linux-stable/arch/arm64/kernel/head.S
Ard Biesheuvel 34e526cb7d arm64/head: Disable MMU at EL2 before clearing HCR_EL2.E2H
Even though the boot protocol stipulates otherwise, an exception has
been made for the EFI stub, and entering the core kernel with the MMU
enabled is permitted. This allows a substantial amount of cache
maintenance to be elided, wich is significant when fast boot times are
critical (e.g., for booting micro-VMs)

Once the initial ID map has been populated, the MMU is disabled as part
of the logic sequence that puts all system registers into a known state.
Any code that needs to execute within the window where the MMU is off is
cleaned to the PoC explicitly, which includes all of HYP text when
entering at EL2.

However, the current sequence of initializing the EL2 system registers
is not safe: HCR_EL2 is set to its nVHE initial state before SCTLR_EL2
is reprogrammed, and this means that a VHE-to-nVHE switch may occur
while the MMU is enabled. This switch causes some system registers as
well as page table descriptors to be interpreted in a different way,
potentially resulting in spurious exceptions relating to MMU
translation.

So disable the MMU explicitly first when entering in EL2 with the MMU
and caches enabled.

Fixes: 6178617038 ("efi: arm64: enter with MMU and caches enabled")
Signed-off-by: Ard Biesheuvel <ardb@kernel.org>
Cc: <stable@vger.kernel.org> # 6.3.x
Acked-by: Mark Rutland <mark.rutland@arm.com>
Acked-by: Marc Zyngier <maz@kernel.org>
Link: https://lore.kernel.org/r/20240415075412.2347624-6-ardb+git@google.com
Signed-off-by: Catalin Marinas <catalin.marinas@arm.com>
2024-04-18 18:00:55 +01:00

537 lines
13 KiB
ArmAsm

/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Low-level CPU initialisation
* Based on arch/arm/kernel/head.S
*
* Copyright (C) 1994-2002 Russell King
* Copyright (C) 2003-2012 ARM Ltd.
* Authors: Catalin Marinas <catalin.marinas@arm.com>
* Will Deacon <will.deacon@arm.com>
*/
#include <linux/linkage.h>
#include <linux/init.h>
#include <linux/pgtable.h>
#include <asm/asm_pointer_auth.h>
#include <asm/assembler.h>
#include <asm/boot.h>
#include <asm/bug.h>
#include <asm/ptrace.h>
#include <asm/asm-offsets.h>
#include <asm/cache.h>
#include <asm/cputype.h>
#include <asm/el2_setup.h>
#include <asm/elf.h>
#include <asm/image.h>
#include <asm/kernel-pgtable.h>
#include <asm/kvm_arm.h>
#include <asm/memory.h>
#include <asm/pgtable-hwdef.h>
#include <asm/page.h>
#include <asm/scs.h>
#include <asm/smp.h>
#include <asm/sysreg.h>
#include <asm/thread_info.h>
#include <asm/virt.h>
#include "efi-header.S"
#if (PAGE_OFFSET & 0x1fffff) != 0
#error PAGE_OFFSET must be at least 2MB aligned
#endif
/*
* Kernel startup entry point.
* ---------------------------
*
* The requirements are:
* MMU = off, D-cache = off, I-cache = on or off,
* x0 = physical address to the FDT blob.
*
* Note that the callee-saved registers are used for storing variables
* that are useful before the MMU is enabled. The allocations are described
* in the entry routines.
*/
__HEAD
/*
* DO NOT MODIFY. Image header expected by Linux boot-loaders.
*/
efi_signature_nop // special NOP to identity as PE/COFF executable
b primary_entry // branch to kernel start, magic
.quad 0 // Image load offset from start of RAM, little-endian
le64sym _kernel_size_le // Effective size of kernel image, little-endian
le64sym _kernel_flags_le // Informative flags, little-endian
.quad 0 // reserved
.quad 0 // reserved
.quad 0 // reserved
.ascii ARM64_IMAGE_MAGIC // Magic number
.long .Lpe_header_offset // Offset to the PE header.
__EFI_PE_HEADER
.section ".idmap.text","a"
/*
* The following callee saved general purpose registers are used on the
* primary lowlevel boot path:
*
* Register Scope Purpose
* x19 primary_entry() .. start_kernel() whether we entered with the MMU on
* x20 primary_entry() .. __primary_switch() CPU boot mode
* x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0
*/
SYM_CODE_START(primary_entry)
bl record_mmu_state
bl preserve_boot_args
adrp x1, early_init_stack
mov sp, x1
mov x29, xzr
adrp x0, init_idmap_pg_dir
mov x1, xzr
bl __pi_create_init_idmap
/*
* If the page tables have been populated with non-cacheable
* accesses (MMU disabled), invalidate those tables again to
* remove any speculatively loaded cache lines.
*/
cbnz x19, 0f
dmb sy
mov x1, x0 // end of used region
adrp x0, init_idmap_pg_dir
adr_l x2, dcache_inval_poc
blr x2
b 1f
/*
* If we entered with the MMU and caches on, clean the ID mapped part
* of the primary boot code to the PoC so we can safely execute it with
* the MMU off.
*/
0: adrp x0, __idmap_text_start
adr_l x1, __idmap_text_end
adr_l x2, dcache_clean_poc
blr x2
1: mov x0, x19
bl init_kernel_el // w0=cpu_boot_mode
mov x20, x0
/*
* The following calls CPU setup code, see arch/arm64/mm/proc.S for
* details.
* On return, the CPU will be ready for the MMU to be turned on and
* the TCR will have been set.
*/
bl __cpu_setup // initialise processor
b __primary_switch
SYM_CODE_END(primary_entry)
__INIT
SYM_CODE_START_LOCAL(record_mmu_state)
mrs x19, CurrentEL
cmp x19, #CurrentEL_EL2
mrs x19, sctlr_el1
b.ne 0f
mrs x19, sctlr_el2
0:
CPU_LE( tbnz x19, #SCTLR_ELx_EE_SHIFT, 1f )
CPU_BE( tbz x19, #SCTLR_ELx_EE_SHIFT, 1f )
tst x19, #SCTLR_ELx_C // Z := (C == 0)
and x19, x19, #SCTLR_ELx_M // isolate M bit
csel x19, xzr, x19, eq // clear x19 if Z
ret
/*
* Set the correct endianness early so all memory accesses issued
* before init_kernel_el() occur in the correct byte order. Note that
* this means the MMU must be disabled, or the active ID map will end
* up getting interpreted with the wrong byte order.
*/
1: eor x19, x19, #SCTLR_ELx_EE
bic x19, x19, #SCTLR_ELx_M
b.ne 2f
pre_disable_mmu_workaround
msr sctlr_el2, x19
b 3f
2: pre_disable_mmu_workaround
msr sctlr_el1, x19
3: isb
mov x19, xzr
ret
SYM_CODE_END(record_mmu_state)
/*
* Preserve the arguments passed by the bootloader in x0 .. x3
*/
SYM_CODE_START_LOCAL(preserve_boot_args)
mov x21, x0 // x21=FDT
adr_l x0, boot_args // record the contents of
stp x21, x1, [x0] // x0 .. x3 at kernel entry
stp x2, x3, [x0, #16]
cbnz x19, 0f // skip cache invalidation if MMU is on
dmb sy // needed before dc ivac with
// MMU off
add x1, x0, #0x20 // 4 x 8 bytes
b dcache_inval_poc // tail call
0: str_l x19, mmu_enabled_at_boot, x0
ret
SYM_CODE_END(preserve_boot_args)
/*
* Initialize CPU registers with task-specific and cpu-specific context.
*
* Create a final frame record at task_pt_regs(current)->stackframe, so
* that the unwinder can identify the final frame record of any task by
* its location in the task stack. We reserve the entire pt_regs space
* for consistency with user tasks and kthreads.
*/
.macro init_cpu_task tsk, tmp1, tmp2
msr sp_el0, \tsk
ldr \tmp1, [\tsk, #TSK_STACK]
add sp, \tmp1, #THREAD_SIZE
sub sp, sp, #PT_REGS_SIZE
stp xzr, xzr, [sp, #S_STACKFRAME]
add x29, sp, #S_STACKFRAME
scs_load_current
adr_l \tmp1, __per_cpu_offset
ldr w\tmp2, [\tsk, #TSK_TI_CPU]
ldr \tmp1, [\tmp1, \tmp2, lsl #3]
set_this_cpu_offset \tmp1
.endm
/*
* The following fragment of code is executed with the MMU enabled.
*
* x0 = __pa(KERNEL_START)
*/
SYM_FUNC_START_LOCAL(__primary_switched)
adr_l x4, init_task
init_cpu_task x4, x5, x6
adr_l x8, vectors // load VBAR_EL1 with virtual
msr vbar_el1, x8 // vector table address
isb
stp x29, x30, [sp, #-16]!
mov x29, sp
str_l x21, __fdt_pointer, x5 // Save FDT pointer
adrp x4, _text // Save the offset between
sub x4, x4, x0 // the kernel virtual and
str_l x4, kimage_voffset, x5 // physical mappings
mov x0, x20
bl set_cpu_boot_mode_flag
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
bl kasan_early_init
#endif
mov x0, x20
bl finalise_el2 // Prefer VHE if possible
ldp x29, x30, [sp], #16
bl start_kernel
ASM_BUG()
SYM_FUNC_END(__primary_switched)
/*
* end early head section, begin head code that is also used for
* hotplug and needs to have the same protections as the text region
*/
.section ".idmap.text","a"
/*
* Starting from EL2 or EL1, configure the CPU to execute at the highest
* reachable EL supported by the kernel in a chosen default state. If dropping
* from EL2 to EL1, configure EL2 before configuring EL1.
*
* Since we cannot always rely on ERET synchronizing writes to sysregs (e.g. if
* SCTLR_ELx.EOS is clear), we place an ISB prior to ERET.
*
* Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in x0 if
* booted in EL1 or EL2 respectively, with the top 32 bits containing
* potential context flags. These flags are *not* stored in __boot_cpu_mode.
*
* x0: whether we are being called from the primary boot path with the MMU on
*/
SYM_FUNC_START(init_kernel_el)
mrs x1, CurrentEL
cmp x1, #CurrentEL_EL2
b.eq init_el2
SYM_INNER_LABEL(init_el1, SYM_L_LOCAL)
mov_q x0, INIT_SCTLR_EL1_MMU_OFF
pre_disable_mmu_workaround
msr sctlr_el1, x0
isb
mov_q x0, INIT_PSTATE_EL1
msr spsr_el1, x0
msr elr_el1, lr
mov w0, #BOOT_CPU_MODE_EL1
eret
SYM_INNER_LABEL(init_el2, SYM_L_LOCAL)
msr elr_el2, lr
// clean all HYP code to the PoC if we booted at EL2 with the MMU on
cbz x0, 0f
adrp x0, __hyp_idmap_text_start
adr_l x1, __hyp_text_end
adr_l x2, dcache_clean_poc
blr x2
mov_q x0, INIT_SCTLR_EL2_MMU_OFF
pre_disable_mmu_workaround
msr sctlr_el2, x0
isb
0:
mov_q x0, HCR_HOST_NVHE_FLAGS
/*
* Compliant CPUs advertise their VHE-onlyness with
* ID_AA64MMFR4_EL1.E2H0 < 0. HCR_EL2.E2H can be
* RES1 in that case. Publish the E2H bit early so that
* it can be picked up by the init_el2_state macro.
*
* Fruity CPUs seem to have HCR_EL2.E2H set to RAO/WI, but
* don't advertise it (they predate this relaxation).
*/
mrs_s x1, SYS_ID_AA64MMFR4_EL1
tbz x1, #(ID_AA64MMFR4_EL1_E2H0_SHIFT + ID_AA64MMFR4_EL1_E2H0_WIDTH - 1), 1f
orr x0, x0, #HCR_E2H
1:
msr hcr_el2, x0
isb
init_el2_state
/* Hypervisor stub */
adr_l x0, __hyp_stub_vectors
msr vbar_el2, x0
isb
mov_q x1, INIT_SCTLR_EL1_MMU_OFF
mrs x0, hcr_el2
and x0, x0, #HCR_E2H
cbz x0, 2f
/* Set a sane SCTLR_EL1, the VHE way */
msr_s SYS_SCTLR_EL12, x1
mov x2, #BOOT_CPU_FLAG_E2H
b 3f
2:
msr sctlr_el1, x1
mov x2, xzr
3:
__init_el2_nvhe_prepare_eret
mov w0, #BOOT_CPU_MODE_EL2
orr x0, x0, x2
eret
SYM_FUNC_END(init_kernel_el)
/*
* This provides a "holding pen" for platforms to hold all secondary
* cores are held until we're ready for them to initialise.
*/
SYM_FUNC_START(secondary_holding_pen)
mov x0, xzr
bl init_kernel_el // w0=cpu_boot_mode
mrs x2, mpidr_el1
mov_q x1, MPIDR_HWID_BITMASK
and x2, x2, x1
adr_l x3, secondary_holding_pen_release
pen: ldr x4, [x3]
cmp x4, x2
b.eq secondary_startup
wfe
b pen
SYM_FUNC_END(secondary_holding_pen)
/*
* Secondary entry point that jumps straight into the kernel. Only to
* be used where CPUs are brought online dynamically by the kernel.
*/
SYM_FUNC_START(secondary_entry)
mov x0, xzr
bl init_kernel_el // w0=cpu_boot_mode
b secondary_startup
SYM_FUNC_END(secondary_entry)
SYM_FUNC_START_LOCAL(secondary_startup)
/*
* Common entry point for secondary CPUs.
*/
mov x20, x0 // preserve boot mode
#ifdef CONFIG_ARM64_VA_BITS_52
alternative_if ARM64_HAS_VA52
bl __cpu_secondary_check52bitva
alternative_else_nop_endif
#endif
bl __cpu_setup // initialise processor
adrp x1, swapper_pg_dir
adrp x2, idmap_pg_dir
bl __enable_mmu
ldr x8, =__secondary_switched
br x8
SYM_FUNC_END(secondary_startup)
.text
SYM_FUNC_START_LOCAL(__secondary_switched)
mov x0, x20
bl set_cpu_boot_mode_flag
mov x0, x20
bl finalise_el2
str_l xzr, __early_cpu_boot_status, x3
adr_l x5, vectors
msr vbar_el1, x5
isb
adr_l x0, secondary_data
ldr x2, [x0, #CPU_BOOT_TASK]
cbz x2, __secondary_too_slow
init_cpu_task x2, x1, x3
#ifdef CONFIG_ARM64_PTR_AUTH
ptrauth_keys_init_cpu x2, x3, x4, x5
#endif
bl secondary_start_kernel
ASM_BUG()
SYM_FUNC_END(__secondary_switched)
SYM_FUNC_START_LOCAL(__secondary_too_slow)
wfe
wfi
b __secondary_too_slow
SYM_FUNC_END(__secondary_too_slow)
/*
* Sets the __boot_cpu_mode flag depending on the CPU boot mode passed
* in w0. See arch/arm64/include/asm/virt.h for more info.
*/
SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag)
adr_l x1, __boot_cpu_mode
cmp w0, #BOOT_CPU_MODE_EL2
b.ne 1f
add x1, x1, #4
1: str w0, [x1] // Save CPU boot mode
ret
SYM_FUNC_END(set_cpu_boot_mode_flag)
/*
* The booting CPU updates the failed status @__early_cpu_boot_status,
* with MMU turned off.
*
* update_early_cpu_boot_status tmp, status
* - Corrupts tmp1, tmp2
* - Writes 'status' to __early_cpu_boot_status and makes sure
* it is committed to memory.
*/
.macro update_early_cpu_boot_status status, tmp1, tmp2
mov \tmp2, #\status
adr_l \tmp1, __early_cpu_boot_status
str \tmp2, [\tmp1]
dmb sy
dc ivac, \tmp1 // Invalidate potentially stale cache line
.endm
/*
* Enable the MMU.
*
* x0 = SCTLR_EL1 value for turning on the MMU.
* x1 = TTBR1_EL1 value
* x2 = ID map root table address
*
* Returns to the caller via x30/lr. This requires the caller to be covered
* by the .idmap.text section.
*
* Checks if the selected granule size is supported by the CPU.
* If it isn't, park the CPU
*/
.section ".idmap.text","a"
SYM_FUNC_START(__enable_mmu)
mrs x3, ID_AA64MMFR0_EL1
ubfx x3, x3, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4
cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MIN
b.lt __no_granule_support
cmp x3, #ID_AA64MMFR0_EL1_TGRAN_SUPPORTED_MAX
b.gt __no_granule_support
phys_to_ttbr x2, x2
msr ttbr0_el1, x2 // load TTBR0
load_ttbr1 x1, x1, x3
set_sctlr_el1 x0
ret
SYM_FUNC_END(__enable_mmu)
#ifdef CONFIG_ARM64_VA_BITS_52
SYM_FUNC_START(__cpu_secondary_check52bitva)
#ifndef CONFIG_ARM64_LPA2
mrs_s x0, SYS_ID_AA64MMFR2_EL1
and x0, x0, ID_AA64MMFR2_EL1_VARange_MASK
cbnz x0, 2f
#else
mrs x0, id_aa64mmfr0_el1
sbfx x0, x0, #ID_AA64MMFR0_EL1_TGRAN_SHIFT, 4
cmp x0, #ID_AA64MMFR0_EL1_TGRAN_LPA2
b.ge 2f
#endif
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1
1: wfe
wfi
b 1b
2: ret
SYM_FUNC_END(__cpu_secondary_check52bitva)
#endif
SYM_FUNC_START_LOCAL(__no_granule_support)
/* Indicate that this CPU can't boot and is stuck in the kernel */
update_early_cpu_boot_status \
CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2
1:
wfe
wfi
b 1b
SYM_FUNC_END(__no_granule_support)
SYM_FUNC_START_LOCAL(__primary_switch)
adrp x1, reserved_pg_dir
adrp x2, init_idmap_pg_dir
bl __enable_mmu
adrp x1, early_init_stack
mov sp, x1
mov x29, xzr
mov x0, x20 // pass the full boot status
mov x1, x21 // pass the FDT
bl __pi_early_map_kernel // Map and relocate the kernel
ldr x8, =__primary_switched
adrp x0, KERNEL_START // __pa(KERNEL_START)
br x8
SYM_FUNC_END(__primary_switch)