mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 13:43:51 +00:00
643fe70e7b
of_property_match_string returns an int; either an index from 0 or greater if successful or negative on failure. Even it's very unlikely that the DT CPU node contains multiple enable-methods these checks should be fixed. This patch was inspired by the work of Nick Desaulniers. Link: https://lore.kernel.org/lkml/20230516-sunxi-v1-1-ac4b9651a8c1@google.com/T/ Cc: Nick Desaulniers <ndesaulniers@google.com> Signed-off-by: Stefan Wahren <wahrenst@gmx.net> Link: https://lore.kernel.org/r/20231228193903.9078-2-wahrenst@gmx.net Reviewed-by: Chen-Yu Tsai <wens@csie.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
914 lines
24 KiB
C
914 lines
24 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (c) 2018 Chen-Yu Tsai
|
|
*
|
|
* Chen-Yu Tsai <wens@csie.org>
|
|
*
|
|
* arch/arm/mach-sunxi/mc_smp.c
|
|
*
|
|
* Based on Allwinner code, arch/arm/mach-exynos/mcpm-exynos.c, and
|
|
* arch/arm/mach-hisi/platmcpm.c
|
|
* Cluster cache enable trampoline code adapted from MCPM framework
|
|
*/
|
|
|
|
#include <linux/arm-cci.h>
|
|
#include <linux/cpu_pm.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/io.h>
|
|
#include <linux/iopoll.h>
|
|
#include <linux/irqchip/arm-gic.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/smp.h>
|
|
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/cp15.h>
|
|
#include <asm/cputype.h>
|
|
#include <asm/idmap.h>
|
|
#include <asm/smp_plat.h>
|
|
#include <asm/suspend.h>
|
|
|
|
#define SUNXI_CPUS_PER_CLUSTER 4
|
|
#define SUNXI_NR_CLUSTERS 2
|
|
|
|
#define POLL_USEC 100
|
|
#define TIMEOUT_USEC 100000
|
|
|
|
#define CPUCFG_CX_CTRL_REG0(c) (0x10 * (c))
|
|
#define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(n) BIT(n)
|
|
#define CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL 0xf
|
|
#define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7 BIT(4)
|
|
#define CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15 BIT(0)
|
|
#define CPUCFG_CX_CTRL_REG1(c) (0x10 * (c) + 0x4)
|
|
#define CPUCFG_CX_CTRL_REG1_ACINACTM BIT(0)
|
|
#define CPUCFG_CX_STATUS(c) (0x30 + 0x4 * (c))
|
|
#define CPUCFG_CX_STATUS_STANDBYWFI(n) BIT(16 + (n))
|
|
#define CPUCFG_CX_STATUS_STANDBYWFIL2 BIT(0)
|
|
#define CPUCFG_CX_RST_CTRL(c) (0x80 + 0x4 * (c))
|
|
#define CPUCFG_CX_RST_CTRL_DBG_SOC_RST BIT(24)
|
|
#define CPUCFG_CX_RST_CTRL_ETM_RST(n) BIT(20 + (n))
|
|
#define CPUCFG_CX_RST_CTRL_ETM_RST_ALL (0xf << 20)
|
|
#define CPUCFG_CX_RST_CTRL_DBG_RST(n) BIT(16 + (n))
|
|
#define CPUCFG_CX_RST_CTRL_DBG_RST_ALL (0xf << 16)
|
|
#define CPUCFG_CX_RST_CTRL_H_RST BIT(12)
|
|
#define CPUCFG_CX_RST_CTRL_L2_RST BIT(8)
|
|
#define CPUCFG_CX_RST_CTRL_CX_RST(n) BIT(4 + (n))
|
|
#define CPUCFG_CX_RST_CTRL_CORE_RST(n) BIT(n)
|
|
#define CPUCFG_CX_RST_CTRL_CORE_RST_ALL (0xf << 0)
|
|
|
|
#define PRCM_CPU_PO_RST_CTRL(c) (0x4 + 0x4 * (c))
|
|
#define PRCM_CPU_PO_RST_CTRL_CORE(n) BIT(n)
|
|
#define PRCM_CPU_PO_RST_CTRL_CORE_ALL 0xf
|
|
#define PRCM_PWROFF_GATING_REG(c) (0x100 + 0x4 * (c))
|
|
/* The power off register for clusters are different from a80 and a83t */
|
|
#define PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I BIT(0)
|
|
#define PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I BIT(4)
|
|
#define PRCM_PWROFF_GATING_REG_CORE(n) BIT(n)
|
|
#define PRCM_PWR_SWITCH_REG(c, cpu) (0x140 + 0x10 * (c) + 0x4 * (cpu))
|
|
#define PRCM_CPU_SOFT_ENTRY_REG 0x164
|
|
|
|
/* R_CPUCFG registers, specific to sun8i-a83t */
|
|
#define R_CPUCFG_CLUSTER_PO_RST_CTRL(c) (0x30 + (c) * 0x4)
|
|
#define R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(n) BIT(n)
|
|
#define R_CPUCFG_CPU_SOFT_ENTRY_REG 0x01a4
|
|
|
|
#define CPU0_SUPPORT_HOTPLUG_MAGIC0 0xFA50392F
|
|
#define CPU0_SUPPORT_HOTPLUG_MAGIC1 0x790DCA3A
|
|
|
|
static void __iomem *cpucfg_base;
|
|
static void __iomem *prcm_base;
|
|
static void __iomem *sram_b_smp_base;
|
|
static void __iomem *r_cpucfg_base;
|
|
|
|
extern void sunxi_mc_smp_secondary_startup(void);
|
|
extern void sunxi_mc_smp_resume(void);
|
|
static bool is_a83t;
|
|
|
|
static bool sunxi_core_is_cortex_a15(unsigned int core, unsigned int cluster)
|
|
{
|
|
struct device_node *node;
|
|
int cpu = cluster * SUNXI_CPUS_PER_CLUSTER + core;
|
|
bool is_compatible;
|
|
|
|
node = of_cpu_device_node_get(cpu);
|
|
|
|
/* In case of_cpu_device_node_get fails */
|
|
if (!node)
|
|
node = of_get_cpu_node(cpu, NULL);
|
|
|
|
if (!node) {
|
|
/*
|
|
* There's no point in returning an error, since we
|
|
* would be mid way in a core or cluster power sequence.
|
|
*/
|
|
pr_err("%s: Couldn't get CPU cluster %u core %u device node\n",
|
|
__func__, cluster, core);
|
|
|
|
return false;
|
|
}
|
|
|
|
is_compatible = of_device_is_compatible(node, "arm,cortex-a15");
|
|
of_node_put(node);
|
|
return is_compatible;
|
|
}
|
|
|
|
static int sunxi_cpu_power_switch_set(unsigned int cpu, unsigned int cluster,
|
|
bool enable)
|
|
{
|
|
u32 reg;
|
|
|
|
/* control sequence from Allwinner A80 user manual v1.2 PRCM section */
|
|
reg = readl(prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
|
|
if (enable) {
|
|
if (reg == 0x00) {
|
|
pr_debug("power clamp for cluster %u cpu %u already open\n",
|
|
cluster, cpu);
|
|
return 0;
|
|
}
|
|
|
|
writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
|
|
udelay(10);
|
|
writel(0xfe, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
|
|
udelay(10);
|
|
writel(0xf8, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
|
|
udelay(10);
|
|
writel(0xf0, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
|
|
udelay(10);
|
|
writel(0x00, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
|
|
udelay(10);
|
|
} else {
|
|
writel(0xff, prcm_base + PRCM_PWR_SWITCH_REG(cluster, cpu));
|
|
udelay(10);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void sunxi_cpu0_hotplug_support_set(bool enable)
|
|
{
|
|
if (enable) {
|
|
writel(CPU0_SUPPORT_HOTPLUG_MAGIC0, sram_b_smp_base);
|
|
writel(CPU0_SUPPORT_HOTPLUG_MAGIC1, sram_b_smp_base + 0x4);
|
|
} else {
|
|
writel(0x0, sram_b_smp_base);
|
|
writel(0x0, sram_b_smp_base + 0x4);
|
|
}
|
|
}
|
|
|
|
static int sunxi_cpu_powerup(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
u32 reg;
|
|
|
|
pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
|
|
if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
|
|
return -EINVAL;
|
|
|
|
/* Set hotplug support magic flags for cpu0 */
|
|
if (cluster == 0 && cpu == 0)
|
|
sunxi_cpu0_hotplug_support_set(true);
|
|
|
|
/* assert processor power-on reset */
|
|
reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
|
|
reg &= ~PRCM_CPU_PO_RST_CTRL_CORE(cpu);
|
|
writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
|
|
|
|
if (is_a83t) {
|
|
/* assert cpu power-on reset */
|
|
reg = readl(r_cpucfg_base +
|
|
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
|
|
reg &= ~(R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu));
|
|
writel(reg, r_cpucfg_base +
|
|
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
|
|
udelay(10);
|
|
}
|
|
|
|
/* Cortex-A7: hold L1 reset disable signal low */
|
|
if (!sunxi_core_is_cortex_a15(cpu, cluster)) {
|
|
reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
|
|
reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE(cpu);
|
|
writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
|
|
}
|
|
|
|
/* assert processor related resets */
|
|
reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
|
|
|
|
/*
|
|
* Allwinner code also asserts resets for NEON on A15. According
|
|
* to ARM manuals, asserting power-on reset is sufficient.
|
|
*/
|
|
if (!sunxi_core_is_cortex_a15(cpu, cluster))
|
|
reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
|
|
|
|
writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
|
|
/* open power switch */
|
|
sunxi_cpu_power_switch_set(cpu, cluster, true);
|
|
|
|
/* Handle A83T bit swap */
|
|
if (is_a83t) {
|
|
if (cpu == 0)
|
|
cpu = 4;
|
|
}
|
|
|
|
/* clear processor power gate */
|
|
reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
|
|
reg &= ~PRCM_PWROFF_GATING_REG_CORE(cpu);
|
|
writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
|
|
udelay(20);
|
|
|
|
/* Handle A83T bit swap */
|
|
if (is_a83t) {
|
|
if (cpu == 4)
|
|
cpu = 0;
|
|
}
|
|
|
|
/* de-assert processor power-on reset */
|
|
reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
|
|
reg |= PRCM_CPU_PO_RST_CTRL_CORE(cpu);
|
|
writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
|
|
|
|
if (is_a83t) {
|
|
reg = readl(r_cpucfg_base +
|
|
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
|
|
reg |= R_CPUCFG_CLUSTER_PO_RST_CTRL_CORE(cpu);
|
|
writel(reg, r_cpucfg_base +
|
|
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
|
|
udelay(10);
|
|
}
|
|
|
|
/* de-assert all processor resets */
|
|
reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
reg |= CPUCFG_CX_RST_CTRL_DBG_RST(cpu);
|
|
reg |= CPUCFG_CX_RST_CTRL_CORE_RST(cpu);
|
|
if (!sunxi_core_is_cortex_a15(cpu, cluster))
|
|
reg |= CPUCFG_CX_RST_CTRL_ETM_RST(cpu);
|
|
else
|
|
reg |= CPUCFG_CX_RST_CTRL_CX_RST(cpu); /* NEON */
|
|
writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sunxi_cluster_powerup(unsigned int cluster)
|
|
{
|
|
u32 reg;
|
|
|
|
pr_debug("%s: cluster %u\n", __func__, cluster);
|
|
if (cluster >= SUNXI_NR_CLUSTERS)
|
|
return -EINVAL;
|
|
|
|
/* For A83T, assert cluster cores resets */
|
|
if (is_a83t) {
|
|
reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL; /* Core Reset */
|
|
writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
udelay(10);
|
|
}
|
|
|
|
/* assert ACINACTM */
|
|
reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
|
|
reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
|
|
writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
|
|
|
|
/* assert cluster processor power-on resets */
|
|
reg = readl(prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
|
|
reg &= ~PRCM_CPU_PO_RST_CTRL_CORE_ALL;
|
|
writel(reg, prcm_base + PRCM_CPU_PO_RST_CTRL(cluster));
|
|
|
|
/* assert cluster cores resets */
|
|
if (is_a83t) {
|
|
reg = readl(r_cpucfg_base +
|
|
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
|
|
reg &= ~CPUCFG_CX_RST_CTRL_CORE_RST_ALL;
|
|
writel(reg, r_cpucfg_base +
|
|
R_CPUCFG_CLUSTER_PO_RST_CTRL(cluster));
|
|
udelay(10);
|
|
}
|
|
|
|
/* assert cluster resets */
|
|
reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
|
|
reg &= ~CPUCFG_CX_RST_CTRL_DBG_RST_ALL;
|
|
reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
|
|
reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
|
|
|
|
/*
|
|
* Allwinner code also asserts resets for NEON on A15. According
|
|
* to ARM manuals, asserting power-on reset is sufficient.
|
|
*/
|
|
if (!sunxi_core_is_cortex_a15(0, cluster))
|
|
reg &= ~CPUCFG_CX_RST_CTRL_ETM_RST_ALL;
|
|
|
|
writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
|
|
/* hold L1/L2 reset disable signals low */
|
|
reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
|
|
if (sunxi_core_is_cortex_a15(0, cluster)) {
|
|
/* Cortex-A15: hold L2RSTDISABLE low */
|
|
reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A15;
|
|
} else {
|
|
/* Cortex-A7: hold L1RSTDISABLE and L2RSTDISABLE low */
|
|
reg &= ~CPUCFG_CX_CTRL_REG0_L1_RST_DISABLE_ALL;
|
|
reg &= ~CPUCFG_CX_CTRL_REG0_L2_RST_DISABLE_A7;
|
|
}
|
|
writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG0(cluster));
|
|
|
|
/* clear cluster power gate */
|
|
reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
|
|
if (is_a83t)
|
|
reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
|
|
else
|
|
reg &= ~PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
|
|
writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
|
|
udelay(20);
|
|
|
|
/* de-assert cluster resets */
|
|
reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
reg |= CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
|
|
reg |= CPUCFG_CX_RST_CTRL_H_RST;
|
|
reg |= CPUCFG_CX_RST_CTRL_L2_RST;
|
|
writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
|
|
/* de-assert ACINACTM */
|
|
reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
|
|
reg &= ~CPUCFG_CX_CTRL_REG1_ACINACTM;
|
|
writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This bit is shared between the initial nocache_trampoline call to
|
|
* enable CCI-400 and proper cluster cache disable before power down.
|
|
*/
|
|
static void sunxi_cluster_cache_disable_without_axi(void)
|
|
{
|
|
if (read_cpuid_part() == ARM_CPU_PART_CORTEX_A15) {
|
|
/*
|
|
* On the Cortex-A15 we need to disable
|
|
* L2 prefetching before flushing the cache.
|
|
*/
|
|
asm volatile(
|
|
"mcr p15, 1, %0, c15, c0, 3\n"
|
|
"isb\n"
|
|
"dsb"
|
|
: : "r" (0x400));
|
|
}
|
|
|
|
/* Flush all cache levels for this cluster. */
|
|
v7_exit_coherency_flush(all);
|
|
|
|
/*
|
|
* Disable cluster-level coherency by masking
|
|
* incoming snoops and DVM messages:
|
|
*/
|
|
cci_disable_port_by_cpu(read_cpuid_mpidr());
|
|
}
|
|
|
|
static int sunxi_mc_smp_cpu_table[SUNXI_NR_CLUSTERS][SUNXI_CPUS_PER_CLUSTER];
|
|
int sunxi_mc_smp_first_comer;
|
|
|
|
static DEFINE_SPINLOCK(boot_lock);
|
|
|
|
static bool sunxi_mc_smp_cluster_is_down(unsigned int cluster)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < SUNXI_CPUS_PER_CLUSTER; i++)
|
|
if (sunxi_mc_smp_cpu_table[cluster][i])
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
static void sunxi_mc_smp_secondary_init(unsigned int cpu)
|
|
{
|
|
/* Clear hotplug support magic flags for cpu0 */
|
|
if (cpu == 0)
|
|
sunxi_cpu0_hotplug_support_set(false);
|
|
}
|
|
|
|
static int sunxi_mc_smp_boot_secondary(unsigned int l_cpu, struct task_struct *idle)
|
|
{
|
|
unsigned int mpidr, cpu, cluster;
|
|
|
|
mpidr = cpu_logical_map(l_cpu);
|
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
|
|
if (!cpucfg_base)
|
|
return -ENODEV;
|
|
if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER)
|
|
return -EINVAL;
|
|
|
|
spin_lock_irq(&boot_lock);
|
|
|
|
if (sunxi_mc_smp_cpu_table[cluster][cpu])
|
|
goto out;
|
|
|
|
if (sunxi_mc_smp_cluster_is_down(cluster)) {
|
|
sunxi_mc_smp_first_comer = true;
|
|
sunxi_cluster_powerup(cluster);
|
|
} else {
|
|
sunxi_mc_smp_first_comer = false;
|
|
}
|
|
|
|
/* This is read by incoming CPUs with their cache and MMU disabled */
|
|
sync_cache_w(&sunxi_mc_smp_first_comer);
|
|
sunxi_cpu_powerup(cpu, cluster);
|
|
|
|
out:
|
|
sunxi_mc_smp_cpu_table[cluster][cpu]++;
|
|
spin_unlock_irq(&boot_lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
static void sunxi_cluster_cache_disable(void)
|
|
{
|
|
unsigned int cluster = MPIDR_AFFINITY_LEVEL(read_cpuid_mpidr(), 1);
|
|
u32 reg;
|
|
|
|
pr_debug("%s: cluster %u\n", __func__, cluster);
|
|
|
|
sunxi_cluster_cache_disable_without_axi();
|
|
|
|
/* last man standing, assert ACINACTM */
|
|
reg = readl(cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
|
|
reg |= CPUCFG_CX_CTRL_REG1_ACINACTM;
|
|
writel(reg, cpucfg_base + CPUCFG_CX_CTRL_REG1(cluster));
|
|
}
|
|
|
|
static void sunxi_mc_smp_cpu_die(unsigned int l_cpu)
|
|
{
|
|
unsigned int mpidr, cpu, cluster;
|
|
bool last_man;
|
|
|
|
mpidr = cpu_logical_map(l_cpu);
|
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
|
|
|
|
spin_lock(&boot_lock);
|
|
sunxi_mc_smp_cpu_table[cluster][cpu]--;
|
|
if (sunxi_mc_smp_cpu_table[cluster][cpu] == 1) {
|
|
/* A power_up request went ahead of us. */
|
|
pr_debug("%s: aborting due to a power up request\n",
|
|
__func__);
|
|
spin_unlock(&boot_lock);
|
|
return;
|
|
} else if (sunxi_mc_smp_cpu_table[cluster][cpu] > 1) {
|
|
pr_err("Cluster %d CPU%d boots multiple times\n",
|
|
cluster, cpu);
|
|
BUG();
|
|
}
|
|
|
|
last_man = sunxi_mc_smp_cluster_is_down(cluster);
|
|
spin_unlock(&boot_lock);
|
|
|
|
gic_cpu_if_down(0);
|
|
if (last_man)
|
|
sunxi_cluster_cache_disable();
|
|
else
|
|
v7_exit_coherency_flush(louis);
|
|
|
|
for (;;)
|
|
wfi();
|
|
}
|
|
|
|
static int sunxi_cpu_powerdown(unsigned int cpu, unsigned int cluster)
|
|
{
|
|
u32 reg;
|
|
int gating_bit = cpu;
|
|
|
|
pr_debug("%s: cluster %u cpu %u\n", __func__, cluster, cpu);
|
|
if (cpu >= SUNXI_CPUS_PER_CLUSTER || cluster >= SUNXI_NR_CLUSTERS)
|
|
return -EINVAL;
|
|
|
|
if (is_a83t && cpu == 0)
|
|
gating_bit = 4;
|
|
|
|
/* gate processor power */
|
|
reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
|
|
reg |= PRCM_PWROFF_GATING_REG_CORE(gating_bit);
|
|
writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
|
|
udelay(20);
|
|
|
|
/* close power switch */
|
|
sunxi_cpu_power_switch_set(cpu, cluster, false);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sunxi_cluster_powerdown(unsigned int cluster)
|
|
{
|
|
u32 reg;
|
|
|
|
pr_debug("%s: cluster %u\n", __func__, cluster);
|
|
if (cluster >= SUNXI_NR_CLUSTERS)
|
|
return -EINVAL;
|
|
|
|
/* assert cluster resets or system will hang */
|
|
pr_debug("%s: assert cluster reset\n", __func__);
|
|
reg = readl(cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
reg &= ~CPUCFG_CX_RST_CTRL_DBG_SOC_RST;
|
|
reg &= ~CPUCFG_CX_RST_CTRL_H_RST;
|
|
reg &= ~CPUCFG_CX_RST_CTRL_L2_RST;
|
|
writel(reg, cpucfg_base + CPUCFG_CX_RST_CTRL(cluster));
|
|
|
|
/* gate cluster power */
|
|
pr_debug("%s: gate cluster power\n", __func__);
|
|
reg = readl(prcm_base + PRCM_PWROFF_GATING_REG(cluster));
|
|
if (is_a83t)
|
|
reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN8I;
|
|
else
|
|
reg |= PRCM_PWROFF_GATING_REG_CLUSTER_SUN9I;
|
|
writel(reg, prcm_base + PRCM_PWROFF_GATING_REG(cluster));
|
|
udelay(20);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int sunxi_mc_smp_cpu_kill(unsigned int l_cpu)
|
|
{
|
|
unsigned int mpidr, cpu, cluster;
|
|
unsigned int tries, count;
|
|
int ret = 0;
|
|
u32 reg;
|
|
|
|
mpidr = cpu_logical_map(l_cpu);
|
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
|
|
/* This should never happen */
|
|
if (WARN_ON(cluster >= SUNXI_NR_CLUSTERS ||
|
|
cpu >= SUNXI_CPUS_PER_CLUSTER))
|
|
return 0;
|
|
|
|
/* wait for CPU core to die and enter WFI */
|
|
count = TIMEOUT_USEC / POLL_USEC;
|
|
spin_lock_irq(&boot_lock);
|
|
for (tries = 0; tries < count; tries++) {
|
|
spin_unlock_irq(&boot_lock);
|
|
usleep_range(POLL_USEC / 2, POLL_USEC);
|
|
spin_lock_irq(&boot_lock);
|
|
|
|
/*
|
|
* If the user turns off a bunch of cores at the same
|
|
* time, the kernel might call cpu_kill before some of
|
|
* them are ready. This is because boot_lock serializes
|
|
* both cpu_die and cpu_kill callbacks. Either one could
|
|
* run first. We should wait for cpu_die to complete.
|
|
*/
|
|
if (sunxi_mc_smp_cpu_table[cluster][cpu])
|
|
continue;
|
|
|
|
reg = readl(cpucfg_base + CPUCFG_CX_STATUS(cluster));
|
|
if (reg & CPUCFG_CX_STATUS_STANDBYWFI(cpu))
|
|
break;
|
|
}
|
|
|
|
if (tries >= count) {
|
|
ret = ETIMEDOUT;
|
|
goto out;
|
|
}
|
|
|
|
/* power down CPU core */
|
|
sunxi_cpu_powerdown(cpu, cluster);
|
|
|
|
if (!sunxi_mc_smp_cluster_is_down(cluster))
|
|
goto out;
|
|
|
|
/* wait for cluster L2 WFI */
|
|
ret = readl_poll_timeout(cpucfg_base + CPUCFG_CX_STATUS(cluster), reg,
|
|
reg & CPUCFG_CX_STATUS_STANDBYWFIL2,
|
|
POLL_USEC, TIMEOUT_USEC);
|
|
if (ret) {
|
|
/*
|
|
* Ignore timeout on the cluster. Leaving the cluster on
|
|
* will not affect system execution, just use a bit more
|
|
* power. But returning an error here will only confuse
|
|
* the user as the CPU has already been shutdown.
|
|
*/
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/* Power down cluster */
|
|
sunxi_cluster_powerdown(cluster);
|
|
|
|
out:
|
|
spin_unlock_irq(&boot_lock);
|
|
pr_debug("%s: cluster %u cpu %u powerdown: %d\n",
|
|
__func__, cluster, cpu, ret);
|
|
return !ret;
|
|
}
|
|
|
|
static bool sunxi_mc_smp_cpu_can_disable(unsigned int cpu)
|
|
{
|
|
/* CPU0 hotplug not handled for sun8i-a83t */
|
|
if (is_a83t)
|
|
if (cpu == 0)
|
|
return false;
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
static const struct smp_operations sunxi_mc_smp_smp_ops __initconst = {
|
|
.smp_secondary_init = sunxi_mc_smp_secondary_init,
|
|
.smp_boot_secondary = sunxi_mc_smp_boot_secondary,
|
|
#ifdef CONFIG_HOTPLUG_CPU
|
|
.cpu_die = sunxi_mc_smp_cpu_die,
|
|
.cpu_kill = sunxi_mc_smp_cpu_kill,
|
|
.cpu_can_disable = sunxi_mc_smp_cpu_can_disable,
|
|
#endif
|
|
};
|
|
|
|
static bool __init sunxi_mc_smp_cpu_table_init(void)
|
|
{
|
|
unsigned int mpidr, cpu, cluster;
|
|
|
|
mpidr = read_cpuid_mpidr();
|
|
cpu = MPIDR_AFFINITY_LEVEL(mpidr, 0);
|
|
cluster = MPIDR_AFFINITY_LEVEL(mpidr, 1);
|
|
|
|
if (cluster >= SUNXI_NR_CLUSTERS || cpu >= SUNXI_CPUS_PER_CLUSTER) {
|
|
pr_err("%s: boot CPU is out of bounds!\n", __func__);
|
|
return false;
|
|
}
|
|
sunxi_mc_smp_cpu_table[cluster][cpu] = 1;
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Adapted from arch/arm/common/mc_smp_entry.c
|
|
*
|
|
* We need the trampoline code to enable CCI-400 on the first cluster
|
|
*/
|
|
typedef typeof(cpu_reset) phys_reset_t;
|
|
|
|
static int __init nocache_trampoline(unsigned long __unused)
|
|
{
|
|
phys_reset_t phys_reset;
|
|
|
|
setup_mm_for_reboot();
|
|
sunxi_cluster_cache_disable_without_axi();
|
|
|
|
phys_reset = (phys_reset_t)(unsigned long)__pa_symbol(cpu_reset);
|
|
phys_reset(__pa_symbol(sunxi_mc_smp_resume), false);
|
|
BUG();
|
|
}
|
|
|
|
static int __init sunxi_mc_smp_loopback(void)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* We're going to soft-restart the current CPU through the
|
|
* low-level MCPM code by leveraging the suspend/resume
|
|
* infrastructure. Let's play it safe by using cpu_pm_enter()
|
|
* in case the CPU init code path resets the VFP or similar.
|
|
*/
|
|
sunxi_mc_smp_first_comer = true;
|
|
local_irq_disable();
|
|
local_fiq_disable();
|
|
ret = cpu_pm_enter();
|
|
if (!ret) {
|
|
ret = cpu_suspend(0, nocache_trampoline);
|
|
cpu_pm_exit();
|
|
}
|
|
local_fiq_enable();
|
|
local_irq_enable();
|
|
sunxi_mc_smp_first_comer = false;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* This holds any device nodes that we requested resources for,
|
|
* so that we may easily release resources in the error path.
|
|
*/
|
|
struct sunxi_mc_smp_nodes {
|
|
struct device_node *prcm_node;
|
|
struct device_node *cpucfg_node;
|
|
struct device_node *sram_node;
|
|
struct device_node *r_cpucfg_node;
|
|
};
|
|
|
|
/* This structure holds SoC-specific bits tied to an enable-method string. */
|
|
struct sunxi_mc_smp_data {
|
|
const char *enable_method;
|
|
int (*get_smp_nodes)(struct sunxi_mc_smp_nodes *nodes);
|
|
bool is_a83t;
|
|
};
|
|
|
|
static void __init sunxi_mc_smp_put_nodes(struct sunxi_mc_smp_nodes *nodes)
|
|
{
|
|
of_node_put(nodes->prcm_node);
|
|
of_node_put(nodes->cpucfg_node);
|
|
of_node_put(nodes->sram_node);
|
|
of_node_put(nodes->r_cpucfg_node);
|
|
memset(nodes, 0, sizeof(*nodes));
|
|
}
|
|
|
|
static int __init sun9i_a80_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
|
|
{
|
|
nodes->prcm_node = of_find_compatible_node(NULL, NULL,
|
|
"allwinner,sun9i-a80-prcm");
|
|
if (!nodes->prcm_node) {
|
|
pr_err("%s: PRCM not available\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
|
|
"allwinner,sun9i-a80-cpucfg");
|
|
if (!nodes->cpucfg_node) {
|
|
pr_err("%s: CPUCFG not available\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
nodes->sram_node = of_find_compatible_node(NULL, NULL,
|
|
"allwinner,sun9i-a80-smp-sram");
|
|
if (!nodes->sram_node) {
|
|
pr_err("%s: Secure SRAM not available\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int __init sun8i_a83t_get_smp_nodes(struct sunxi_mc_smp_nodes *nodes)
|
|
{
|
|
nodes->prcm_node = of_find_compatible_node(NULL, NULL,
|
|
"allwinner,sun8i-a83t-r-ccu");
|
|
if (!nodes->prcm_node) {
|
|
pr_err("%s: PRCM not available\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
nodes->cpucfg_node = of_find_compatible_node(NULL, NULL,
|
|
"allwinner,sun8i-a83t-cpucfg");
|
|
if (!nodes->cpucfg_node) {
|
|
pr_err("%s: CPUCFG not available\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
nodes->r_cpucfg_node = of_find_compatible_node(NULL, NULL,
|
|
"allwinner,sun8i-a83t-r-cpucfg");
|
|
if (!nodes->r_cpucfg_node) {
|
|
pr_err("%s: RCPUCFG not available\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct sunxi_mc_smp_data sunxi_mc_smp_data[] __initconst = {
|
|
{
|
|
.enable_method = "allwinner,sun9i-a80-smp",
|
|
.get_smp_nodes = sun9i_a80_get_smp_nodes,
|
|
},
|
|
{
|
|
.enable_method = "allwinner,sun8i-a83t-smp",
|
|
.get_smp_nodes = sun8i_a83t_get_smp_nodes,
|
|
.is_a83t = true,
|
|
},
|
|
};
|
|
|
|
static int __init sunxi_mc_smp_init(void)
|
|
{
|
|
struct sunxi_mc_smp_nodes nodes = { 0 };
|
|
struct device_node *node;
|
|
struct resource res;
|
|
void __iomem *addr;
|
|
int i, ret;
|
|
|
|
/*
|
|
* Don't bother checking the "cpus" node, as an enable-method
|
|
* property in that node is undocumented.
|
|
*/
|
|
node = of_cpu_device_node_get(0);
|
|
if (!node)
|
|
return -ENODEV;
|
|
|
|
/*
|
|
* We can't actually use the enable-method magic in the kernel.
|
|
* Our loopback / trampoline code uses the CPU suspend framework,
|
|
* which requires the identity mapping be available. It would not
|
|
* yet be available if we used the .init_cpus or .prepare_cpus
|
|
* callbacks in smp_operations, which we would use if we were to
|
|
* use CPU_METHOD_OF_DECLARE
|
|
*/
|
|
for (i = 0; i < ARRAY_SIZE(sunxi_mc_smp_data); i++) {
|
|
ret = of_property_match_string(node, "enable-method",
|
|
sunxi_mc_smp_data[i].enable_method);
|
|
if (ret >= 0)
|
|
break;
|
|
}
|
|
|
|
of_node_put(node);
|
|
if (ret < 0)
|
|
return -ENODEV;
|
|
|
|
is_a83t = sunxi_mc_smp_data[i].is_a83t;
|
|
|
|
if (!sunxi_mc_smp_cpu_table_init())
|
|
return -EINVAL;
|
|
|
|
if (!cci_probed()) {
|
|
pr_err("%s: CCI-400 not available\n", __func__);
|
|
return -ENODEV;
|
|
}
|
|
|
|
/* Get needed device tree nodes */
|
|
ret = sunxi_mc_smp_data[i].get_smp_nodes(&nodes);
|
|
if (ret)
|
|
goto err_put_nodes;
|
|
|
|
/*
|
|
* Unfortunately we can not request the I/O region for the PRCM.
|
|
* It is shared with the PRCM clock.
|
|
*/
|
|
prcm_base = of_iomap(nodes.prcm_node, 0);
|
|
if (!prcm_base) {
|
|
pr_err("%s: failed to map PRCM registers\n", __func__);
|
|
ret = -ENOMEM;
|
|
goto err_put_nodes;
|
|
}
|
|
|
|
cpucfg_base = of_io_request_and_map(nodes.cpucfg_node, 0,
|
|
"sunxi-mc-smp");
|
|
if (IS_ERR(cpucfg_base)) {
|
|
ret = PTR_ERR(cpucfg_base);
|
|
pr_err("%s: failed to map CPUCFG registers: %d\n",
|
|
__func__, ret);
|
|
goto err_unmap_prcm;
|
|
}
|
|
|
|
if (is_a83t) {
|
|
r_cpucfg_base = of_io_request_and_map(nodes.r_cpucfg_node,
|
|
0, "sunxi-mc-smp");
|
|
if (IS_ERR(r_cpucfg_base)) {
|
|
ret = PTR_ERR(r_cpucfg_base);
|
|
pr_err("%s: failed to map R-CPUCFG registers\n",
|
|
__func__);
|
|
goto err_unmap_release_cpucfg;
|
|
}
|
|
} else {
|
|
sram_b_smp_base = of_io_request_and_map(nodes.sram_node, 0,
|
|
"sunxi-mc-smp");
|
|
if (IS_ERR(sram_b_smp_base)) {
|
|
ret = PTR_ERR(sram_b_smp_base);
|
|
pr_err("%s: failed to map secure SRAM\n", __func__);
|
|
goto err_unmap_release_cpucfg;
|
|
}
|
|
}
|
|
|
|
/* Configure CCI-400 for boot cluster */
|
|
ret = sunxi_mc_smp_loopback();
|
|
if (ret) {
|
|
pr_err("%s: failed to configure boot cluster: %d\n",
|
|
__func__, ret);
|
|
goto err_unmap_release_sram_rcpucfg;
|
|
}
|
|
|
|
/* We don't need the device nodes anymore */
|
|
sunxi_mc_smp_put_nodes(&nodes);
|
|
|
|
/* Set the hardware entry point address */
|
|
if (is_a83t)
|
|
addr = r_cpucfg_base + R_CPUCFG_CPU_SOFT_ENTRY_REG;
|
|
else
|
|
addr = prcm_base + PRCM_CPU_SOFT_ENTRY_REG;
|
|
writel(__pa_symbol(sunxi_mc_smp_secondary_startup), addr);
|
|
|
|
/* Actually enable multi cluster SMP */
|
|
smp_set_ops(&sunxi_mc_smp_smp_ops);
|
|
|
|
pr_info("sunxi multi cluster SMP support installed\n");
|
|
|
|
return 0;
|
|
|
|
err_unmap_release_sram_rcpucfg:
|
|
if (is_a83t) {
|
|
iounmap(r_cpucfg_base);
|
|
of_address_to_resource(nodes.r_cpucfg_node, 0, &res);
|
|
} else {
|
|
iounmap(sram_b_smp_base);
|
|
of_address_to_resource(nodes.sram_node, 0, &res);
|
|
}
|
|
release_mem_region(res.start, resource_size(&res));
|
|
err_unmap_release_cpucfg:
|
|
iounmap(cpucfg_base);
|
|
of_address_to_resource(nodes.cpucfg_node, 0, &res);
|
|
release_mem_region(res.start, resource_size(&res));
|
|
err_unmap_prcm:
|
|
iounmap(prcm_base);
|
|
err_put_nodes:
|
|
sunxi_mc_smp_put_nodes(&nodes);
|
|
return ret;
|
|
}
|
|
|
|
early_initcall(sunxi_mc_smp_init);
|