tcmu_block_dev_store(struct config_item *item, const char *page,
size_t count)
{
struct se_device *se_dev = container_of(to_config_group(item),
struct se_device,
dev_action_group);
struct tcmu_dev *udev = TCMU_DEV(se_dev);
u8 val;
int ret;
if (!target_dev_configured(&udev->se_dev)) {
pr_err("Device is not configured.\n");
return -EINVAL;
}
ret = kstrtou8(page, 0, &val);
if (ret < 0)
return ret;
if (val > 1) {
pr_err("Invalid block value %d\n", val);
return -EINVAL;
}
if (!val)
tcmu_unblock_dev(udev);
else
tcmu_block_dev(udev);
return count;
}
CONFIGFS_ATTR(tcmu_, block_dev);
static ssize_t tcmu_reset_ring_store(struct config_item *item, const char *page,
size_t count)
{
struct se_device *se_dev = container_of(to_config_group(item),
struct se_device,
dev_action_group);
struct tcmu_dev *udev = TCMU_DEV(se_dev);
u8 val;
int ret;
if (!target_dev_configured(&udev->se_dev)) {
pr_err("Device is not configured.\n");
return -EINVAL;
}
ret = kstrtou8(page, 0, &val);
if (ret < 0)
return ret;
if (val != 1 && val != 2) {
pr_err("Invalid reset ring value %d\n", val);
return -EINVAL;
}
tcmu_reset_ring(udev, val);
return count;
}
CONFIGFS_ATTR_WO(tcmu_, reset_ring);
static struct configfs_attribute *tcmu_attrib_attrs[] = {
&tcmu_attr_cmd_time_out,
&tcmu_attr_qfull_time_out,
&tcmu_attr_max_data_area_mb,
&tcmu_attr_dev_config,
&tcmu_attr_dev_size,
&tcmu_attr_emulate_write_cache,
&tcmu_attr_tmr_notification,
&tcmu_attr_nl_reply_supported,
NULL,
};
static struct configfs_attribute **tcmu_attrs;
static struct configfs_attribute *tcmu_action_attrs[] = {
&tcmu_attr_block_dev,
&tcmu_attr_reset_ring,
NULL,
};
static struct target_backend_ops tcmu_ops = {
.name = "user",
.owner = THIS_MODULE,
.transport_flags_default = TRANSPORT_FLAG_PASSTHROUGH,
.transport_flags_changeable = TRANSPORT_FLAG_PASSTHROUGH_PGR |
TRANSPORT_FLAG_PASSTHROUGH_ALUA,
.attach_hba = tcmu_attach_hba,
.detach_hba = tcmu_detach_hba,
.alloc_device = tcmu_alloc_device,
.configure_device = tcmu_configure_device,
.destroy_device = tcmu_destroy_device,
.free_device = tcmu_free_device,
.parse_cdb = tcmu_parse_cdb,
.tmr_notify = tcmu_tmr_notify,
.set_configfs_dev_params = tcmu_set_configfs_dev_params,
.show_configfs_dev_params = tcmu_show_configfs_dev_params,
.get_device_type = sbc_get_device_type,
.get_blocks = tcmu_get_blocks,
.tb_dev_action_attrs = tcmu_action_attrs,
};
static void find_free_blocks(void)
{
struct tcmu_dev *udev;
loff_t off;
u32 start, end, block, total_freed = 0;
if (atomic_read(&global_db_count) <= tcmu_global_max_blocks)
return;
mutex_lock(&root_udev_mutex);
list_for_each_entry(udev, &root_udev, node) {
mutex_lock(&udev->cmdr_lock);
if (!target_dev_configured(&udev->se_dev)) {
mutex_unlock(&udev->cmdr_lock);
continue;
}
/* Try to complete the finished commands first */
if (tcmu_handle_completions(udev))
run_qfull_queue(udev, false);
/* Skip the udevs in idle */
if (!udev->dbi_thresh) {
mutex_unlock(&udev->cmdr_lock);
continue;
}
end = udev->dbi_max + 1;
block = find_last_bit(udev->data_bitmap, end);
if (block == udev->dbi_max) {
/*
* The last bit is dbi_max, so it is not possible
* reclaim any blocks.
*/
mutex_unlock(&udev->cmdr_lock);
continue;
} else if (block == end) {
/* The current udev will goto idle state */
udev->dbi_thresh = start = 0;
udev->dbi_max = 0;
} else {
udev->dbi_thresh = start = block + 1;
udev->dbi_max = block;
}
/* Here will truncate the data area from off */
off = udev->data_off + start * DATA_BLOCK_SIZE;
unmap_mapping_range(udev->inode->i_mapping, off, 0, 1);
/* Release the block pages */
tcmu_blocks_release(&udev->data_blocks, start, end);
mutex_unlock(&udev->cmdr_lock);
total_freed += end - start;
pr_debug("Freed %u blocks (total %u) from %s.\n", end - start,
total_freed, udev->name);
}
mutex_unlock(&root_udev_mutex);
if (atomic_read(&global_db_count) > tcmu_global_max_blocks)
schedule_delayed_work(&tcmu_unmap_work, msecs_to_jiffies(5000));
}
static void check_timedout_devices(void)
{
struct tcmu_dev *udev, *tmp_dev;
struct tcmu_cmd *cmd, *tmp_cmd;
LIST_HEAD(devs);
spin_lock_bh(&timed_out_udevs_lock);
list_splice_init(&timed_out_udevs, &devs);
list_for_each_entry_safe(udev, tmp_dev, &devs, timedout_entry) {
list_del_init(&udev->timedout_entry);
spin_unlock_bh(&timed_out_udevs_lock);
mutex_lock(&udev->cmdr_lock);
/*
* If cmd_time_out is disabled but qfull is set deadline
* will only reflect the qfull timeout. Ignore it.
*/
if (udev->cmd_time_out) {
list_for_each_entry_safe(cmd, tmp_cmd,
&udev->inflight_queue,
queue_entry) {
tcmu_check_expired_ring_cmd(cmd);
}
tcmu_set_next_deadline(&udev->inflight_queue,
&udev->cmd_timer);
}
list_for_each_entry_safe(cmd, tmp_cmd, &udev->qfull_queue,
queue_entry) {
tcmu_check_expired_queue_cmd(cmd);
}
tcmu_set_next_deadline(&udev->qfull_queue, &udev->qfull_timer);
mutex_unlock(&udev->cmdr_lock);
spin_lock_bh(&timed_out_udevs_lock);
}
spin_unlock_bh(&timed_out_udevs_lock);
}
static void tcmu_unmap_work_fn(struct work_struct *work)
{
check_timedout_devices();
find_free_blocks();
}
static int __init tcmu_module_init(void)
{
int ret, i, k, len = 0;
BUILD_BUG_ON((sizeof(struct tcmu_cmd_entry) % TCMU_OP_ALIGN_SIZE) != 0);
INIT_DELAYED_WORK(&tcmu_unmap_work, tcmu_unmap_work_fn);
tcmu_cmd_cache = kmem_cache_create("tcmu_cmd_cache",
sizeof(struct tcmu_cmd),
__alignof__(struct tcmu_cmd),
0, NULL);
if (!tcmu_cmd_cache)
return -ENOMEM;
tcmu_root_device = root_device_register("tcm_user");
if (IS_ERR(tcmu_root_device)) {
ret = PTR_ERR(tcmu_root_device);
goto out_free_cache;
}
ret = genl_register_family(&tcmu_genl_family);
if (ret < 0) {
goto out_unreg_device;
}
for (i = 0; passthrough_attrib_attrs[i] != NULL; i++)
len += sizeof(struct configfs_attribute *);
for (i = 0; passthrough_pr_attrib_attrs[i] != NULL; i++)
len += sizeof(struct configfs_attribute *);
for (i = 0; tcmu_attrib_attrs[i] != NULL; i++)
len += sizeof(struct configfs_attribute *);
len += sizeof(struct configfs_attribute *);
tcmu_attrs = kzalloc(len, GFP_KERNEL);
if (!tcmu_attrs) {
ret = -ENOMEM;
goto out_unreg_genl;
}
for (i = 0; passthrough_attrib_attrs[i] != NULL; i++)
tcmu_attrs[i] = passthrough_attrib_attrs[i];
for (k = 0; passthrough_pr_attrib_attrs[k] != NULL; k++)
tcmu_attrs[i++] = passthrough_pr_attrib_attrs[k];
for (k = 0; tcmu_attrib_attrs[k] != NULL; k++)
tcmu_attrs[i++] = tcmu_attrib_attrs[k];
tcmu_ops.tb_dev_attrib_attrs = tcmu_attrs;
ret = transport_backend_register(&tcmu_ops);
if (ret)
goto out_attrs;
return 0;
out_attrs:
kfree(tcmu_attrs);
out_unreg_genl:
genl_unregister_family(&tcmu_genl_family);
out_unreg_device:
root_device_unregister(tcmu_root_device);
out_free_cache:
kmem_cache_destroy(tcmu_cmd_cache);
return ret;
}
static void __exit tcmu_module_exit(void)
{
cancel_delayed_work_sync(&tcmu_unmap_work);
target_backend_unregister(&tcmu_ops);
kfree(tcmu_attrs);
genl_unregister_family(&tcmu_genl_family);
root_device_unregister(tcmu_root_device);
kmem_cache_destroy(tcmu_cmd_cache);
}
MODULE_DESCRIPTION("TCM USER subsystem plugin");
MODULE_AUTHOR("Shaohua Li <shli@kernel.org>");
MODULE_AUTHOR("Andy Grover <agrover@redhat.com>");
MODULE_LICENSE("GPL");
module_init(tcmu_module_init);
module_exit(tcmu_module_exit);