linux-stable/lib/sbitmap.c
Jens Axboe 9f8b93a7df sbitmap: silence data race warning
KCSAN complaints about the sbitmap hint update:

==================================================================
BUG: KCSAN: data-race in sbitmap_queue_clear / sbitmap_queue_clear

write to 0xffffe8ffffd145b8 of 4 bytes by interrupt on cpu 1:
 sbitmap_queue_clear+0xca/0xf0 lib/sbitmap.c:606
 blk_mq_put_tag+0x82/0x90
 __blk_mq_free_request+0x114/0x180 block/blk-mq.c:507
 blk_mq_free_request+0x2c8/0x340 block/blk-mq.c:541
 __blk_mq_end_request+0x214/0x230 block/blk-mq.c:565
 blk_mq_end_request+0x37/0x50 block/blk-mq.c:574
 lo_complete_rq+0xca/0x170 drivers/block/loop.c:541
 blk_complete_reqs block/blk-mq.c:584 [inline]
 blk_done_softirq+0x69/0x90 block/blk-mq.c:589
 __do_softirq+0x12c/0x26e kernel/softirq.c:558
 run_ksoftirqd+0x13/0x20 kernel/softirq.c:920
 smpboot_thread_fn+0x22f/0x330 kernel/smpboot.c:164
 kthread+0x262/0x280 kernel/kthread.c:319
 ret_from_fork+0x1f/0x30

write to 0xffffe8ffffd145b8 of 4 bytes by interrupt on cpu 0:
 sbitmap_queue_clear+0xca/0xf0 lib/sbitmap.c:606
 blk_mq_put_tag+0x82/0x90
 __blk_mq_free_request+0x114/0x180 block/blk-mq.c:507
 blk_mq_free_request+0x2c8/0x340 block/blk-mq.c:541
 __blk_mq_end_request+0x214/0x230 block/blk-mq.c:565
 blk_mq_end_request+0x37/0x50 block/blk-mq.c:574
 lo_complete_rq+0xca/0x170 drivers/block/loop.c:541
 blk_complete_reqs block/blk-mq.c:584 [inline]
 blk_done_softirq+0x69/0x90 block/blk-mq.c:589
 __do_softirq+0x12c/0x26e kernel/softirq.c:558
 run_ksoftirqd+0x13/0x20 kernel/softirq.c:920
 smpboot_thread_fn+0x22f/0x330 kernel/smpboot.c:164
 kthread+0x262/0x280 kernel/kthread.c:319
 ret_from_fork+0x1f/0x30

value changed: 0x00000035 -> 0x00000044

Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 10 Comm: ksoftirqd/0 Not tainted 5.15.0-rc6-syzkaller #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 01/01/2011
==================================================================

which is a data race, but not an important one. This is just updating the
percpu alloc hint, and the reader of that hint doesn't ever require it to
be valid.

Just annotate it with data_race() to silence this one.

Reported-by: syzbot+4f8bfd804b4a1f95b8f6@syzkaller.appspotmail.com
Acked-by: Marco Elver <elver@google.com>
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2021-10-25 10:45:01 -06:00

800 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (C) 2016 Facebook
* Copyright (C) 2013-2014 Jens Axboe
*/
#include <linux/sched.h>
#include <linux/random.h>
#include <linux/sbitmap.h>
#include <linux/seq_file.h>
static int init_alloc_hint(struct sbitmap *sb, gfp_t flags)
{
unsigned depth = sb->depth;
sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
if (!sb->alloc_hint)
return -ENOMEM;
if (depth && !sb->round_robin) {
int i;
for_each_possible_cpu(i)
*per_cpu_ptr(sb->alloc_hint, i) = prandom_u32() % depth;
}
return 0;
}
static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb,
unsigned int depth)
{
unsigned hint;
hint = this_cpu_read(*sb->alloc_hint);
if (unlikely(hint >= depth)) {
hint = depth ? prandom_u32() % depth : 0;
this_cpu_write(*sb->alloc_hint, hint);
}
return hint;
}
static inline void update_alloc_hint_after_get(struct sbitmap *sb,
unsigned int depth,
unsigned int hint,
unsigned int nr)
{
if (nr == -1) {
/* If the map is full, a hint won't do us much good. */
this_cpu_write(*sb->alloc_hint, 0);
} else if (nr == hint || unlikely(sb->round_robin)) {
/* Only update the hint if we used it. */
hint = nr + 1;
if (hint >= depth - 1)
hint = 0;
this_cpu_write(*sb->alloc_hint, hint);
}
}
/*
* See if we have deferred clears that we can batch move
*/
static inline bool sbitmap_deferred_clear(struct sbitmap_word *map)
{
unsigned long mask;
if (!READ_ONCE(map->cleared))
return false;
/*
* First get a stable cleared mask, setting the old mask to 0.
*/
mask = xchg(&map->cleared, 0);
/*
* Now clear the masked bits in our free word
*/
atomic_long_andnot(mask, (atomic_long_t *)&map->word);
BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word));
return true;
}
int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
gfp_t flags, int node, bool round_robin,
bool alloc_hint)
{
unsigned int bits_per_word;
unsigned int i;
if (shift < 0)
shift = sbitmap_calculate_shift(depth);
bits_per_word = 1U << shift;
if (bits_per_word > BITS_PER_LONG)
return -EINVAL;
sb->shift = shift;
sb->depth = depth;
sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
sb->round_robin = round_robin;
if (depth == 0) {
sb->map = NULL;
return 0;
}
if (alloc_hint) {
if (init_alloc_hint(sb, flags))
return -ENOMEM;
} else {
sb->alloc_hint = NULL;
}
sb->map = kcalloc_node(sb->map_nr, sizeof(*sb->map), flags, node);
if (!sb->map) {
free_percpu(sb->alloc_hint);
return -ENOMEM;
}
for (i = 0; i < sb->map_nr; i++) {
sb->map[i].depth = min(depth, bits_per_word);
depth -= sb->map[i].depth;
}
return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_init_node);
void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
{
unsigned int bits_per_word = 1U << sb->shift;
unsigned int i;
for (i = 0; i < sb->map_nr; i++)
sbitmap_deferred_clear(&sb->map[i]);
sb->depth = depth;
sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
for (i = 0; i < sb->map_nr; i++) {
sb->map[i].depth = min(depth, bits_per_word);
depth -= sb->map[i].depth;
}
}
EXPORT_SYMBOL_GPL(sbitmap_resize);
static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
unsigned int hint, bool wrap)
{
int nr;
/* don't wrap if starting from 0 */
wrap = wrap && hint;
while (1) {
nr = find_next_zero_bit(word, depth, hint);
if (unlikely(nr >= depth)) {
/*
* We started with an offset, and we didn't reset the
* offset to 0 in a failure case, so start from 0 to
* exhaust the map.
*/
if (hint && wrap) {
hint = 0;
continue;
}
return -1;
}
if (!test_and_set_bit_lock(nr, word))
break;
hint = nr + 1;
if (hint >= depth - 1)
hint = 0;
}
return nr;
}
static int sbitmap_find_bit_in_index(struct sbitmap *sb, int index,
unsigned int alloc_hint)
{
struct sbitmap_word *map = &sb->map[index];
int nr;
do {
nr = __sbitmap_get_word(&map->word, map->depth, alloc_hint,
!sb->round_robin);
if (nr != -1)
break;
if (!sbitmap_deferred_clear(map))
break;
} while (1);
return nr;
}
static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint)
{
unsigned int i, index;
int nr = -1;
index = SB_NR_TO_INDEX(sb, alloc_hint);
/*
* Unless we're doing round robin tag allocation, just use the
* alloc_hint to find the right word index. No point in looping
* twice in find_next_zero_bit() for that case.
*/
if (sb->round_robin)
alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
else
alloc_hint = 0;
for (i = 0; i < sb->map_nr; i++) {
nr = sbitmap_find_bit_in_index(sb, index, alloc_hint);
if (nr != -1) {
nr += index << sb->shift;
break;
}
/* Jump to next index. */
alloc_hint = 0;
if (++index >= sb->map_nr)
index = 0;
}
return nr;
}
int sbitmap_get(struct sbitmap *sb)
{
int nr;
unsigned int hint, depth;
if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
return -1;
depth = READ_ONCE(sb->depth);
hint = update_alloc_hint_before_get(sb, depth);
nr = __sbitmap_get(sb, hint);
update_alloc_hint_after_get(sb, depth, hint, nr);
return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get);
static int __sbitmap_get_shallow(struct sbitmap *sb,
unsigned int alloc_hint,
unsigned long shallow_depth)
{
unsigned int i, index;
int nr = -1;
index = SB_NR_TO_INDEX(sb, alloc_hint);
for (i = 0; i < sb->map_nr; i++) {
again:
nr = __sbitmap_get_word(&sb->map[index].word,
min(sb->map[index].depth, shallow_depth),
SB_NR_TO_BIT(sb, alloc_hint), true);
if (nr != -1) {
nr += index << sb->shift;
break;
}
if (sbitmap_deferred_clear(&sb->map[index]))
goto again;
/* Jump to next index. */
index++;
alloc_hint = index << sb->shift;
if (index >= sb->map_nr) {
index = 0;
alloc_hint = 0;
}
}
return nr;
}
int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth)
{
int nr;
unsigned int hint, depth;
if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
return -1;
depth = READ_ONCE(sb->depth);
hint = update_alloc_hint_before_get(sb, depth);
nr = __sbitmap_get_shallow(sb, hint, shallow_depth);
update_alloc_hint_after_get(sb, depth, hint, nr);
return nr;
}
EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
bool sbitmap_any_bit_set(const struct sbitmap *sb)
{
unsigned int i;
for (i = 0; i < sb->map_nr; i++) {
if (sb->map[i].word & ~sb->map[i].cleared)
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
{
unsigned int i, weight = 0;
for (i = 0; i < sb->map_nr; i++) {
const struct sbitmap_word *word = &sb->map[i];
if (set)
weight += bitmap_weight(&word->word, word->depth);
else
weight += bitmap_weight(&word->cleared, word->depth);
}
return weight;
}
static unsigned int sbitmap_cleared(const struct sbitmap *sb)
{
return __sbitmap_weight(sb, false);
}
unsigned int sbitmap_weight(const struct sbitmap *sb)
{
return __sbitmap_weight(sb, true) - sbitmap_cleared(sb);
}
EXPORT_SYMBOL_GPL(sbitmap_weight);
void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
{
seq_printf(m, "depth=%u\n", sb->depth);
seq_printf(m, "busy=%u\n", sbitmap_weight(sb));
seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
seq_printf(m, "map_nr=%u\n", sb->map_nr);
}
EXPORT_SYMBOL_GPL(sbitmap_show);
static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
{
if ((offset & 0xf) == 0) {
if (offset != 0)
seq_putc(m, '\n');
seq_printf(m, "%08x:", offset);
}
if ((offset & 0x1) == 0)
seq_putc(m, ' ');
seq_printf(m, "%02x", byte);
}
void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
{
u8 byte = 0;
unsigned int byte_bits = 0;
unsigned int offset = 0;
int i;
for (i = 0; i < sb->map_nr; i++) {
unsigned long word = READ_ONCE(sb->map[i].word);
unsigned long cleared = READ_ONCE(sb->map[i].cleared);
unsigned int word_bits = READ_ONCE(sb->map[i].depth);
word &= ~cleared;
while (word_bits > 0) {
unsigned int bits = min(8 - byte_bits, word_bits);
byte |= (word & (BIT(bits) - 1)) << byte_bits;
byte_bits += bits;
if (byte_bits == 8) {
emit_byte(m, offset, byte);
byte = 0;
byte_bits = 0;
offset++;
}
word >>= bits;
word_bits -= bits;
}
}
if (byte_bits) {
emit_byte(m, offset, byte);
offset++;
}
if (offset)
seq_putc(m, '\n');
}
EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
unsigned int depth)
{
unsigned int wake_batch;
unsigned int shallow_depth;
/*
* For each batch, we wake up one queue. We need to make sure that our
* batch size is small enough that the full depth of the bitmap,
* potentially limited by a shallow depth, is enough to wake up all of
* the queues.
*
* Each full word of the bitmap has bits_per_word bits, and there might
* be a partial word. There are depth / bits_per_word full words and
* depth % bits_per_word bits left over. In bitwise arithmetic:
*
* bits_per_word = 1 << shift
* depth / bits_per_word = depth >> shift
* depth % bits_per_word = depth & ((1 << shift) - 1)
*
* Each word can be limited to sbq->min_shallow_depth bits.
*/
shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
depth = ((depth >> sbq->sb.shift) * shallow_depth +
min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
SBQ_WAKE_BATCH);
return wake_batch;
}
int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
int shift, bool round_robin, gfp_t flags, int node)
{
int ret;
int i;
ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node,
round_robin, true);
if (ret)
return ret;
sbq->min_shallow_depth = UINT_MAX;
sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
atomic_set(&sbq->wake_index, 0);
atomic_set(&sbq->ws_active, 0);
sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
if (!sbq->ws) {
sbitmap_free(&sbq->sb);
return -ENOMEM;
}
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
init_waitqueue_head(&sbq->ws[i].wait);
atomic_set(&sbq->ws[i].wait_cnt, sbq->wake_batch);
}
return 0;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
unsigned int depth)
{
unsigned int wake_batch = sbq_calc_wake_batch(sbq, depth);
int i;
if (sbq->wake_batch != wake_batch) {
WRITE_ONCE(sbq->wake_batch, wake_batch);
/*
* Pairs with the memory barrier in sbitmap_queue_wake_up()
* to ensure that the batch size is updated before the wait
* counts.
*/
smp_mb();
for (i = 0; i < SBQ_WAIT_QUEUES; i++)
atomic_set(&sbq->ws[i].wait_cnt, 1);
}
}
void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
{
sbitmap_queue_update_wake_batch(sbq, depth);
sbitmap_resize(&sbq->sb, depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
int __sbitmap_queue_get(struct sbitmap_queue *sbq)
{
return sbitmap_get(&sbq->sb);
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags,
unsigned int *offset)
{
struct sbitmap *sb = &sbq->sb;
unsigned int hint, depth;
unsigned long index, nr;
int i;
if (unlikely(sb->round_robin))
return 0;
depth = READ_ONCE(sb->depth);
hint = update_alloc_hint_before_get(sb, depth);
index = SB_NR_TO_INDEX(sb, hint);
for (i = 0; i < sb->map_nr; i++) {
struct sbitmap_word *map = &sb->map[index];
unsigned long get_mask;
sbitmap_deferred_clear(map);
if (map->word == (1UL << (map->depth - 1)) - 1)
continue;
nr = find_first_zero_bit(&map->word, map->depth);
if (nr + nr_tags <= map->depth) {
atomic_long_t *ptr = (atomic_long_t *) &map->word;
int map_tags = min_t(int, nr_tags, map->depth);
unsigned long val, ret;
get_mask = ((1UL << map_tags) - 1) << nr;
do {
val = READ_ONCE(map->word);
ret = atomic_long_cmpxchg(ptr, val, get_mask | val);
} while (ret != val);
get_mask = (get_mask & ~ret) >> nr;
if (get_mask) {
*offset = nr + (index << sb->shift);
update_alloc_hint_after_get(sb, depth, hint,
*offset + map_tags - 1);
return get_mask;
}
}
/* Jump to next index. */
if (++index >= sb->map_nr)
index = 0;
}
return 0;
}
int __sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
unsigned int shallow_depth)
{
WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
return sbitmap_get_shallow(&sbq->sb, shallow_depth);
}
EXPORT_SYMBOL_GPL(__sbitmap_queue_get_shallow);
void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
unsigned int min_shallow_depth)
{
sbq->min_shallow_depth = min_shallow_depth;
sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
static struct sbq_wait_state *sbq_wake_ptr(struct sbitmap_queue *sbq)
{
int i, wake_index;
if (!atomic_read(&sbq->ws_active))
return NULL;
wake_index = atomic_read(&sbq->wake_index);
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
struct sbq_wait_state *ws = &sbq->ws[wake_index];
if (waitqueue_active(&ws->wait)) {
if (wake_index != atomic_read(&sbq->wake_index))
atomic_set(&sbq->wake_index, wake_index);
return ws;
}
wake_index = sbq_index_inc(wake_index);
}
return NULL;
}
static bool __sbq_wake_up(struct sbitmap_queue *sbq)
{
struct sbq_wait_state *ws;
unsigned int wake_batch;
int wait_cnt;
ws = sbq_wake_ptr(sbq);
if (!ws)
return false;
wait_cnt = atomic_dec_return(&ws->wait_cnt);
if (wait_cnt <= 0) {
int ret;
wake_batch = READ_ONCE(sbq->wake_batch);
/*
* Pairs with the memory barrier in sbitmap_queue_resize() to
* ensure that we see the batch size update before the wait
* count is reset.
*/
smp_mb__before_atomic();
/*
* For concurrent callers of this, the one that failed the
* atomic_cmpxhcg() race should call this function again
* to wakeup a new batch on a different 'ws'.
*/
ret = atomic_cmpxchg(&ws->wait_cnt, wait_cnt, wake_batch);
if (ret == wait_cnt) {
sbq_index_atomic_inc(&sbq->wake_index);
wake_up_nr(&ws->wait, wake_batch);
return false;
}
return true;
}
return false;
}
void sbitmap_queue_wake_up(struct sbitmap_queue *sbq)
{
while (__sbq_wake_up(sbq))
;
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag)
{
if (likely(!sb->round_robin && tag < sb->depth))
data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag);
}
void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset,
int *tags, int nr_tags)
{
struct sbitmap *sb = &sbq->sb;
unsigned long *addr = NULL;
unsigned long mask = 0;
int i;
smp_mb__before_atomic();
for (i = 0; i < nr_tags; i++) {
const int tag = tags[i] - offset;
unsigned long *this_addr;
/* since we're clearing a batch, skip the deferred map */
this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word;
if (!addr) {
addr = this_addr;
} else if (addr != this_addr) {
atomic_long_andnot(mask, (atomic_long_t *) addr);
mask = 0;
addr = this_addr;
}
mask |= (1UL << SB_NR_TO_BIT(sb, tag));
}
if (mask)
atomic_long_andnot(mask, (atomic_long_t *) addr);
smp_mb__after_atomic();
sbitmap_queue_wake_up(sbq);
sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(),
tags[nr_tags - 1] - offset);
}
void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
unsigned int cpu)
{
/*
* Once the clear bit is set, the bit may be allocated out.
*
* Orders READ/WRITE on the associated instance(such as request
* of blk_mq) by this bit for avoiding race with re-allocation,
* and its pair is the memory barrier implied in __sbitmap_get_word.
*
* One invariant is that the clear bit has to be zero when the bit
* is in use.
*/
smp_mb__before_atomic();
sbitmap_deferred_clear_bit(&sbq->sb, nr);
/*
* Pairs with the memory barrier in set_current_state() to ensure the
* proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
* and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
* waiter. See the comment on waitqueue_active().
*/
smp_mb__after_atomic();
sbitmap_queue_wake_up(sbq);
sbitmap_update_cpu_hint(&sbq->sb, cpu, nr);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
{
int i, wake_index;
/*
* Pairs with the memory barrier in set_current_state() like in
* sbitmap_queue_wake_up().
*/
smp_mb();
wake_index = atomic_read(&sbq->wake_index);
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
struct sbq_wait_state *ws = &sbq->ws[wake_index];
if (waitqueue_active(&ws->wait))
wake_up(&ws->wait);
wake_index = sbq_index_inc(wake_index);
}
}
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
{
bool first;
int i;
sbitmap_show(&sbq->sb, m);
seq_puts(m, "alloc_hint={");
first = true;
for_each_possible_cpu(i) {
if (!first)
seq_puts(m, ", ");
first = false;
seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i));
}
seq_puts(m, "}\n");
seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
seq_puts(m, "ws={\n");
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
struct sbq_wait_state *ws = &sbq->ws[i];
seq_printf(m, "\t{.wait_cnt=%d, .wait=%s},\n",
atomic_read(&ws->wait_cnt),
waitqueue_active(&ws->wait) ? "active" : "inactive");
}
seq_puts(m, "}\n");
seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin);
seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
}
EXPORT_SYMBOL_GPL(sbitmap_queue_show);
void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
struct sbq_wait_state *ws,
struct sbq_wait *sbq_wait)
{
if (!sbq_wait->sbq) {
sbq_wait->sbq = sbq;
atomic_inc(&sbq->ws_active);
add_wait_queue(&ws->wait, &sbq_wait->wait);
}
}
EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
{
list_del_init(&sbq_wait->wait.entry);
if (sbq_wait->sbq) {
atomic_dec(&sbq_wait->sbq->ws_active);
sbq_wait->sbq = NULL;
}
}
EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
struct sbq_wait_state *ws,
struct sbq_wait *sbq_wait, int state)
{
if (!sbq_wait->sbq) {
atomic_inc(&sbq->ws_active);
sbq_wait->sbq = sbq;
}
prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
}
EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
struct sbq_wait *sbq_wait)
{
finish_wait(&ws->wait, &sbq_wait->wait);
if (sbq_wait->sbq) {
atomic_dec(&sbq->ws_active);
sbq_wait->sbq = NULL;
}
}
EXPORT_SYMBOL_GPL(sbitmap_finish_wait);