linux-stable/crypto/testmgr.c
Eric Biggers f900fde288 crypto: testmgr - fix RNG performance in fuzz tests
The performance of the crypto fuzz tests has greatly regressed since
v5.18.  When booting a kernel on an arm64 dev board with all software
crypto algorithms and CONFIG_CRYPTO_MANAGER_EXTRA_TESTS enabled, the
fuzz tests now take about 200 seconds to run, or about 325 seconds with
lockdep enabled, compared to about 5 seconds before.

The root cause is that the random number generation has become much
slower due to commit d4150779e60f ("random32: use real rng for
non-deterministic randomness").  On my same arm64 dev board, at the time
the fuzz tests are run, get_random_u8() is about 345x slower than
prandom_u32_state(), or about 469x if lockdep is enabled.

Lockdep makes a big difference, but much of the rest comes from the
get_random_*() functions taking a *very* slow path when the CRNG is not
yet initialized.  Since the crypto self-tests run early during boot,
even having a hardware RNG driver enabled (CONFIG_CRYPTO_DEV_QCOM_RNG in
my case) doesn't prevent this.  x86 systems don't have this issue, but
they still see a significant regression if lockdep is enabled.

Converting the "Fully random bytes" case in generate_random_bytes() to
use get_random_bytes() helps significantly, improving the test time to
about 27 seconds.  But that's still over 5x slower than before.

This is all a bit silly, though, since the fuzz tests don't actually
need cryptographically secure random numbers.  So let's just make them
use a non-cryptographically-secure RNG as they did before.  The original
prandom_u32() is gone now, so let's use prandom_u32_state() instead,
with an explicitly managed state, like various other self-tests in the
kernel source tree (rbtree_test.c, test_scanf.c, etc.) already do.  This
also has the benefit that no locking is required anymore, so performance
should be even better than the original version that used prandom_u32().

Fixes: d4150779e60f ("random32: use real rng for non-deterministic randomness")
Cc: stable@vger.kernel.org
Signed-off-by: Eric Biggers <ebiggers@google.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2023-03-14 17:06:44 +08:00

5955 lines
152 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Algorithm testing framework and tests.
*
* Copyright (c) 2002 James Morris <jmorris@intercode.com.au>
* Copyright (c) 2002 Jean-Francois Dive <jef@linuxbe.org>
* Copyright (c) 2007 Nokia Siemens Networks
* Copyright (c) 2008 Herbert Xu <herbert@gondor.apana.org.au>
* Copyright (c) 2019 Google LLC
*
* Updated RFC4106 AES-GCM testing.
* Authors: Aidan O'Mahony (aidan.o.mahony@intel.com)
* Adrian Hoban <adrian.hoban@intel.com>
* Gabriele Paoloni <gabriele.paoloni@intel.com>
* Tadeusz Struk (tadeusz.struk@intel.com)
* Copyright (c) 2010, Intel Corporation.
*/
#include <crypto/aead.h>
#include <crypto/hash.h>
#include <crypto/skcipher.h>
#include <linux/err.h>
#include <linux/fips.h>
#include <linux/module.h>
#include <linux/once.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/string.h>
#include <linux/uio.h>
#include <crypto/rng.h>
#include <crypto/drbg.h>
#include <crypto/akcipher.h>
#include <crypto/kpp.h>
#include <crypto/acompress.h>
#include <crypto/internal/cipher.h>
#include <crypto/internal/simd.h>
#include "internal.h"
MODULE_IMPORT_NS(CRYPTO_INTERNAL);
static bool notests;
module_param(notests, bool, 0644);
MODULE_PARM_DESC(notests, "disable crypto self-tests");
static bool panic_on_fail;
module_param(panic_on_fail, bool, 0444);
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
static bool noextratests;
module_param(noextratests, bool, 0644);
MODULE_PARM_DESC(noextratests, "disable expensive crypto self-tests");
static unsigned int fuzz_iterations = 100;
module_param(fuzz_iterations, uint, 0644);
MODULE_PARM_DESC(fuzz_iterations, "number of fuzz test iterations");
#endif
#ifdef CONFIG_CRYPTO_MANAGER_DISABLE_TESTS
/* a perfect nop */
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
return 0;
}
#else
#include "testmgr.h"
/*
* Need slab memory for testing (size in number of pages).
*/
#define XBUFSIZE 8
/*
* Used by test_cipher()
*/
#define ENCRYPT 1
#define DECRYPT 0
struct aead_test_suite {
const struct aead_testvec *vecs;
unsigned int count;
/*
* Set if trying to decrypt an inauthentic ciphertext with this
* algorithm might result in EINVAL rather than EBADMSG, due to other
* validation the algorithm does on the inputs such as length checks.
*/
unsigned int einval_allowed : 1;
/*
* Set if this algorithm requires that the IV be located at the end of
* the AAD buffer, in addition to being given in the normal way. The
* behavior when the two IV copies differ is implementation-defined.
*/
unsigned int aad_iv : 1;
};
struct cipher_test_suite {
const struct cipher_testvec *vecs;
unsigned int count;
};
struct comp_test_suite {
struct {
const struct comp_testvec *vecs;
unsigned int count;
} comp, decomp;
};
struct hash_test_suite {
const struct hash_testvec *vecs;
unsigned int count;
};
struct cprng_test_suite {
const struct cprng_testvec *vecs;
unsigned int count;
};
struct drbg_test_suite {
const struct drbg_testvec *vecs;
unsigned int count;
};
struct akcipher_test_suite {
const struct akcipher_testvec *vecs;
unsigned int count;
};
struct kpp_test_suite {
const struct kpp_testvec *vecs;
unsigned int count;
};
struct alg_test_desc {
const char *alg;
const char *generic_driver;
int (*test)(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask);
int fips_allowed; /* set if alg is allowed in fips mode */
union {
struct aead_test_suite aead;
struct cipher_test_suite cipher;
struct comp_test_suite comp;
struct hash_test_suite hash;
struct cprng_test_suite cprng;
struct drbg_test_suite drbg;
struct akcipher_test_suite akcipher;
struct kpp_test_suite kpp;
} suite;
};
static void hexdump(unsigned char *buf, unsigned int len)
{
print_hex_dump(KERN_CONT, "", DUMP_PREFIX_OFFSET,
16, 1,
buf, len, false);
}
static int __testmgr_alloc_buf(char *buf[XBUFSIZE], int order)
{
int i;
for (i = 0; i < XBUFSIZE; i++) {
buf[i] = (char *)__get_free_pages(GFP_KERNEL, order);
if (!buf[i])
goto err_free_buf;
}
return 0;
err_free_buf:
while (i-- > 0)
free_pages((unsigned long)buf[i], order);
return -ENOMEM;
}
static int testmgr_alloc_buf(char *buf[XBUFSIZE])
{
return __testmgr_alloc_buf(buf, 0);
}
static void __testmgr_free_buf(char *buf[XBUFSIZE], int order)
{
int i;
for (i = 0; i < XBUFSIZE; i++)
free_pages((unsigned long)buf[i], order);
}
static void testmgr_free_buf(char *buf[XBUFSIZE])
{
__testmgr_free_buf(buf, 0);
}
#define TESTMGR_POISON_BYTE 0xfe
#define TESTMGR_POISON_LEN 16
static inline void testmgr_poison(void *addr, size_t len)
{
memset(addr, TESTMGR_POISON_BYTE, len);
}
/* Is the memory region still fully poisoned? */
static inline bool testmgr_is_poison(const void *addr, size_t len)
{
return memchr_inv(addr, TESTMGR_POISON_BYTE, len) == NULL;
}
/* flush type for hash algorithms */
enum flush_type {
/* merge with update of previous buffer(s) */
FLUSH_TYPE_NONE = 0,
/* update with previous buffer(s) before doing this one */
FLUSH_TYPE_FLUSH,
/* likewise, but also export and re-import the intermediate state */
FLUSH_TYPE_REIMPORT,
};
/* finalization function for hash algorithms */
enum finalization_type {
FINALIZATION_TYPE_FINAL, /* use final() */
FINALIZATION_TYPE_FINUP, /* use finup() */
FINALIZATION_TYPE_DIGEST, /* use digest() */
};
/*
* Whether the crypto operation will occur in-place, and if so whether the
* source and destination scatterlist pointers will coincide (req->src ==
* req->dst), or whether they'll merely point to two separate scatterlists
* (req->src != req->dst) that reference the same underlying memory.
*
* This is only relevant for algorithm types that support in-place operation.
*/
enum inplace_mode {
OUT_OF_PLACE,
INPLACE_ONE_SGLIST,
INPLACE_TWO_SGLISTS,
};
#define TEST_SG_TOTAL 10000
/**
* struct test_sg_division - description of a scatterlist entry
*
* This struct describes one entry of a scatterlist being constructed to check a
* crypto test vector.
*
* @proportion_of_total: length of this chunk relative to the total length,
* given as a proportion out of TEST_SG_TOTAL so that it
* scales to fit any test vector
* @offset: byte offset into a 2-page buffer at which this chunk will start
* @offset_relative_to_alignmask: if true, add the algorithm's alignmask to the
* @offset
* @flush_type: for hashes, whether an update() should be done now vs.
* continuing to accumulate data
* @nosimd: if doing the pending update(), do it with SIMD disabled?
*/
struct test_sg_division {
unsigned int proportion_of_total;
unsigned int offset;
bool offset_relative_to_alignmask;
enum flush_type flush_type;
bool nosimd;
};
/**
* struct testvec_config - configuration for testing a crypto test vector
*
* This struct describes the data layout and other parameters with which each
* crypto test vector can be tested.
*
* @name: name of this config, logged for debugging purposes if a test fails
* @inplace_mode: whether and how to operate on the data in-place, if applicable
* @req_flags: extra request_flags, e.g. CRYPTO_TFM_REQ_MAY_SLEEP
* @src_divs: description of how to arrange the source scatterlist
* @dst_divs: description of how to arrange the dst scatterlist, if applicable
* for the algorithm type. Defaults to @src_divs if unset.
* @iv_offset: misalignment of the IV in the range [0..MAX_ALGAPI_ALIGNMASK+1],
* where 0 is aligned to a 2*(MAX_ALGAPI_ALIGNMASK+1) byte boundary
* @iv_offset_relative_to_alignmask: if true, add the algorithm's alignmask to
* the @iv_offset
* @key_offset: misalignment of the key, where 0 is default alignment
* @key_offset_relative_to_alignmask: if true, add the algorithm's alignmask to
* the @key_offset
* @finalization_type: what finalization function to use for hashes
* @nosimd: execute with SIMD disabled? Requires !CRYPTO_TFM_REQ_MAY_SLEEP.
*/
struct testvec_config {
const char *name;
enum inplace_mode inplace_mode;
u32 req_flags;
struct test_sg_division src_divs[XBUFSIZE];
struct test_sg_division dst_divs[XBUFSIZE];
unsigned int iv_offset;
unsigned int key_offset;
bool iv_offset_relative_to_alignmask;
bool key_offset_relative_to_alignmask;
enum finalization_type finalization_type;
bool nosimd;
};
#define TESTVEC_CONFIG_NAMELEN 192
/*
* The following are the lists of testvec_configs to test for each algorithm
* type when the basic crypto self-tests are enabled, i.e. when
* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS is unset. They aim to provide good test
* coverage, while keeping the test time much shorter than the full fuzz tests
* so that the basic tests can be enabled in a wider range of circumstances.
*/
/* Configs for skciphers and aeads */
static const struct testvec_config default_cipher_testvec_configs[] = {
{
.name = "in-place (one sglist)",
.inplace_mode = INPLACE_ONE_SGLIST,
.src_divs = { { .proportion_of_total = 10000 } },
}, {
.name = "in-place (two sglists)",
.inplace_mode = INPLACE_TWO_SGLISTS,
.src_divs = { { .proportion_of_total = 10000 } },
}, {
.name = "out-of-place",
.inplace_mode = OUT_OF_PLACE,
.src_divs = { { .proportion_of_total = 10000 } },
}, {
.name = "unaligned buffer, offset=1",
.src_divs = { { .proportion_of_total = 10000, .offset = 1 } },
.iv_offset = 1,
.key_offset = 1,
}, {
.name = "buffer aligned only to alignmask",
.src_divs = {
{
.proportion_of_total = 10000,
.offset = 1,
.offset_relative_to_alignmask = true,
},
},
.iv_offset = 1,
.iv_offset_relative_to_alignmask = true,
.key_offset = 1,
.key_offset_relative_to_alignmask = true,
}, {
.name = "two even aligned splits",
.src_divs = {
{ .proportion_of_total = 5000 },
{ .proportion_of_total = 5000 },
},
}, {
.name = "one src, two even splits dst",
.inplace_mode = OUT_OF_PLACE,
.src_divs = { { .proportion_of_total = 10000 } },
.dst_divs = {
{ .proportion_of_total = 5000 },
{ .proportion_of_total = 5000 },
},
}, {
.name = "uneven misaligned splits, may sleep",
.req_flags = CRYPTO_TFM_REQ_MAY_SLEEP,
.src_divs = {
{ .proportion_of_total = 1900, .offset = 33 },
{ .proportion_of_total = 3300, .offset = 7 },
{ .proportion_of_total = 4800, .offset = 18 },
},
.iv_offset = 3,
.key_offset = 3,
}, {
.name = "misaligned splits crossing pages, inplace",
.inplace_mode = INPLACE_ONE_SGLIST,
.src_divs = {
{
.proportion_of_total = 7500,
.offset = PAGE_SIZE - 32
}, {
.proportion_of_total = 2500,
.offset = PAGE_SIZE - 7
},
},
}
};
static const struct testvec_config default_hash_testvec_configs[] = {
{
.name = "init+update+final aligned buffer",
.src_divs = { { .proportion_of_total = 10000 } },
.finalization_type = FINALIZATION_TYPE_FINAL,
}, {
.name = "init+finup aligned buffer",
.src_divs = { { .proportion_of_total = 10000 } },
.finalization_type = FINALIZATION_TYPE_FINUP,
}, {
.name = "digest aligned buffer",
.src_divs = { { .proportion_of_total = 10000 } },
.finalization_type = FINALIZATION_TYPE_DIGEST,
}, {
.name = "init+update+final misaligned buffer",
.src_divs = { { .proportion_of_total = 10000, .offset = 1 } },
.finalization_type = FINALIZATION_TYPE_FINAL,
.key_offset = 1,
}, {
.name = "digest buffer aligned only to alignmask",
.src_divs = {
{
.proportion_of_total = 10000,
.offset = 1,
.offset_relative_to_alignmask = true,
},
},
.finalization_type = FINALIZATION_TYPE_DIGEST,
.key_offset = 1,
.key_offset_relative_to_alignmask = true,
}, {
.name = "init+update+update+final two even splits",
.src_divs = {
{ .proportion_of_total = 5000 },
{
.proportion_of_total = 5000,
.flush_type = FLUSH_TYPE_FLUSH,
},
},
.finalization_type = FINALIZATION_TYPE_FINAL,
}, {
.name = "digest uneven misaligned splits, may sleep",
.req_flags = CRYPTO_TFM_REQ_MAY_SLEEP,
.src_divs = {
{ .proportion_of_total = 1900, .offset = 33 },
{ .proportion_of_total = 3300, .offset = 7 },
{ .proportion_of_total = 4800, .offset = 18 },
},
.finalization_type = FINALIZATION_TYPE_DIGEST,
}, {
.name = "digest misaligned splits crossing pages",
.src_divs = {
{
.proportion_of_total = 7500,
.offset = PAGE_SIZE - 32,
}, {
.proportion_of_total = 2500,
.offset = PAGE_SIZE - 7,
},
},
.finalization_type = FINALIZATION_TYPE_DIGEST,
}, {
.name = "import/export",
.src_divs = {
{
.proportion_of_total = 6500,
.flush_type = FLUSH_TYPE_REIMPORT,
}, {
.proportion_of_total = 3500,
.flush_type = FLUSH_TYPE_REIMPORT,
},
},
.finalization_type = FINALIZATION_TYPE_FINAL,
}
};
static unsigned int count_test_sg_divisions(const struct test_sg_division *divs)
{
unsigned int remaining = TEST_SG_TOTAL;
unsigned int ndivs = 0;
do {
remaining -= divs[ndivs++].proportion_of_total;
} while (remaining);
return ndivs;
}
#define SGDIVS_HAVE_FLUSHES BIT(0)
#define SGDIVS_HAVE_NOSIMD BIT(1)
static bool valid_sg_divisions(const struct test_sg_division *divs,
unsigned int count, int *flags_ret)
{
unsigned int total = 0;
unsigned int i;
for (i = 0; i < count && total != TEST_SG_TOTAL; i++) {
if (divs[i].proportion_of_total <= 0 ||
divs[i].proportion_of_total > TEST_SG_TOTAL - total)
return false;
total += divs[i].proportion_of_total;
if (divs[i].flush_type != FLUSH_TYPE_NONE)
*flags_ret |= SGDIVS_HAVE_FLUSHES;
if (divs[i].nosimd)
*flags_ret |= SGDIVS_HAVE_NOSIMD;
}
return total == TEST_SG_TOTAL &&
memchr_inv(&divs[i], 0, (count - i) * sizeof(divs[0])) == NULL;
}
/*
* Check whether the given testvec_config is valid. This isn't strictly needed
* since every testvec_config should be valid, but check anyway so that people
* don't unknowingly add broken configs that don't do what they wanted.
*/
static bool valid_testvec_config(const struct testvec_config *cfg)
{
int flags = 0;
if (cfg->name == NULL)
return false;
if (!valid_sg_divisions(cfg->src_divs, ARRAY_SIZE(cfg->src_divs),
&flags))
return false;
if (cfg->dst_divs[0].proportion_of_total) {
if (!valid_sg_divisions(cfg->dst_divs,
ARRAY_SIZE(cfg->dst_divs), &flags))
return false;
} else {
if (memchr_inv(cfg->dst_divs, 0, sizeof(cfg->dst_divs)))
return false;
/* defaults to dst_divs=src_divs */
}
if (cfg->iv_offset +
(cfg->iv_offset_relative_to_alignmask ? MAX_ALGAPI_ALIGNMASK : 0) >
MAX_ALGAPI_ALIGNMASK + 1)
return false;
if ((flags & (SGDIVS_HAVE_FLUSHES | SGDIVS_HAVE_NOSIMD)) &&
cfg->finalization_type == FINALIZATION_TYPE_DIGEST)
return false;
if ((cfg->nosimd || (flags & SGDIVS_HAVE_NOSIMD)) &&
(cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP))
return false;
return true;
}
struct test_sglist {
char *bufs[XBUFSIZE];
struct scatterlist sgl[XBUFSIZE];
struct scatterlist sgl_saved[XBUFSIZE];
struct scatterlist *sgl_ptr;
unsigned int nents;
};
static int init_test_sglist(struct test_sglist *tsgl)
{
return __testmgr_alloc_buf(tsgl->bufs, 1 /* two pages per buffer */);
}
static void destroy_test_sglist(struct test_sglist *tsgl)
{
return __testmgr_free_buf(tsgl->bufs, 1 /* two pages per buffer */);
}
/**
* build_test_sglist() - build a scatterlist for a crypto test
*
* @tsgl: the scatterlist to build. @tsgl->bufs[] contains an array of 2-page
* buffers which the scatterlist @tsgl->sgl[] will be made to point into.
* @divs: the layout specification on which the scatterlist will be based
* @alignmask: the algorithm's alignmask
* @total_len: the total length of the scatterlist to build in bytes
* @data: if non-NULL, the buffers will be filled with this data until it ends.
* Otherwise the buffers will be poisoned. In both cases, some bytes
* past the end of each buffer will be poisoned to help detect overruns.
* @out_divs: if non-NULL, the test_sg_division to which each scatterlist entry
* corresponds will be returned here. This will match @divs except
* that divisions resolving to a length of 0 are omitted as they are
* not included in the scatterlist.
*
* Return: 0 or a -errno value
*/
static int build_test_sglist(struct test_sglist *tsgl,
const struct test_sg_division *divs,
const unsigned int alignmask,
const unsigned int total_len,
struct iov_iter *data,
const struct test_sg_division *out_divs[XBUFSIZE])
{
struct {
const struct test_sg_division *div;
size_t length;
} partitions[XBUFSIZE];
const unsigned int ndivs = count_test_sg_divisions(divs);
unsigned int len_remaining = total_len;
unsigned int i;
BUILD_BUG_ON(ARRAY_SIZE(partitions) != ARRAY_SIZE(tsgl->sgl));
if (WARN_ON(ndivs > ARRAY_SIZE(partitions)))
return -EINVAL;
/* Calculate the (div, length) pairs */
tsgl->nents = 0;
for (i = 0; i < ndivs; i++) {
unsigned int len_this_sg =
min(len_remaining,
(total_len * divs[i].proportion_of_total +
TEST_SG_TOTAL / 2) / TEST_SG_TOTAL);
if (len_this_sg != 0) {
partitions[tsgl->nents].div = &divs[i];
partitions[tsgl->nents].length = len_this_sg;
tsgl->nents++;
len_remaining -= len_this_sg;
}
}
if (tsgl->nents == 0) {
partitions[tsgl->nents].div = &divs[0];
partitions[tsgl->nents].length = 0;
tsgl->nents++;
}
partitions[tsgl->nents - 1].length += len_remaining;
/* Set up the sgl entries and fill the data or poison */
sg_init_table(tsgl->sgl, tsgl->nents);
for (i = 0; i < tsgl->nents; i++) {
unsigned int offset = partitions[i].div->offset;
void *addr;
if (partitions[i].div->offset_relative_to_alignmask)
offset += alignmask;
while (offset + partitions[i].length + TESTMGR_POISON_LEN >
2 * PAGE_SIZE) {
if (WARN_ON(offset <= 0))
return -EINVAL;
offset /= 2;
}
addr = &tsgl->bufs[i][offset];
sg_set_buf(&tsgl->sgl[i], addr, partitions[i].length);
if (out_divs)
out_divs[i] = partitions[i].div;
if (data) {
size_t copy_len, copied;
copy_len = min(partitions[i].length, data->count);
copied = copy_from_iter(addr, copy_len, data);
if (WARN_ON(copied != copy_len))
return -EINVAL;
testmgr_poison(addr + copy_len, partitions[i].length +
TESTMGR_POISON_LEN - copy_len);
} else {
testmgr_poison(addr, partitions[i].length +
TESTMGR_POISON_LEN);
}
}
sg_mark_end(&tsgl->sgl[tsgl->nents - 1]);
tsgl->sgl_ptr = tsgl->sgl;
memcpy(tsgl->sgl_saved, tsgl->sgl, tsgl->nents * sizeof(tsgl->sgl[0]));
return 0;
}
/*
* Verify that a scatterlist crypto operation produced the correct output.
*
* @tsgl: scatterlist containing the actual output
* @expected_output: buffer containing the expected output
* @len_to_check: length of @expected_output in bytes
* @unchecked_prefix_len: number of ignored bytes in @tsgl prior to real result
* @check_poison: verify that the poison bytes after each chunk are intact?
*
* Return: 0 if correct, -EINVAL if incorrect, -EOVERFLOW if buffer overrun.
*/
static int verify_correct_output(const struct test_sglist *tsgl,
const char *expected_output,
unsigned int len_to_check,
unsigned int unchecked_prefix_len,
bool check_poison)
{
unsigned int i;
for (i = 0; i < tsgl->nents; i++) {
struct scatterlist *sg = &tsgl->sgl_ptr[i];
unsigned int len = sg->length;
unsigned int offset = sg->offset;
const char *actual_output;
if (unchecked_prefix_len) {
if (unchecked_prefix_len >= len) {
unchecked_prefix_len -= len;
continue;
}
offset += unchecked_prefix_len;
len -= unchecked_prefix_len;
unchecked_prefix_len = 0;
}
len = min(len, len_to_check);
actual_output = page_address(sg_page(sg)) + offset;
if (memcmp(expected_output, actual_output, len) != 0)
return -EINVAL;
if (check_poison &&
!testmgr_is_poison(actual_output + len, TESTMGR_POISON_LEN))
return -EOVERFLOW;
len_to_check -= len;
expected_output += len;
}
if (WARN_ON(len_to_check != 0))
return -EINVAL;
return 0;
}
static bool is_test_sglist_corrupted(const struct test_sglist *tsgl)
{
unsigned int i;
for (i = 0; i < tsgl->nents; i++) {
if (tsgl->sgl[i].page_link != tsgl->sgl_saved[i].page_link)
return true;
if (tsgl->sgl[i].offset != tsgl->sgl_saved[i].offset)
return true;
if (tsgl->sgl[i].length != tsgl->sgl_saved[i].length)
return true;
}
return false;
}
struct cipher_test_sglists {
struct test_sglist src;
struct test_sglist dst;
};
static struct cipher_test_sglists *alloc_cipher_test_sglists(void)
{
struct cipher_test_sglists *tsgls;
tsgls = kmalloc(sizeof(*tsgls), GFP_KERNEL);
if (!tsgls)
return NULL;
if (init_test_sglist(&tsgls->src) != 0)
goto fail_kfree;
if (init_test_sglist(&tsgls->dst) != 0)
goto fail_destroy_src;
return tsgls;
fail_destroy_src:
destroy_test_sglist(&tsgls->src);
fail_kfree:
kfree(tsgls);
return NULL;
}
static void free_cipher_test_sglists(struct cipher_test_sglists *tsgls)
{
if (tsgls) {
destroy_test_sglist(&tsgls->src);
destroy_test_sglist(&tsgls->dst);
kfree(tsgls);
}
}
/* Build the src and dst scatterlists for an skcipher or AEAD test */
static int build_cipher_test_sglists(struct cipher_test_sglists *tsgls,
const struct testvec_config *cfg,
unsigned int alignmask,
unsigned int src_total_len,
unsigned int dst_total_len,
const struct kvec *inputs,
unsigned int nr_inputs)
{
struct iov_iter input;
int err;
iov_iter_kvec(&input, ITER_SOURCE, inputs, nr_inputs, src_total_len);
err = build_test_sglist(&tsgls->src, cfg->src_divs, alignmask,
cfg->inplace_mode != OUT_OF_PLACE ?
max(dst_total_len, src_total_len) :
src_total_len,
&input, NULL);
if (err)
return err;
/*
* In-place crypto operations can use the same scatterlist for both the
* source and destination (req->src == req->dst), or can use separate
* scatterlists (req->src != req->dst) which point to the same
* underlying memory. Make sure to test both cases.
*/
if (cfg->inplace_mode == INPLACE_ONE_SGLIST) {
tsgls->dst.sgl_ptr = tsgls->src.sgl;
tsgls->dst.nents = tsgls->src.nents;
return 0;
}
if (cfg->inplace_mode == INPLACE_TWO_SGLISTS) {
/*
* For now we keep it simple and only test the case where the
* two scatterlists have identical entries, rather than
* different entries that split up the same memory differently.
*/
memcpy(tsgls->dst.sgl, tsgls->src.sgl,
tsgls->src.nents * sizeof(tsgls->src.sgl[0]));
memcpy(tsgls->dst.sgl_saved, tsgls->src.sgl,
tsgls->src.nents * sizeof(tsgls->src.sgl[0]));
tsgls->dst.sgl_ptr = tsgls->dst.sgl;
tsgls->dst.nents = tsgls->src.nents;
return 0;
}
/* Out of place */
return build_test_sglist(&tsgls->dst,
cfg->dst_divs[0].proportion_of_total ?
cfg->dst_divs : cfg->src_divs,
alignmask, dst_total_len, NULL, NULL);
}
/*
* Support for testing passing a misaligned key to setkey():
*
* If cfg->key_offset is set, copy the key into a new buffer at that offset,
* optionally adding alignmask. Else, just use the key directly.
*/
static int prepare_keybuf(const u8 *key, unsigned int ksize,
const struct testvec_config *cfg,
unsigned int alignmask,
const u8 **keybuf_ret, const u8 **keyptr_ret)
{
unsigned int key_offset = cfg->key_offset;
u8 *keybuf = NULL, *keyptr = (u8 *)key;
if (key_offset != 0) {
if (cfg->key_offset_relative_to_alignmask)
key_offset += alignmask;
keybuf = kmalloc(key_offset + ksize, GFP_KERNEL);
if (!keybuf)
return -ENOMEM;
keyptr = keybuf + key_offset;
memcpy(keyptr, key, ksize);
}
*keybuf_ret = keybuf;
*keyptr_ret = keyptr;
return 0;
}
/* Like setkey_f(tfm, key, ksize), but sometimes misalign the key */
#define do_setkey(setkey_f, tfm, key, ksize, cfg, alignmask) \
({ \
const u8 *keybuf, *keyptr; \
int err; \
\
err = prepare_keybuf((key), (ksize), (cfg), (alignmask), \
&keybuf, &keyptr); \
if (err == 0) { \
err = setkey_f((tfm), keyptr, (ksize)); \
kfree(keybuf); \
} \
err; \
})
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
/*
* The fuzz tests use prandom instead of the normal Linux RNG since they don't
* need cryptographically secure random numbers. This greatly improves the
* performance of these tests, especially if they are run before the Linux RNG
* has been initialized or if they are run on a lockdep-enabled kernel.
*/
static inline void init_rnd_state(struct rnd_state *rng)
{
prandom_seed_state(rng, get_random_u64());
}
static inline u8 prandom_u8(struct rnd_state *rng)
{
return prandom_u32_state(rng);
}
static inline u32 prandom_u32_below(struct rnd_state *rng, u32 ceil)
{
/*
* This is slightly biased for non-power-of-2 values of 'ceil', but this
* isn't important here.
*/
return prandom_u32_state(rng) % ceil;
}
static inline bool prandom_bool(struct rnd_state *rng)
{
return prandom_u32_below(rng, 2);
}
static inline u32 prandom_u32_inclusive(struct rnd_state *rng,
u32 floor, u32 ceil)
{
return floor + prandom_u32_below(rng, ceil - floor + 1);
}
/* Generate a random length in range [0, max_len], but prefer smaller values */
static unsigned int generate_random_length(struct rnd_state *rng,
unsigned int max_len)
{
unsigned int len = prandom_u32_below(rng, max_len + 1);
switch (prandom_u32_below(rng, 4)) {
case 0:
return len % 64;
case 1:
return len % 256;
case 2:
return len % 1024;
default:
return len;
}
}
/* Flip a random bit in the given nonempty data buffer */
static void flip_random_bit(struct rnd_state *rng, u8 *buf, size_t size)
{
size_t bitpos;
bitpos = prandom_u32_below(rng, size * 8);
buf[bitpos / 8] ^= 1 << (bitpos % 8);
}
/* Flip a random byte in the given nonempty data buffer */
static void flip_random_byte(struct rnd_state *rng, u8 *buf, size_t size)
{
buf[prandom_u32_below(rng, size)] ^= 0xff;
}
/* Sometimes make some random changes to the given nonempty data buffer */
static void mutate_buffer(struct rnd_state *rng, u8 *buf, size_t size)
{
size_t num_flips;
size_t i;
/* Sometimes flip some bits */
if (prandom_u32_below(rng, 4) == 0) {
num_flips = min_t(size_t, 1 << prandom_u32_below(rng, 8),
size * 8);
for (i = 0; i < num_flips; i++)
flip_random_bit(rng, buf, size);
}
/* Sometimes flip some bytes */
if (prandom_u32_below(rng, 4) == 0) {
num_flips = min_t(size_t, 1 << prandom_u32_below(rng, 8), size);
for (i = 0; i < num_flips; i++)
flip_random_byte(rng, buf, size);
}
}
/* Randomly generate 'count' bytes, but sometimes make them "interesting" */
static void generate_random_bytes(struct rnd_state *rng, u8 *buf, size_t count)
{
u8 b;
u8 increment;
size_t i;
if (count == 0)
return;
switch (prandom_u32_below(rng, 8)) { /* Choose a generation strategy */
case 0:
case 1:
/* All the same byte, plus optional mutations */
switch (prandom_u32_below(rng, 4)) {
case 0:
b = 0x00;
break;
case 1:
b = 0xff;
break;
default:
b = prandom_u8(rng);
break;
}
memset(buf, b, count);
mutate_buffer(rng, buf, count);
break;
case 2:
/* Ascending or descending bytes, plus optional mutations */
increment = prandom_u8(rng);
b = prandom_u8(rng);
for (i = 0; i < count; i++, b += increment)
buf[i] = b;
mutate_buffer(rng, buf, count);
break;
default:
/* Fully random bytes */
prandom_bytes_state(rng, buf, count);
}
}
static char *generate_random_sgl_divisions(struct rnd_state *rng,
struct test_sg_division *divs,
size_t max_divs, char *p, char *end,
bool gen_flushes, u32 req_flags)
{
struct test_sg_division *div = divs;
unsigned int remaining = TEST_SG_TOTAL;
do {
unsigned int this_len;
const char *flushtype_str;
if (div == &divs[max_divs - 1] || prandom_bool(rng))
this_len = remaining;
else
this_len = prandom_u32_inclusive(rng, 1, remaining);
div->proportion_of_total = this_len;
if (prandom_u32_below(rng, 4) == 0)
div->offset = prandom_u32_inclusive(rng,
PAGE_SIZE - 128,
PAGE_SIZE - 1);
else if (prandom_bool(rng))
div->offset = prandom_u32_below(rng, 32);
else
div->offset = prandom_u32_below(rng, PAGE_SIZE);
if (prandom_u32_below(rng, 8) == 0)
div->offset_relative_to_alignmask = true;
div->flush_type = FLUSH_TYPE_NONE;
if (gen_flushes) {
switch (prandom_u32_below(rng, 4)) {
case 0:
div->flush_type = FLUSH_TYPE_REIMPORT;
break;
case 1:
div->flush_type = FLUSH_TYPE_FLUSH;
break;
}
}
if (div->flush_type != FLUSH_TYPE_NONE &&
!(req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) &&
prandom_bool(rng))
div->nosimd = true;
switch (div->flush_type) {
case FLUSH_TYPE_FLUSH:
if (div->nosimd)
flushtype_str = "<flush,nosimd>";
else
flushtype_str = "<flush>";
break;
case FLUSH_TYPE_REIMPORT:
if (div->nosimd)
flushtype_str = "<reimport,nosimd>";
else
flushtype_str = "<reimport>";
break;
default:
flushtype_str = "";
break;
}
BUILD_BUG_ON(TEST_SG_TOTAL != 10000); /* for "%u.%u%%" */
p += scnprintf(p, end - p, "%s%u.%u%%@%s+%u%s", flushtype_str,
this_len / 100, this_len % 100,
div->offset_relative_to_alignmask ?
"alignmask" : "",
div->offset, this_len == remaining ? "" : ", ");
remaining -= this_len;
div++;
} while (remaining);
return p;
}
/* Generate a random testvec_config for fuzz testing */
static void generate_random_testvec_config(struct rnd_state *rng,
struct testvec_config *cfg,
char *name, size_t max_namelen)
{
char *p = name;
char * const end = name + max_namelen;
memset(cfg, 0, sizeof(*cfg));
cfg->name = name;
p += scnprintf(p, end - p, "random:");
switch (prandom_u32_below(rng, 4)) {
case 0:
case 1:
cfg->inplace_mode = OUT_OF_PLACE;
break;
case 2:
cfg->inplace_mode = INPLACE_ONE_SGLIST;
p += scnprintf(p, end - p, " inplace_one_sglist");
break;
default:
cfg->inplace_mode = INPLACE_TWO_SGLISTS;
p += scnprintf(p, end - p, " inplace_two_sglists");
break;
}
if (prandom_bool(rng)) {
cfg->req_flags |= CRYPTO_TFM_REQ_MAY_SLEEP;
p += scnprintf(p, end - p, " may_sleep");
}
switch (prandom_u32_below(rng, 4)) {
case 0:
cfg->finalization_type = FINALIZATION_TYPE_FINAL;
p += scnprintf(p, end - p, " use_final");
break;
case 1:
cfg->finalization_type = FINALIZATION_TYPE_FINUP;
p += scnprintf(p, end - p, " use_finup");
break;
default:
cfg->finalization_type = FINALIZATION_TYPE_DIGEST;
p += scnprintf(p, end - p, " use_digest");
break;
}
if (!(cfg->req_flags & CRYPTO_TFM_REQ_MAY_SLEEP) && prandom_bool(rng)) {
cfg->nosimd = true;
p += scnprintf(p, end - p, " nosimd");
}
p += scnprintf(p, end - p, " src_divs=[");
p = generate_random_sgl_divisions(rng, cfg->src_divs,
ARRAY_SIZE(cfg->src_divs), p, end,
(cfg->finalization_type !=
FINALIZATION_TYPE_DIGEST),
cfg->req_flags);
p += scnprintf(p, end - p, "]");
if (cfg->inplace_mode == OUT_OF_PLACE && prandom_bool(rng)) {
p += scnprintf(p, end - p, " dst_divs=[");
p = generate_random_sgl_divisions(rng, cfg->dst_divs,
ARRAY_SIZE(cfg->dst_divs),
p, end, false,
cfg->req_flags);
p += scnprintf(p, end - p, "]");
}
if (prandom_bool(rng)) {
cfg->iv_offset = prandom_u32_inclusive(rng, 1,
MAX_ALGAPI_ALIGNMASK);
p += scnprintf(p, end - p, " iv_offset=%u", cfg->iv_offset);
}
if (prandom_bool(rng)) {
cfg->key_offset = prandom_u32_inclusive(rng, 1,
MAX_ALGAPI_ALIGNMASK);
p += scnprintf(p, end - p, " key_offset=%u", cfg->key_offset);
}
WARN_ON_ONCE(!valid_testvec_config(cfg));
}
static void crypto_disable_simd_for_test(void)
{
migrate_disable();
__this_cpu_write(crypto_simd_disabled_for_test, true);
}
static void crypto_reenable_simd_for_test(void)
{
__this_cpu_write(crypto_simd_disabled_for_test, false);
migrate_enable();
}
/*
* Given an algorithm name, build the name of the generic implementation of that
* algorithm, assuming the usual naming convention. Specifically, this appends
* "-generic" to every part of the name that is not a template name. Examples:
*
* aes => aes-generic
* cbc(aes) => cbc(aes-generic)
* cts(cbc(aes)) => cts(cbc(aes-generic))
* rfc7539(chacha20,poly1305) => rfc7539(chacha20-generic,poly1305-generic)
*
* Return: 0 on success, or -ENAMETOOLONG if the generic name would be too long
*/
static int build_generic_driver_name(const char *algname,
char driver_name[CRYPTO_MAX_ALG_NAME])
{
const char *in = algname;
char *out = driver_name;
size_t len = strlen(algname);
if (len >= CRYPTO_MAX_ALG_NAME)
goto too_long;
do {
const char *in_saved = in;
while (*in && *in != '(' && *in != ')' && *in != ',')
*out++ = *in++;
if (*in != '(' && in > in_saved) {
len += 8;
if (len >= CRYPTO_MAX_ALG_NAME)
goto too_long;
memcpy(out, "-generic", 8);
out += 8;
}
} while ((*out++ = *in++) != '\0');
return 0;
too_long:
pr_err("alg: generic driver name for \"%s\" would be too long\n",
algname);
return -ENAMETOOLONG;
}
#else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */
static void crypto_disable_simd_for_test(void)
{
}
static void crypto_reenable_simd_for_test(void)
{
}
#endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */
static int build_hash_sglist(struct test_sglist *tsgl,
const struct hash_testvec *vec,
const struct testvec_config *cfg,
unsigned int alignmask,
const struct test_sg_division *divs[XBUFSIZE])
{
struct kvec kv;
struct iov_iter input;
kv.iov_base = (void *)vec->plaintext;
kv.iov_len = vec->psize;
iov_iter_kvec(&input, ITER_SOURCE, &kv, 1, vec->psize);
return build_test_sglist(tsgl, cfg->src_divs, alignmask, vec->psize,
&input, divs);
}
static int check_hash_result(const char *type,
const u8 *result, unsigned int digestsize,
const struct hash_testvec *vec,
const char *vec_name,
const char *driver,
const struct testvec_config *cfg)
{
if (memcmp(result, vec->digest, digestsize) != 0) {
pr_err("alg: %s: %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n",
type, driver, vec_name, cfg->name);
return -EINVAL;
}
if (!testmgr_is_poison(&result[digestsize], TESTMGR_POISON_LEN)) {
pr_err("alg: %s: %s overran result buffer on test vector %s, cfg=\"%s\"\n",
type, driver, vec_name, cfg->name);
return -EOVERFLOW;
}
return 0;
}
static inline int check_shash_op(const char *op, int err,
const char *driver, const char *vec_name,
const struct testvec_config *cfg)
{
if (err)
pr_err("alg: shash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n",
driver, op, err, vec_name, cfg->name);
return err;
}
/* Test one hash test vector in one configuration, using the shash API */
static int test_shash_vec_cfg(const struct hash_testvec *vec,
const char *vec_name,
const struct testvec_config *cfg,
struct shash_desc *desc,
struct test_sglist *tsgl,
u8 *hashstate)
{
struct crypto_shash *tfm = desc->tfm;
const unsigned int alignmask = crypto_shash_alignmask(tfm);
const unsigned int digestsize = crypto_shash_digestsize(tfm);
const unsigned int statesize = crypto_shash_statesize(tfm);
const char *driver = crypto_shash_driver_name(tfm);
const struct test_sg_division *divs[XBUFSIZE];
unsigned int i;
u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN];
int err;
/* Set the key, if specified */
if (vec->ksize) {
err = do_setkey(crypto_shash_setkey, tfm, vec->key, vec->ksize,
cfg, alignmask);
if (err) {
if (err == vec->setkey_error)
return 0;
pr_err("alg: shash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n",
driver, vec_name, vec->setkey_error, err,
crypto_shash_get_flags(tfm));
return err;
}
if (vec->setkey_error) {
pr_err("alg: shash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n",
driver, vec_name, vec->setkey_error);
return -EINVAL;
}
}
/* Build the scatterlist for the source data */
err = build_hash_sglist(tsgl, vec, cfg, alignmask, divs);
if (err) {
pr_err("alg: shash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n",
driver, vec_name, cfg->name);
return err;
}
/* Do the actual hashing */
testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm));
testmgr_poison(result, digestsize + TESTMGR_POISON_LEN);
if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST ||
vec->digest_error) {
/* Just using digest() */
if (tsgl->nents != 1)
return 0;
if (cfg->nosimd)
crypto_disable_simd_for_test();
err = crypto_shash_digest(desc, sg_virt(&tsgl->sgl[0]),
tsgl->sgl[0].length, result);
if (cfg->nosimd)
crypto_reenable_simd_for_test();
if (err) {
if (err == vec->digest_error)
return 0;
pr_err("alg: shash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n",
driver, vec_name, vec->digest_error, err,
cfg->name);
return err;
}
if (vec->digest_error) {
pr_err("alg: shash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n",
driver, vec_name, vec->digest_error, cfg->name);
return -EINVAL;
}
goto result_ready;
}
/* Using init(), zero or more update(), then final() or finup() */
if (cfg->nosimd)
crypto_disable_simd_for_test();
err = crypto_shash_init(desc);
if (cfg->nosimd)
crypto_reenable_simd_for_test();
err = check_shash_op("init", err, driver, vec_name, cfg);
if (err)
return err;
for (i = 0; i < tsgl->nents; i++) {
if (i + 1 == tsgl->nents &&
cfg->finalization_type == FINALIZATION_TYPE_FINUP) {
if (divs[i]->nosimd)
crypto_disable_simd_for_test();
err = crypto_shash_finup(desc, sg_virt(&tsgl->sgl[i]),
tsgl->sgl[i].length, result);
if (divs[i]->nosimd)
crypto_reenable_simd_for_test();
err = check_shash_op("finup", err, driver, vec_name,
cfg);
if (err)
return err;
goto result_ready;
}
if (divs[i]->nosimd)
crypto_disable_simd_for_test();
err = crypto_shash_update(desc, sg_virt(&tsgl->sgl[i]),
tsgl->sgl[i].length);
if (divs[i]->nosimd)
crypto_reenable_simd_for_test();
err = check_shash_op("update", err, driver, vec_name, cfg);
if (err)
return err;
if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) {
/* Test ->export() and ->import() */
testmgr_poison(hashstate + statesize,
TESTMGR_POISON_LEN);
err = crypto_shash_export(desc, hashstate);
err = check_shash_op("export", err, driver, vec_name,
cfg);
if (err)
return err;
if (!testmgr_is_poison(hashstate + statesize,
TESTMGR_POISON_LEN)) {
pr_err("alg: shash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n",
driver, vec_name, cfg->name);
return -EOVERFLOW;
}
testmgr_poison(desc->__ctx, crypto_shash_descsize(tfm));
err = crypto_shash_import(desc, hashstate);
err = check_shash_op("import", err, driver, vec_name,
cfg);
if (err)
return err;
}
}
if (cfg->nosimd)
crypto_disable_simd_for_test();
err = crypto_shash_final(desc, result);
if (cfg->nosimd)
crypto_reenable_simd_for_test();
err = check_shash_op("final", err, driver, vec_name, cfg);
if (err)
return err;
result_ready:
return check_hash_result("shash", result, digestsize, vec, vec_name,
driver, cfg);
}
static int do_ahash_op(int (*op)(struct ahash_request *req),
struct ahash_request *req,
struct crypto_wait *wait, bool nosimd)
{
int err;
if (nosimd)
crypto_disable_simd_for_test();
err = op(req);
if (nosimd)
crypto_reenable_simd_for_test();
return crypto_wait_req(err, wait);
}
static int check_nonfinal_ahash_op(const char *op, int err,
u8 *result, unsigned int digestsize,
const char *driver, const char *vec_name,
const struct testvec_config *cfg)
{
if (err) {
pr_err("alg: ahash: %s %s() failed with err %d on test vector %s, cfg=\"%s\"\n",
driver, op, err, vec_name, cfg->name);
return err;
}
if (!testmgr_is_poison(result, digestsize)) {
pr_err("alg: ahash: %s %s() used result buffer on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return -EINVAL;
}
return 0;
}
/* Test one hash test vector in one configuration, using the ahash API */
static int test_ahash_vec_cfg(const struct hash_testvec *vec,
const char *vec_name,
const struct testvec_config *cfg,
struct ahash_request *req,
struct test_sglist *tsgl,
u8 *hashstate)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
const unsigned int alignmask = crypto_ahash_alignmask(tfm);
const unsigned int digestsize = crypto_ahash_digestsize(tfm);
const unsigned int statesize = crypto_ahash_statesize(tfm);
const char *driver = crypto_ahash_driver_name(tfm);
const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags;
const struct test_sg_division *divs[XBUFSIZE];
DECLARE_CRYPTO_WAIT(wait);
unsigned int i;
struct scatterlist *pending_sgl;
unsigned int pending_len;
u8 result[HASH_MAX_DIGESTSIZE + TESTMGR_POISON_LEN];
int err;
/* Set the key, if specified */
if (vec->ksize) {
err = do_setkey(crypto_ahash_setkey, tfm, vec->key, vec->ksize,
cfg, alignmask);
if (err) {
if (err == vec->setkey_error)
return 0;
pr_err("alg: ahash: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n",
driver, vec_name, vec->setkey_error, err,
crypto_ahash_get_flags(tfm));
return err;
}
if (vec->setkey_error) {
pr_err("alg: ahash: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n",
driver, vec_name, vec->setkey_error);
return -EINVAL;
}
}
/* Build the scatterlist for the source data */
err = build_hash_sglist(tsgl, vec, cfg, alignmask, divs);
if (err) {
pr_err("alg: ahash: %s: error preparing scatterlist for test vector %s, cfg=\"%s\"\n",
driver, vec_name, cfg->name);
return err;
}
/* Do the actual hashing */
testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm));
testmgr_poison(result, digestsize + TESTMGR_POISON_LEN);
if (cfg->finalization_type == FINALIZATION_TYPE_DIGEST ||
vec->digest_error) {
/* Just using digest() */
ahash_request_set_callback(req, req_flags, crypto_req_done,
&wait);
ahash_request_set_crypt(req, tsgl->sgl, result, vec->psize);
err = do_ahash_op(crypto_ahash_digest, req, &wait, cfg->nosimd);
if (err) {
if (err == vec->digest_error)
return 0;
pr_err("alg: ahash: %s digest() failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n",
driver, vec_name, vec->digest_error, err,
cfg->name);
return err;
}
if (vec->digest_error) {
pr_err("alg: ahash: %s digest() unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n",
driver, vec_name, vec->digest_error, cfg->name);
return -EINVAL;
}
goto result_ready;
}
/* Using init(), zero or more update(), then final() or finup() */
ahash_request_set_callback(req, req_flags, crypto_req_done, &wait);
ahash_request_set_crypt(req, NULL, result, 0);
err = do_ahash_op(crypto_ahash_init, req, &wait, cfg->nosimd);
err = check_nonfinal_ahash_op("init", err, result, digestsize,
driver, vec_name, cfg);
if (err)
return err;
pending_sgl = NULL;
pending_len = 0;
for (i = 0; i < tsgl->nents; i++) {
if (divs[i]->flush_type != FLUSH_TYPE_NONE &&
pending_sgl != NULL) {
/* update() with the pending data */
ahash_request_set_callback(req, req_flags,
crypto_req_done, &wait);
ahash_request_set_crypt(req, pending_sgl, result,
pending_len);
err = do_ahash_op(crypto_ahash_update, req, &wait,
divs[i]->nosimd);
err = check_nonfinal_ahash_op("update", err,
result, digestsize,
driver, vec_name, cfg);
if (err)
return err;
pending_sgl = NULL;
pending_len = 0;
}
if (divs[i]->flush_type == FLUSH_TYPE_REIMPORT) {
/* Test ->export() and ->import() */
testmgr_poison(hashstate + statesize,
TESTMGR_POISON_LEN);
err = crypto_ahash_export(req, hashstate);
err = check_nonfinal_ahash_op("export", err,
result, digestsize,
driver, vec_name, cfg);
if (err)
return err;
if (!testmgr_is_poison(hashstate + statesize,
TESTMGR_POISON_LEN)) {
pr_err("alg: ahash: %s export() overran state buffer on test vector %s, cfg=\"%s\"\n",
driver, vec_name, cfg->name);
return -EOVERFLOW;
}
testmgr_poison(req->__ctx, crypto_ahash_reqsize(tfm));
err = crypto_ahash_import(req, hashstate);
err = check_nonfinal_ahash_op("import", err,
result, digestsize,
driver, vec_name, cfg);
if (err)
return err;
}
if (pending_sgl == NULL)
pending_sgl = &tsgl->sgl[i];
pending_len += tsgl->sgl[i].length;
}
ahash_request_set_callback(req, req_flags, crypto_req_done, &wait);
ahash_request_set_crypt(req, pending_sgl, result, pending_len);
if (cfg->finalization_type == FINALIZATION_TYPE_FINAL) {
/* finish with update() and final() */
err = do_ahash_op(crypto_ahash_update, req, &wait, cfg->nosimd);
err = check_nonfinal_ahash_op("update", err, result, digestsize,
driver, vec_name, cfg);
if (err)
return err;
err = do_ahash_op(crypto_ahash_final, req, &wait, cfg->nosimd);
if (err) {
pr_err("alg: ahash: %s final() failed with err %d on test vector %s, cfg=\"%s\"\n",
driver, err, vec_name, cfg->name);
return err;
}
} else {
/* finish with finup() */
err = do_ahash_op(crypto_ahash_finup, req, &wait, cfg->nosimd);
if (err) {
pr_err("alg: ahash: %s finup() failed with err %d on test vector %s, cfg=\"%s\"\n",
driver, err, vec_name, cfg->name);
return err;
}
}
result_ready:
return check_hash_result("ahash", result, digestsize, vec, vec_name,
driver, cfg);
}
static int test_hash_vec_cfg(const struct hash_testvec *vec,
const char *vec_name,
const struct testvec_config *cfg,
struct ahash_request *req,
struct shash_desc *desc,
struct test_sglist *tsgl,
u8 *hashstate)
{
int err;
/*
* For algorithms implemented as "shash", most bugs will be detected by
* both the shash and ahash tests. Test the shash API first so that the
* failures involve less indirection, so are easier to debug.
*/
if (desc) {
err = test_shash_vec_cfg(vec, vec_name, cfg, desc, tsgl,
hashstate);
if (err)
return err;
}
return test_ahash_vec_cfg(vec, vec_name, cfg, req, tsgl, hashstate);
}
static int test_hash_vec(const struct hash_testvec *vec, unsigned int vec_num,
struct ahash_request *req, struct shash_desc *desc,
struct test_sglist *tsgl, u8 *hashstate)
{
char vec_name[16];
unsigned int i;
int err;
sprintf(vec_name, "%u", vec_num);
for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++) {
err = test_hash_vec_cfg(vec, vec_name,
&default_hash_testvec_configs[i],
req, desc, tsgl, hashstate);
if (err)
return err;
}
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
if (!noextratests) {
struct rnd_state rng;
struct testvec_config cfg;
char cfgname[TESTVEC_CONFIG_NAMELEN];
init_rnd_state(&rng);
for (i = 0; i < fuzz_iterations; i++) {
generate_random_testvec_config(&rng, &cfg, cfgname,
sizeof(cfgname));
err = test_hash_vec_cfg(vec, vec_name, &cfg,
req, desc, tsgl, hashstate);
if (err)
return err;
cond_resched();
}
}
#endif
return 0;
}
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
/*
* Generate a hash test vector from the given implementation.
* Assumes the buffers in 'vec' were already allocated.
*/
static void generate_random_hash_testvec(struct rnd_state *rng,
struct shash_desc *desc,
struct hash_testvec *vec,
unsigned int maxkeysize,
unsigned int maxdatasize,
char *name, size_t max_namelen)
{
/* Data */
vec->psize = generate_random_length(rng, maxdatasize);
generate_random_bytes(rng, (u8 *)vec->plaintext, vec->psize);
/*
* Key: length in range [1, maxkeysize], but usually choose maxkeysize.
* If algorithm is unkeyed, then maxkeysize == 0 and set ksize = 0.
*/
vec->setkey_error = 0;
vec->ksize = 0;
if (maxkeysize) {
vec->ksize = maxkeysize;
if (prandom_u32_below(rng, 4) == 0)
vec->ksize = prandom_u32_inclusive(rng, 1, maxkeysize);
generate_random_bytes(rng, (u8 *)vec->key, vec->ksize);
vec->setkey_error = crypto_shash_setkey(desc->tfm, vec->key,
vec->ksize);
/* If the key couldn't be set, no need to continue to digest. */
if (vec->setkey_error)
goto done;
}
/* Digest */
vec->digest_error = crypto_shash_digest(desc, vec->plaintext,
vec->psize, (u8 *)vec->digest);
done:
snprintf(name, max_namelen, "\"random: psize=%u ksize=%u\"",
vec->psize, vec->ksize);
}
/*
* Test the hash algorithm represented by @req against the corresponding generic
* implementation, if one is available.
*/
static int test_hash_vs_generic_impl(const char *generic_driver,
unsigned int maxkeysize,
struct ahash_request *req,
struct shash_desc *desc,
struct test_sglist *tsgl,
u8 *hashstate)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
const unsigned int digestsize = crypto_ahash_digestsize(tfm);
const unsigned int blocksize = crypto_ahash_blocksize(tfm);
const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN;
const char *algname = crypto_hash_alg_common(tfm)->base.cra_name;
const char *driver = crypto_ahash_driver_name(tfm);
struct rnd_state rng;
char _generic_driver[CRYPTO_MAX_ALG_NAME];
struct crypto_shash *generic_tfm = NULL;
struct shash_desc *generic_desc = NULL;
unsigned int i;
struct hash_testvec vec = { 0 };
char vec_name[64];
struct testvec_config *cfg;
char cfgname[TESTVEC_CONFIG_NAMELEN];
int err;
if (noextratests)
return 0;
init_rnd_state(&rng);
if (!generic_driver) { /* Use default naming convention? */
err = build_generic_driver_name(algname, _generic_driver);
if (err)
return err;
generic_driver = _generic_driver;
}
if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */
return 0;
generic_tfm = crypto_alloc_shash(generic_driver, 0, 0);
if (IS_ERR(generic_tfm)) {
err = PTR_ERR(generic_tfm);
if (err == -ENOENT) {
pr_warn("alg: hash: skipping comparison tests for %s because %s is unavailable\n",
driver, generic_driver);
return 0;
}
pr_err("alg: hash: error allocating %s (generic impl of %s): %d\n",
generic_driver, algname, err);
return err;
}
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
err = -ENOMEM;
goto out;
}
generic_desc = kzalloc(sizeof(*desc) +
crypto_shash_descsize(generic_tfm), GFP_KERNEL);
if (!generic_desc) {
err = -ENOMEM;
goto out;
}
generic_desc->tfm = generic_tfm;
/* Check the algorithm properties for consistency. */
if (digestsize != crypto_shash_digestsize(generic_tfm)) {
pr_err("alg: hash: digestsize for %s (%u) doesn't match generic impl (%u)\n",
driver, digestsize,
crypto_shash_digestsize(generic_tfm));
err = -EINVAL;
goto out;
}
if (blocksize != crypto_shash_blocksize(generic_tfm)) {
pr_err("alg: hash: blocksize for %s (%u) doesn't match generic impl (%u)\n",
driver, blocksize, crypto_shash_blocksize(generic_tfm));
err = -EINVAL;
goto out;
}
/*
* Now generate test vectors using the generic implementation, and test
* the other implementation against them.
*/
vec.key = kmalloc(maxkeysize, GFP_KERNEL);
vec.plaintext = kmalloc(maxdatasize, GFP_KERNEL);
vec.digest = kmalloc(digestsize, GFP_KERNEL);
if (!vec.key || !vec.plaintext || !vec.digest) {
err = -ENOMEM;
goto out;
}
for (i = 0; i < fuzz_iterations * 8; i++) {
generate_random_hash_testvec(&rng, generic_desc, &vec,
maxkeysize, maxdatasize,
vec_name, sizeof(vec_name));
generate_random_testvec_config(&rng, cfg, cfgname,
sizeof(cfgname));
err = test_hash_vec_cfg(&vec, vec_name, cfg,
req, desc, tsgl, hashstate);
if (err)
goto out;
cond_resched();
}
err = 0;
out:
kfree(cfg);
kfree(vec.key);
kfree(vec.plaintext);
kfree(vec.digest);
crypto_free_shash(generic_tfm);
kfree_sensitive(generic_desc);
return err;
}
#else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */
static int test_hash_vs_generic_impl(const char *generic_driver,
unsigned int maxkeysize,
struct ahash_request *req,
struct shash_desc *desc,
struct test_sglist *tsgl,
u8 *hashstate)
{
return 0;
}
#endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */
static int alloc_shash(const char *driver, u32 type, u32 mask,
struct crypto_shash **tfm_ret,
struct shash_desc **desc_ret)
{
struct crypto_shash *tfm;
struct shash_desc *desc;
tfm = crypto_alloc_shash(driver, type, mask);
if (IS_ERR(tfm)) {
if (PTR_ERR(tfm) == -ENOENT) {
/*
* This algorithm is only available through the ahash
* API, not the shash API, so skip the shash tests.
*/
return 0;
}
pr_err("alg: hash: failed to allocate shash transform for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL);
if (!desc) {
crypto_free_shash(tfm);
return -ENOMEM;
}
desc->tfm = tfm;
*tfm_ret = tfm;
*desc_ret = desc;
return 0;
}
static int __alg_test_hash(const struct hash_testvec *vecs,
unsigned int num_vecs, const char *driver,
u32 type, u32 mask,
const char *generic_driver, unsigned int maxkeysize)
{
struct crypto_ahash *atfm = NULL;
struct ahash_request *req = NULL;
struct crypto_shash *stfm = NULL;
struct shash_desc *desc = NULL;
struct test_sglist *tsgl = NULL;
u8 *hashstate = NULL;
unsigned int statesize;
unsigned int i;
int err;
/*
* Always test the ahash API. This works regardless of whether the
* algorithm is implemented as ahash or shash.
*/
atfm = crypto_alloc_ahash(driver, type, mask);
if (IS_ERR(atfm)) {
pr_err("alg: hash: failed to allocate transform for %s: %ld\n",
driver, PTR_ERR(atfm));
return PTR_ERR(atfm);
}
driver = crypto_ahash_driver_name(atfm);
req = ahash_request_alloc(atfm, GFP_KERNEL);
if (!req) {
pr_err("alg: hash: failed to allocate request for %s\n",
driver);
err = -ENOMEM;
goto out;
}
/*
* If available also test the shash API, to cover corner cases that may
* be missed by testing the ahash API only.
*/
err = alloc_shash(driver, type, mask, &stfm, &desc);
if (err)
goto out;
tsgl = kmalloc(sizeof(*tsgl), GFP_KERNEL);
if (!tsgl || init_test_sglist(tsgl) != 0) {
pr_err("alg: hash: failed to allocate test buffers for %s\n",
driver);
kfree(tsgl);
tsgl = NULL;
err = -ENOMEM;
goto out;
}
statesize = crypto_ahash_statesize(atfm);
if (stfm)
statesize = max(statesize, crypto_shash_statesize(stfm));
hashstate = kmalloc(statesize + TESTMGR_POISON_LEN, GFP_KERNEL);
if (!hashstate) {
pr_err("alg: hash: failed to allocate hash state buffer for %s\n",
driver);
err = -ENOMEM;
goto out;
}
for (i = 0; i < num_vecs; i++) {
if (fips_enabled && vecs[i].fips_skip)
continue;
err = test_hash_vec(&vecs[i], i, req, desc, tsgl, hashstate);
if (err)
goto out;
cond_resched();
}
err = test_hash_vs_generic_impl(generic_driver, maxkeysize, req,
desc, tsgl, hashstate);
out:
kfree(hashstate);
if (tsgl) {
destroy_test_sglist(tsgl);
kfree(tsgl);
}
kfree(desc);
crypto_free_shash(stfm);
ahash_request_free(req);
crypto_free_ahash(atfm);
return err;
}
static int alg_test_hash(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
const struct hash_testvec *template = desc->suite.hash.vecs;
unsigned int tcount = desc->suite.hash.count;
unsigned int nr_unkeyed, nr_keyed;
unsigned int maxkeysize = 0;
int err;
/*
* For OPTIONAL_KEY algorithms, we have to do all the unkeyed tests
* first, before setting a key on the tfm. To make this easier, we
* require that the unkeyed test vectors (if any) are listed first.
*/
for (nr_unkeyed = 0; nr_unkeyed < tcount; nr_unkeyed++) {
if (template[nr_unkeyed].ksize)
break;
}
for (nr_keyed = 0; nr_unkeyed + nr_keyed < tcount; nr_keyed++) {
if (!template[nr_unkeyed + nr_keyed].ksize) {
pr_err("alg: hash: test vectors for %s out of order, "
"unkeyed ones must come first\n", desc->alg);
return -EINVAL;
}
maxkeysize = max_t(unsigned int, maxkeysize,
template[nr_unkeyed + nr_keyed].ksize);
}
err = 0;
if (nr_unkeyed) {
err = __alg_test_hash(template, nr_unkeyed, driver, type, mask,
desc->generic_driver, maxkeysize);
template += nr_unkeyed;
}
if (!err && nr_keyed)
err = __alg_test_hash(template, nr_keyed, driver, type, mask,
desc->generic_driver, maxkeysize);
return err;
}
static int test_aead_vec_cfg(int enc, const struct aead_testvec *vec,
const char *vec_name,
const struct testvec_config *cfg,
struct aead_request *req,
struct cipher_test_sglists *tsgls)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
const unsigned int alignmask = crypto_aead_alignmask(tfm);
const unsigned int ivsize = crypto_aead_ivsize(tfm);
const unsigned int authsize = vec->clen - vec->plen;
const char *driver = crypto_aead_driver_name(tfm);
const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags;
const char *op = enc ? "encryption" : "decryption";
DECLARE_CRYPTO_WAIT(wait);
u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN];
u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) +
cfg->iv_offset +
(cfg->iv_offset_relative_to_alignmask ? alignmask : 0);
struct kvec input[2];
int err;
/* Set the key */
if (vec->wk)
crypto_aead_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
else
crypto_aead_clear_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
err = do_setkey(crypto_aead_setkey, tfm, vec->key, vec->klen,
cfg, alignmask);
if (err && err != vec->setkey_error) {
pr_err("alg: aead: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n",
driver, vec_name, vec->setkey_error, err,
crypto_aead_get_flags(tfm));
return err;
}
if (!err && vec->setkey_error) {
pr_err("alg: aead: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n",
driver, vec_name, vec->setkey_error);
return -EINVAL;
}
/* Set the authentication tag size */
err = crypto_aead_setauthsize(tfm, authsize);
if (err && err != vec->setauthsize_error) {
pr_err("alg: aead: %s setauthsize failed on test vector %s; expected_error=%d, actual_error=%d\n",
driver, vec_name, vec->setauthsize_error, err);
return err;
}
if (!err && vec->setauthsize_error) {
pr_err("alg: aead: %s setauthsize unexpectedly succeeded on test vector %s; expected_error=%d\n",
driver, vec_name, vec->setauthsize_error);
return -EINVAL;
}
if (vec->setkey_error || vec->setauthsize_error)
return 0;
/* The IV must be copied to a buffer, as the algorithm may modify it */
if (WARN_ON(ivsize > MAX_IVLEN))
return -EINVAL;
if (vec->iv)
memcpy(iv, vec->iv, ivsize);
else
memset(iv, 0, ivsize);
/* Build the src/dst scatterlists */
input[0].iov_base = (void *)vec->assoc;
input[0].iov_len = vec->alen;
input[1].iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext;
input[1].iov_len = enc ? vec->plen : vec->clen;
err = build_cipher_test_sglists(tsgls, cfg, alignmask,
vec->alen + (enc ? vec->plen :
vec->clen),
vec->alen + (enc ? vec->clen :
vec->plen),
input, 2);
if (err) {
pr_err("alg: aead: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return err;
}
/* Do the actual encryption or decryption */
testmgr_poison(req->__ctx, crypto_aead_reqsize(tfm));
aead_request_set_callback(req, req_flags, crypto_req_done, &wait);
aead_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr,
enc ? vec->plen : vec->clen, iv);
aead_request_set_ad(req, vec->alen);
if (cfg->nosimd)
crypto_disable_simd_for_test();
err = enc ? crypto_aead_encrypt(req) : crypto_aead_decrypt(req);
if (cfg->nosimd)
crypto_reenable_simd_for_test();
err = crypto_wait_req(err, &wait);
/* Check that the algorithm didn't overwrite things it shouldn't have */
if (req->cryptlen != (enc ? vec->plen : vec->clen) ||
req->assoclen != vec->alen ||
req->iv != iv ||
req->src != tsgls->src.sgl_ptr ||
req->dst != tsgls->dst.sgl_ptr ||
crypto_aead_reqtfm(req) != tfm ||
req->base.complete != crypto_req_done ||
req->base.flags != req_flags ||
req->base.data != &wait) {
pr_err("alg: aead: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
if (req->cryptlen != (enc ? vec->plen : vec->clen))
pr_err("alg: aead: changed 'req->cryptlen'\n");
if (req->assoclen != vec->alen)
pr_err("alg: aead: changed 'req->assoclen'\n");
if (req->iv != iv)
pr_err("alg: aead: changed 'req->iv'\n");
if (req->src != tsgls->src.sgl_ptr)
pr_err("alg: aead: changed 'req->src'\n");
if (req->dst != tsgls->dst.sgl_ptr)
pr_err("alg: aead: changed 'req->dst'\n");
if (crypto_aead_reqtfm(req) != tfm)
pr_err("alg: aead: changed 'req->base.tfm'\n");
if (req->base.complete != crypto_req_done)
pr_err("alg: aead: changed 'req->base.complete'\n");
if (req->base.flags != req_flags)
pr_err("alg: aead: changed 'req->base.flags'\n");
if (req->base.data != &wait)
pr_err("alg: aead: changed 'req->base.data'\n");
return -EINVAL;
}
if (is_test_sglist_corrupted(&tsgls->src)) {
pr_err("alg: aead: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return -EINVAL;
}
if (tsgls->dst.sgl_ptr != tsgls->src.sgl &&
is_test_sglist_corrupted(&tsgls->dst)) {
pr_err("alg: aead: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return -EINVAL;
}
/* Check for unexpected success or failure, or wrong error code */
if ((err == 0 && vec->novrfy) ||
(err != vec->crypt_error && !(err == -EBADMSG && vec->novrfy))) {
char expected_error[32];
if (vec->novrfy &&
vec->crypt_error != 0 && vec->crypt_error != -EBADMSG)
sprintf(expected_error, "-EBADMSG or %d",
vec->crypt_error);
else if (vec->novrfy)
sprintf(expected_error, "-EBADMSG");
else
sprintf(expected_error, "%d", vec->crypt_error);
if (err) {
pr_err("alg: aead: %s %s failed on test vector %s; expected_error=%s, actual_error=%d, cfg=\"%s\"\n",
driver, op, vec_name, expected_error, err,
cfg->name);
return err;
}
pr_err("alg: aead: %s %s unexpectedly succeeded on test vector %s; expected_error=%s, cfg=\"%s\"\n",
driver, op, vec_name, expected_error, cfg->name);
return -EINVAL;
}
if (err) /* Expectedly failed. */
return 0;
/* Check for the correct output (ciphertext or plaintext) */
err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext,
enc ? vec->clen : vec->plen,
vec->alen,
enc || cfg->inplace_mode == OUT_OF_PLACE);
if (err == -EOVERFLOW) {
pr_err("alg: aead: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return err;
}
if (err) {
pr_err("alg: aead: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return err;
}
return 0;
}
static int test_aead_vec(int enc, const struct aead_testvec *vec,
unsigned int vec_num, struct aead_request *req,
struct cipher_test_sglists *tsgls)
{
char vec_name[16];
unsigned int i;
int err;
if (enc && vec->novrfy)
return 0;
sprintf(vec_name, "%u", vec_num);
for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) {
err = test_aead_vec_cfg(enc, vec, vec_name,
&default_cipher_testvec_configs[i],
req, tsgls);
if (err)
return err;
}
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
if (!noextratests) {
struct rnd_state rng;
struct testvec_config cfg;
char cfgname[TESTVEC_CONFIG_NAMELEN];
init_rnd_state(&rng);
for (i = 0; i < fuzz_iterations; i++) {
generate_random_testvec_config(&rng, &cfg, cfgname,
sizeof(cfgname));
err = test_aead_vec_cfg(enc, vec, vec_name,
&cfg, req, tsgls);
if (err)
return err;
cond_resched();
}
}
#endif
return 0;
}
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
struct aead_extra_tests_ctx {
struct rnd_state rng;
struct aead_request *req;
struct crypto_aead *tfm;
const struct alg_test_desc *test_desc;
struct cipher_test_sglists *tsgls;
unsigned int maxdatasize;
unsigned int maxkeysize;
struct aead_testvec vec;
char vec_name[64];
char cfgname[TESTVEC_CONFIG_NAMELEN];
struct testvec_config cfg;
};
/*
* Make at least one random change to a (ciphertext, AAD) pair. "Ciphertext"
* here means the full ciphertext including the authentication tag. The
* authentication tag (and hence also the ciphertext) is assumed to be nonempty.
*/
static void mutate_aead_message(struct rnd_state *rng,
struct aead_testvec *vec, bool aad_iv,
unsigned int ivsize)
{
const unsigned int aad_tail_size = aad_iv ? ivsize : 0;
const unsigned int authsize = vec->clen - vec->plen;
if (prandom_bool(rng) && vec->alen > aad_tail_size) {
/* Mutate the AAD */
flip_random_bit(rng, (u8 *)vec->assoc,
vec->alen - aad_tail_size);
if (prandom_bool(rng))
return;
}
if (prandom_bool(rng)) {
/* Mutate auth tag (assuming it's at the end of ciphertext) */
flip_random_bit(rng, (u8 *)vec->ctext + vec->plen, authsize);
} else {
/* Mutate any part of the ciphertext */
flip_random_bit(rng, (u8 *)vec->ctext, vec->clen);
}
}
/*
* Minimum authentication tag size in bytes at which we assume that we can
* reliably generate inauthentic messages, i.e. not generate an authentic
* message by chance.
*/
#define MIN_COLLISION_FREE_AUTHSIZE 8
static void generate_aead_message(struct rnd_state *rng,
struct aead_request *req,
const struct aead_test_suite *suite,
struct aead_testvec *vec,
bool prefer_inauthentic)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
const unsigned int ivsize = crypto_aead_ivsize(tfm);
const unsigned int authsize = vec->clen - vec->plen;
const bool inauthentic = (authsize >= MIN_COLLISION_FREE_AUTHSIZE) &&
(prefer_inauthentic ||
prandom_u32_below(rng, 4) == 0);
/* Generate the AAD. */
generate_random_bytes(rng, (u8 *)vec->assoc, vec->alen);
if (suite->aad_iv && vec->alen >= ivsize)
/* Avoid implementation-defined behavior. */
memcpy((u8 *)vec->assoc + vec->alen - ivsize, vec->iv, ivsize);
if (inauthentic && prandom_bool(rng)) {
/* Generate a random ciphertext. */
generate_random_bytes(rng, (u8 *)vec->ctext, vec->clen);
} else {
int i = 0;
struct scatterlist src[2], dst;
u8 iv[MAX_IVLEN];
DECLARE_CRYPTO_WAIT(wait);
/* Generate a random plaintext and encrypt it. */
sg_init_table(src, 2);
if (vec->alen)
sg_set_buf(&src[i++], vec->assoc, vec->alen);
if (vec->plen) {
generate_random_bytes(rng, (u8 *)vec->ptext, vec->plen);
sg_set_buf(&src[i++], vec->ptext, vec->plen);
}
sg_init_one(&dst, vec->ctext, vec->alen + vec->clen);
memcpy(iv, vec->iv, ivsize);
aead_request_set_callback(req, 0, crypto_req_done, &wait);
aead_request_set_crypt(req, src, &dst, vec->plen, iv);
aead_request_set_ad(req, vec->alen);
vec->crypt_error = crypto_wait_req(crypto_aead_encrypt(req),
&wait);
/* If encryption failed, we're done. */
if (vec->crypt_error != 0)
return;
memmove((u8 *)vec->ctext, vec->ctext + vec->alen, vec->clen);
if (!inauthentic)
return;
/*
* Mutate the authentic (ciphertext, AAD) pair to get an
* inauthentic one.
*/
mutate_aead_message(rng, vec, suite->aad_iv, ivsize);
}
vec->novrfy = 1;
if (suite->einval_allowed)
vec->crypt_error = -EINVAL;
}
/*
* Generate an AEAD test vector 'vec' using the implementation specified by
* 'req'. The buffers in 'vec' must already be allocated.
*
* If 'prefer_inauthentic' is true, then this function will generate inauthentic
* test vectors (i.e. vectors with 'vec->novrfy=1') more often.
*/
static void generate_random_aead_testvec(struct rnd_state *rng,
struct aead_request *req,
struct aead_testvec *vec,
const struct aead_test_suite *suite,
unsigned int maxkeysize,
unsigned int maxdatasize,
char *name, size_t max_namelen,
bool prefer_inauthentic)
{
struct crypto_aead *tfm = crypto_aead_reqtfm(req);
const unsigned int ivsize = crypto_aead_ivsize(tfm);
const unsigned int maxauthsize = crypto_aead_maxauthsize(tfm);
unsigned int authsize;
unsigned int total_len;
/* Key: length in [0, maxkeysize], but usually choose maxkeysize */
vec->klen = maxkeysize;
if (prandom_u32_below(rng, 4) == 0)
vec->klen = prandom_u32_below(rng, maxkeysize + 1);
generate_random_bytes(rng, (u8 *)vec->key, vec->klen);
vec->setkey_error = crypto_aead_setkey(tfm, vec->key, vec->klen);
/* IV */
generate_random_bytes(rng, (u8 *)vec->iv, ivsize);
/* Tag length: in [0, maxauthsize], but usually choose maxauthsize */
authsize = maxauthsize;
if (prandom_u32_below(rng, 4) == 0)
authsize = prandom_u32_below(rng, maxauthsize + 1);
if (prefer_inauthentic && authsize < MIN_COLLISION_FREE_AUTHSIZE)
authsize = MIN_COLLISION_FREE_AUTHSIZE;
if (WARN_ON(authsize > maxdatasize))
authsize = maxdatasize;
maxdatasize -= authsize;
vec->setauthsize_error = crypto_aead_setauthsize(tfm, authsize);
/* AAD, plaintext, and ciphertext lengths */
total_len = generate_random_length(rng, maxdatasize);
if (prandom_u32_below(rng, 4) == 0)
vec->alen = 0;
else
vec->alen = generate_random_length(rng, total_len);
vec->plen = total_len - vec->alen;
vec->clen = vec->plen + authsize;
/*
* Generate the AAD, plaintext, and ciphertext. Not applicable if the
* key or the authentication tag size couldn't be set.
*/
vec->novrfy = 0;
vec->crypt_error = 0;
if (vec->setkey_error == 0 && vec->setauthsize_error == 0)
generate_aead_message(rng, req, suite, vec, prefer_inauthentic);
snprintf(name, max_namelen,
"\"random: alen=%u plen=%u authsize=%u klen=%u novrfy=%d\"",
vec->alen, vec->plen, authsize, vec->klen, vec->novrfy);
}
static void try_to_generate_inauthentic_testvec(
struct aead_extra_tests_ctx *ctx)
{
int i;
for (i = 0; i < 10; i++) {
generate_random_aead_testvec(&ctx->rng, ctx->req, &ctx->vec,
&ctx->test_desc->suite.aead,
ctx->maxkeysize, ctx->maxdatasize,
ctx->vec_name,
sizeof(ctx->vec_name), true);
if (ctx->vec.novrfy)
return;
}
}
/*
* Generate inauthentic test vectors (i.e. ciphertext, AAD pairs that aren't the
* result of an encryption with the key) and verify that decryption fails.
*/
static int test_aead_inauthentic_inputs(struct aead_extra_tests_ctx *ctx)
{
unsigned int i;
int err;
for (i = 0; i < fuzz_iterations * 8; i++) {
/*
* Since this part of the tests isn't comparing the
* implementation to another, there's no point in testing any
* test vectors other than inauthentic ones (vec.novrfy=1) here.
*
* If we're having trouble generating such a test vector, e.g.
* if the algorithm keeps rejecting the generated keys, don't
* retry forever; just continue on.
*/
try_to_generate_inauthentic_testvec(ctx);
if (ctx->vec.novrfy) {
generate_random_testvec_config(&ctx->rng, &ctx->cfg,
ctx->cfgname,
sizeof(ctx->cfgname));
err = test_aead_vec_cfg(DECRYPT, &ctx->vec,
ctx->vec_name, &ctx->cfg,
ctx->req, ctx->tsgls);
if (err)
return err;
}
cond_resched();
}
return 0;
}
/*
* Test the AEAD algorithm against the corresponding generic implementation, if
* one is available.
*/
static int test_aead_vs_generic_impl(struct aead_extra_tests_ctx *ctx)
{
struct crypto_aead *tfm = ctx->tfm;
const char *algname = crypto_aead_alg(tfm)->base.cra_name;
const char *driver = crypto_aead_driver_name(tfm);
const char *generic_driver = ctx->test_desc->generic_driver;
char _generic_driver[CRYPTO_MAX_ALG_NAME];
struct crypto_aead *generic_tfm = NULL;
struct aead_request *generic_req = NULL;
unsigned int i;
int err;
if (!generic_driver) { /* Use default naming convention? */
err = build_generic_driver_name(algname, _generic_driver);
if (err)
return err;
generic_driver = _generic_driver;
}
if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */
return 0;
generic_tfm = crypto_alloc_aead(generic_driver, 0, 0);
if (IS_ERR(generic_tfm)) {
err = PTR_ERR(generic_tfm);
if (err == -ENOENT) {
pr_warn("alg: aead: skipping comparison tests for %s because %s is unavailable\n",
driver, generic_driver);
return 0;
}
pr_err("alg: aead: error allocating %s (generic impl of %s): %d\n",
generic_driver, algname, err);
return err;
}
generic_req = aead_request_alloc(generic_tfm, GFP_KERNEL);
if (!generic_req) {
err = -ENOMEM;
goto out;
}
/* Check the algorithm properties for consistency. */
if (crypto_aead_maxauthsize(tfm) !=
crypto_aead_maxauthsize(generic_tfm)) {
pr_err("alg: aead: maxauthsize for %s (%u) doesn't match generic impl (%u)\n",
driver, crypto_aead_maxauthsize(tfm),
crypto_aead_maxauthsize(generic_tfm));
err = -EINVAL;
goto out;
}
if (crypto_aead_ivsize(tfm) != crypto_aead_ivsize(generic_tfm)) {
pr_err("alg: aead: ivsize for %s (%u) doesn't match generic impl (%u)\n",
driver, crypto_aead_ivsize(tfm),
crypto_aead_ivsize(generic_tfm));
err = -EINVAL;
goto out;
}
if (crypto_aead_blocksize(tfm) != crypto_aead_blocksize(generic_tfm)) {
pr_err("alg: aead: blocksize for %s (%u) doesn't match generic impl (%u)\n",
driver, crypto_aead_blocksize(tfm),
crypto_aead_blocksize(generic_tfm));
err = -EINVAL;
goto out;
}
/*
* Now generate test vectors using the generic implementation, and test
* the other implementation against them.
*/
for (i = 0; i < fuzz_iterations * 8; i++) {
generate_random_aead_testvec(&ctx->rng, generic_req, &ctx->vec,
&ctx->test_desc->suite.aead,
ctx->maxkeysize, ctx->maxdatasize,
ctx->vec_name,
sizeof(ctx->vec_name), false);
generate_random_testvec_config(&ctx->rng, &ctx->cfg,
ctx->cfgname,
sizeof(ctx->cfgname));
if (!ctx->vec.novrfy) {
err = test_aead_vec_cfg(ENCRYPT, &ctx->vec,
ctx->vec_name, &ctx->cfg,
ctx->req, ctx->tsgls);
if (err)
goto out;
}
if (ctx->vec.crypt_error == 0 || ctx->vec.novrfy) {
err = test_aead_vec_cfg(DECRYPT, &ctx->vec,
ctx->vec_name, &ctx->cfg,
ctx->req, ctx->tsgls);
if (err)
goto out;
}
cond_resched();
}
err = 0;
out:
crypto_free_aead(generic_tfm);
aead_request_free(generic_req);
return err;
}
static int test_aead_extra(const struct alg_test_desc *test_desc,
struct aead_request *req,
struct cipher_test_sglists *tsgls)
{
struct aead_extra_tests_ctx *ctx;
unsigned int i;
int err;
if (noextratests)
return 0;
ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
if (!ctx)
return -ENOMEM;
init_rnd_state(&ctx->rng);
ctx->req = req;
ctx->tfm = crypto_aead_reqtfm(req);
ctx->test_desc = test_desc;
ctx->tsgls = tsgls;
ctx->maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN;
ctx->maxkeysize = 0;
for (i = 0; i < test_desc->suite.aead.count; i++)
ctx->maxkeysize = max_t(unsigned int, ctx->maxkeysize,
test_desc->suite.aead.vecs[i].klen);
ctx->vec.key = kmalloc(ctx->maxkeysize, GFP_KERNEL);
ctx->vec.iv = kmalloc(crypto_aead_ivsize(ctx->tfm), GFP_KERNEL);
ctx->vec.assoc = kmalloc(ctx->maxdatasize, GFP_KERNEL);
ctx->vec.ptext = kmalloc(ctx->maxdatasize, GFP_KERNEL);
ctx->vec.ctext = kmalloc(ctx->maxdatasize, GFP_KERNEL);
if (!ctx->vec.key || !ctx->vec.iv || !ctx->vec.assoc ||
!ctx->vec.ptext || !ctx->vec.ctext) {
err = -ENOMEM;
goto out;
}
err = test_aead_vs_generic_impl(ctx);
if (err)
goto out;
err = test_aead_inauthentic_inputs(ctx);
out:
kfree(ctx->vec.key);
kfree(ctx->vec.iv);
kfree(ctx->vec.assoc);
kfree(ctx->vec.ptext);
kfree(ctx->vec.ctext);
kfree(ctx);
return err;
}
#else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */
static int test_aead_extra(const struct alg_test_desc *test_desc,
struct aead_request *req,
struct cipher_test_sglists *tsgls)
{
return 0;
}
#endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */
static int test_aead(int enc, const struct aead_test_suite *suite,
struct aead_request *req,
struct cipher_test_sglists *tsgls)
{
unsigned int i;
int err;
for (i = 0; i < suite->count; i++) {
err = test_aead_vec(enc, &suite->vecs[i], i, req, tsgls);
if (err)
return err;
cond_resched();
}
return 0;
}
static int alg_test_aead(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
const struct aead_test_suite *suite = &desc->suite.aead;
struct crypto_aead *tfm;
struct aead_request *req = NULL;
struct cipher_test_sglists *tsgls = NULL;
int err;
if (suite->count <= 0) {
pr_err("alg: aead: empty test suite for %s\n", driver);
return -EINVAL;
}
tfm = crypto_alloc_aead(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: aead: failed to allocate transform for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
driver = crypto_aead_driver_name(tfm);
req = aead_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: aead: failed to allocate request for %s\n",
driver);
err = -ENOMEM;
goto out;
}
tsgls = alloc_cipher_test_sglists();
if (!tsgls) {
pr_err("alg: aead: failed to allocate test buffers for %s\n",
driver);
err = -ENOMEM;
goto out;
}
err = test_aead(ENCRYPT, suite, req, tsgls);
if (err)
goto out;
err = test_aead(DECRYPT, suite, req, tsgls);
if (err)
goto out;
err = test_aead_extra(desc, req, tsgls);
out:
free_cipher_test_sglists(tsgls);
aead_request_free(req);
crypto_free_aead(tfm);
return err;
}
static int test_cipher(struct crypto_cipher *tfm, int enc,
const struct cipher_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_cipher_tfm(tfm));
unsigned int i, j, k;
char *q;
const char *e;
const char *input, *result;
void *data;
char *xbuf[XBUFSIZE];
int ret = -ENOMEM;
if (testmgr_alloc_buf(xbuf))
goto out_nobuf;
if (enc == ENCRYPT)
e = "encryption";
else
e = "decryption";
j = 0;
for (i = 0; i < tcount; i++) {
if (fips_enabled && template[i].fips_skip)
continue;
input = enc ? template[i].ptext : template[i].ctext;
result = enc ? template[i].ctext : template[i].ptext;
j++;
ret = -EINVAL;
if (WARN_ON(template[i].len > PAGE_SIZE))
goto out;
data = xbuf[0];
memcpy(data, input, template[i].len);
crypto_cipher_clear_flags(tfm, ~0);
if (template[i].wk)
crypto_cipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
ret = crypto_cipher_setkey(tfm, template[i].key,
template[i].klen);
if (ret) {
if (ret == template[i].setkey_error)
continue;
pr_err("alg: cipher: %s setkey failed on test vector %u; expected_error=%d, actual_error=%d, flags=%#x\n",
algo, j, template[i].setkey_error, ret,
crypto_cipher_get_flags(tfm));
goto out;
}
if (template[i].setkey_error) {
pr_err("alg: cipher: %s setkey unexpectedly succeeded on test vector %u; expected_error=%d\n",
algo, j, template[i].setkey_error);
ret = -EINVAL;
goto out;
}
for (k = 0; k < template[i].len;
k += crypto_cipher_blocksize(tfm)) {
if (enc)
crypto_cipher_encrypt_one(tfm, data + k,
data + k);
else
crypto_cipher_decrypt_one(tfm, data + k,
data + k);
}
q = data;
if (memcmp(q, result, template[i].len)) {
printk(KERN_ERR "alg: cipher: Test %d failed "
"on %s for %s\n", j, e, algo);
hexdump(q, template[i].len);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
testmgr_free_buf(xbuf);
out_nobuf:
return ret;
}
static int test_skcipher_vec_cfg(int enc, const struct cipher_testvec *vec,
const char *vec_name,
const struct testvec_config *cfg,
struct skcipher_request *req,
struct cipher_test_sglists *tsgls)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const unsigned int alignmask = crypto_skcipher_alignmask(tfm);
const unsigned int ivsize = crypto_skcipher_ivsize(tfm);
const char *driver = crypto_skcipher_driver_name(tfm);
const u32 req_flags = CRYPTO_TFM_REQ_MAY_BACKLOG | cfg->req_flags;
const char *op = enc ? "encryption" : "decryption";
DECLARE_CRYPTO_WAIT(wait);
u8 _iv[3 * (MAX_ALGAPI_ALIGNMASK + 1) + MAX_IVLEN];
u8 *iv = PTR_ALIGN(&_iv[0], 2 * (MAX_ALGAPI_ALIGNMASK + 1)) +
cfg->iv_offset +
(cfg->iv_offset_relative_to_alignmask ? alignmask : 0);
struct kvec input;
int err;
/* Set the key */
if (vec->wk)
crypto_skcipher_set_flags(tfm, CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
else
crypto_skcipher_clear_flags(tfm,
CRYPTO_TFM_REQ_FORBID_WEAK_KEYS);
err = do_setkey(crypto_skcipher_setkey, tfm, vec->key, vec->klen,
cfg, alignmask);
if (err) {
if (err == vec->setkey_error)
return 0;
pr_err("alg: skcipher: %s setkey failed on test vector %s; expected_error=%d, actual_error=%d, flags=%#x\n",
driver, vec_name, vec->setkey_error, err,
crypto_skcipher_get_flags(tfm));
return err;
}
if (vec->setkey_error) {
pr_err("alg: skcipher: %s setkey unexpectedly succeeded on test vector %s; expected_error=%d\n",
driver, vec_name, vec->setkey_error);
return -EINVAL;
}
/* The IV must be copied to a buffer, as the algorithm may modify it */
if (ivsize) {
if (WARN_ON(ivsize > MAX_IVLEN))
return -EINVAL;
if (vec->generates_iv && !enc)
memcpy(iv, vec->iv_out, ivsize);
else if (vec->iv)
memcpy(iv, vec->iv, ivsize);
else
memset(iv, 0, ivsize);
} else {
if (vec->generates_iv) {
pr_err("alg: skcipher: %s has ivsize=0 but test vector %s generates IV!\n",
driver, vec_name);
return -EINVAL;
}
iv = NULL;
}
/* Build the src/dst scatterlists */
input.iov_base = enc ? (void *)vec->ptext : (void *)vec->ctext;
input.iov_len = vec->len;
err = build_cipher_test_sglists(tsgls, cfg, alignmask,
vec->len, vec->len, &input, 1);
if (err) {
pr_err("alg: skcipher: %s %s: error preparing scatterlists for test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return err;
}
/* Do the actual encryption or decryption */
testmgr_poison(req->__ctx, crypto_skcipher_reqsize(tfm));
skcipher_request_set_callback(req, req_flags, crypto_req_done, &wait);
skcipher_request_set_crypt(req, tsgls->src.sgl_ptr, tsgls->dst.sgl_ptr,
vec->len, iv);
if (cfg->nosimd)
crypto_disable_simd_for_test();
err = enc ? crypto_skcipher_encrypt(req) : crypto_skcipher_decrypt(req);
if (cfg->nosimd)
crypto_reenable_simd_for_test();
err = crypto_wait_req(err, &wait);
/* Check that the algorithm didn't overwrite things it shouldn't have */
if (req->cryptlen != vec->len ||
req->iv != iv ||
req->src != tsgls->src.sgl_ptr ||
req->dst != tsgls->dst.sgl_ptr ||
crypto_skcipher_reqtfm(req) != tfm ||
req->base.complete != crypto_req_done ||
req->base.flags != req_flags ||
req->base.data != &wait) {
pr_err("alg: skcipher: %s %s corrupted request struct on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
if (req->cryptlen != vec->len)
pr_err("alg: skcipher: changed 'req->cryptlen'\n");
if (req->iv != iv)
pr_err("alg: skcipher: changed 'req->iv'\n");
if (req->src != tsgls->src.sgl_ptr)
pr_err("alg: skcipher: changed 'req->src'\n");
if (req->dst != tsgls->dst.sgl_ptr)
pr_err("alg: skcipher: changed 'req->dst'\n");
if (crypto_skcipher_reqtfm(req) != tfm)
pr_err("alg: skcipher: changed 'req->base.tfm'\n");
if (req->base.complete != crypto_req_done)
pr_err("alg: skcipher: changed 'req->base.complete'\n");
if (req->base.flags != req_flags)
pr_err("alg: skcipher: changed 'req->base.flags'\n");
if (req->base.data != &wait)
pr_err("alg: skcipher: changed 'req->base.data'\n");
return -EINVAL;
}
if (is_test_sglist_corrupted(&tsgls->src)) {
pr_err("alg: skcipher: %s %s corrupted src sgl on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return -EINVAL;
}
if (tsgls->dst.sgl_ptr != tsgls->src.sgl &&
is_test_sglist_corrupted(&tsgls->dst)) {
pr_err("alg: skcipher: %s %s corrupted dst sgl on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return -EINVAL;
}
/* Check for success or failure */
if (err) {
if (err == vec->crypt_error)
return 0;
pr_err("alg: skcipher: %s %s failed on test vector %s; expected_error=%d, actual_error=%d, cfg=\"%s\"\n",
driver, op, vec_name, vec->crypt_error, err, cfg->name);
return err;
}
if (vec->crypt_error) {
pr_err("alg: skcipher: %s %s unexpectedly succeeded on test vector %s; expected_error=%d, cfg=\"%s\"\n",
driver, op, vec_name, vec->crypt_error, cfg->name);
return -EINVAL;
}
/* Check for the correct output (ciphertext or plaintext) */
err = verify_correct_output(&tsgls->dst, enc ? vec->ctext : vec->ptext,
vec->len, 0, true);
if (err == -EOVERFLOW) {
pr_err("alg: skcipher: %s %s overran dst buffer on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return err;
}
if (err) {
pr_err("alg: skcipher: %s %s test failed (wrong result) on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
return err;
}
/* If applicable, check that the algorithm generated the correct IV */
if (vec->iv_out && memcmp(iv, vec->iv_out, ivsize) != 0) {
pr_err("alg: skcipher: %s %s test failed (wrong output IV) on test vector %s, cfg=\"%s\"\n",
driver, op, vec_name, cfg->name);
hexdump(iv, ivsize);
return -EINVAL;
}
return 0;
}
static int test_skcipher_vec(int enc, const struct cipher_testvec *vec,
unsigned int vec_num,
struct skcipher_request *req,
struct cipher_test_sglists *tsgls)
{
char vec_name[16];
unsigned int i;
int err;
if (fips_enabled && vec->fips_skip)
return 0;
sprintf(vec_name, "%u", vec_num);
for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++) {
err = test_skcipher_vec_cfg(enc, vec, vec_name,
&default_cipher_testvec_configs[i],
req, tsgls);
if (err)
return err;
}
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
if (!noextratests) {
struct rnd_state rng;
struct testvec_config cfg;
char cfgname[TESTVEC_CONFIG_NAMELEN];
init_rnd_state(&rng);
for (i = 0; i < fuzz_iterations; i++) {
generate_random_testvec_config(&rng, &cfg, cfgname,
sizeof(cfgname));
err = test_skcipher_vec_cfg(enc, vec, vec_name,
&cfg, req, tsgls);
if (err)
return err;
cond_resched();
}
}
#endif
return 0;
}
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
/*
* Generate a symmetric cipher test vector from the given implementation.
* Assumes the buffers in 'vec' were already allocated.
*/
static void generate_random_cipher_testvec(struct rnd_state *rng,
struct skcipher_request *req,
struct cipher_testvec *vec,
unsigned int maxdatasize,
char *name, size_t max_namelen)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm);
const unsigned int ivsize = crypto_skcipher_ivsize(tfm);
struct scatterlist src, dst;
u8 iv[MAX_IVLEN];
DECLARE_CRYPTO_WAIT(wait);
/* Key: length in [0, maxkeysize], but usually choose maxkeysize */
vec->klen = maxkeysize;
if (prandom_u32_below(rng, 4) == 0)
vec->klen = prandom_u32_below(rng, maxkeysize + 1);
generate_random_bytes(rng, (u8 *)vec->key, vec->klen);
vec->setkey_error = crypto_skcipher_setkey(tfm, vec->key, vec->klen);
/* IV */
generate_random_bytes(rng, (u8 *)vec->iv, ivsize);
/* Plaintext */
vec->len = generate_random_length(rng, maxdatasize);
generate_random_bytes(rng, (u8 *)vec->ptext, vec->len);
/* If the key couldn't be set, no need to continue to encrypt. */
if (vec->setkey_error)
goto done;
/* Ciphertext */
sg_init_one(&src, vec->ptext, vec->len);
sg_init_one(&dst, vec->ctext, vec->len);
memcpy(iv, vec->iv, ivsize);
skcipher_request_set_callback(req, 0, crypto_req_done, &wait);
skcipher_request_set_crypt(req, &src, &dst, vec->len, iv);
vec->crypt_error = crypto_wait_req(crypto_skcipher_encrypt(req), &wait);
if (vec->crypt_error != 0) {
/*
* The only acceptable error here is for an invalid length, so
* skcipher decryption should fail with the same error too.
* We'll test for this. But to keep the API usage well-defined,
* explicitly initialize the ciphertext buffer too.
*/
memset((u8 *)vec->ctext, 0, vec->len);
}
done:
snprintf(name, max_namelen, "\"random: len=%u klen=%u\"",
vec->len, vec->klen);
}
/*
* Test the skcipher algorithm represented by @req against the corresponding
* generic implementation, if one is available.
*/
static int test_skcipher_vs_generic_impl(const char *generic_driver,
struct skcipher_request *req,
struct cipher_test_sglists *tsgls)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
const unsigned int maxkeysize = crypto_skcipher_max_keysize(tfm);
const unsigned int ivsize = crypto_skcipher_ivsize(tfm);
const unsigned int blocksize = crypto_skcipher_blocksize(tfm);
const unsigned int maxdatasize = (2 * PAGE_SIZE) - TESTMGR_POISON_LEN;
const char *algname = crypto_skcipher_alg(tfm)->base.cra_name;
const char *driver = crypto_skcipher_driver_name(tfm);
struct rnd_state rng;
char _generic_driver[CRYPTO_MAX_ALG_NAME];
struct crypto_skcipher *generic_tfm = NULL;
struct skcipher_request *generic_req = NULL;
unsigned int i;
struct cipher_testvec vec = { 0 };
char vec_name[64];
struct testvec_config *cfg;
char cfgname[TESTVEC_CONFIG_NAMELEN];
int err;
if (noextratests)
return 0;
/* Keywrap isn't supported here yet as it handles its IV differently. */
if (strncmp(algname, "kw(", 3) == 0)
return 0;
init_rnd_state(&rng);
if (!generic_driver) { /* Use default naming convention? */
err = build_generic_driver_name(algname, _generic_driver);
if (err)
return err;
generic_driver = _generic_driver;
}
if (strcmp(generic_driver, driver) == 0) /* Already the generic impl? */
return 0;
generic_tfm = crypto_alloc_skcipher(generic_driver, 0, 0);
if (IS_ERR(generic_tfm)) {
err = PTR_ERR(generic_tfm);
if (err == -ENOENT) {
pr_warn("alg: skcipher: skipping comparison tests for %s because %s is unavailable\n",
driver, generic_driver);
return 0;
}
pr_err("alg: skcipher: error allocating %s (generic impl of %s): %d\n",
generic_driver, algname, err);
return err;
}
cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
if (!cfg) {
err = -ENOMEM;
goto out;
}
generic_req = skcipher_request_alloc(generic_tfm, GFP_KERNEL);
if (!generic_req) {
err = -ENOMEM;
goto out;
}
/* Check the algorithm properties for consistency. */
if (crypto_skcipher_min_keysize(tfm) !=
crypto_skcipher_min_keysize(generic_tfm)) {
pr_err("alg: skcipher: min keysize for %s (%u) doesn't match generic impl (%u)\n",
driver, crypto_skcipher_min_keysize(tfm),
crypto_skcipher_min_keysize(generic_tfm));
err = -EINVAL;
goto out;
}
if (maxkeysize != crypto_skcipher_max_keysize(generic_tfm)) {
pr_err("alg: skcipher: max keysize for %s (%u) doesn't match generic impl (%u)\n",
driver, maxkeysize,
crypto_skcipher_max_keysize(generic_tfm));
err = -EINVAL;
goto out;
}
if (ivsize != crypto_skcipher_ivsize(generic_tfm)) {
pr_err("alg: skcipher: ivsize for %s (%u) doesn't match generic impl (%u)\n",
driver, ivsize, crypto_skcipher_ivsize(generic_tfm));
err = -EINVAL;
goto out;
}
if (blocksize != crypto_skcipher_blocksize(generic_tfm)) {
pr_err("alg: skcipher: blocksize for %s (%u) doesn't match generic impl (%u)\n",
driver, blocksize,
crypto_skcipher_blocksize(generic_tfm));
err = -EINVAL;
goto out;
}
/*
* Now generate test vectors using the generic implementation, and test
* the other implementation against them.
*/
vec.key = kmalloc(maxkeysize, GFP_KERNEL);
vec.iv = kmalloc(ivsize, GFP_KERNEL);
vec.ptext = kmalloc(maxdatasize, GFP_KERNEL);
vec.ctext = kmalloc(maxdatasize, GFP_KERNEL);
if (!vec.key || !vec.iv || !vec.ptext || !vec.ctext) {
err = -ENOMEM;
goto out;
}
for (i = 0; i < fuzz_iterations * 8; i++) {
generate_random_cipher_testvec(&rng, generic_req, &vec,
maxdatasize,
vec_name, sizeof(vec_name));
generate_random_testvec_config(&rng, cfg, cfgname,
sizeof(cfgname));
err = test_skcipher_vec_cfg(ENCRYPT, &vec, vec_name,
cfg, req, tsgls);
if (err)
goto out;
err = test_skcipher_vec_cfg(DECRYPT, &vec, vec_name,
cfg, req, tsgls);
if (err)
goto out;
cond_resched();
}
err = 0;
out:
kfree(cfg);
kfree(vec.key);
kfree(vec.iv);
kfree(vec.ptext);
kfree(vec.ctext);
crypto_free_skcipher(generic_tfm);
skcipher_request_free(generic_req);
return err;
}
#else /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */
static int test_skcipher_vs_generic_impl(const char *generic_driver,
struct skcipher_request *req,
struct cipher_test_sglists *tsgls)
{
return 0;
}
#endif /* !CONFIG_CRYPTO_MANAGER_EXTRA_TESTS */
static int test_skcipher(int enc, const struct cipher_test_suite *suite,
struct skcipher_request *req,
struct cipher_test_sglists *tsgls)
{
unsigned int i;
int err;
for (i = 0; i < suite->count; i++) {
err = test_skcipher_vec(enc, &suite->vecs[i], i, req, tsgls);
if (err)
return err;
cond_resched();
}
return 0;
}
static int alg_test_skcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
const struct cipher_test_suite *suite = &desc->suite.cipher;
struct crypto_skcipher *tfm;
struct skcipher_request *req = NULL;
struct cipher_test_sglists *tsgls = NULL;
int err;
if (suite->count <= 0) {
pr_err("alg: skcipher: empty test suite for %s\n", driver);
return -EINVAL;
}
tfm = crypto_alloc_skcipher(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: skcipher: failed to allocate transform for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
driver = crypto_skcipher_driver_name(tfm);
req = skcipher_request_alloc(tfm, GFP_KERNEL);
if (!req) {
pr_err("alg: skcipher: failed to allocate request for %s\n",
driver);
err = -ENOMEM;
goto out;
}
tsgls = alloc_cipher_test_sglists();
if (!tsgls) {
pr_err("alg: skcipher: failed to allocate test buffers for %s\n",
driver);
err = -ENOMEM;
goto out;
}
err = test_skcipher(ENCRYPT, suite, req, tsgls);
if (err)
goto out;
err = test_skcipher(DECRYPT, suite, req, tsgls);
if (err)
goto out;
err = test_skcipher_vs_generic_impl(desc->generic_driver, req, tsgls);
out:
free_cipher_test_sglists(tsgls);
skcipher_request_free(req);
crypto_free_skcipher(tfm);
return err;
}
static int test_comp(struct crypto_comp *tfm,
const struct comp_testvec *ctemplate,
const struct comp_testvec *dtemplate,
int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_comp_tfm(tfm));
char *output, *decomp_output;
unsigned int i;
int ret;
output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!output)
return -ENOMEM;
decomp_output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!decomp_output) {
kfree(output);
return -ENOMEM;
}
for (i = 0; i < ctcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(output, 0, COMP_BUF_SIZE);
memset(decomp_output, 0, COMP_BUF_SIZE);
ilen = ctemplate[i].inlen;
ret = crypto_comp_compress(tfm, ctemplate[i].input,
ilen, output, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: compression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
ilen = dlen;
dlen = COMP_BUF_SIZE;
ret = crypto_comp_decompress(tfm, output,
ilen, decomp_output, &dlen);
if (ret) {
pr_err("alg: comp: compression failed: decompress: on test %d for %s failed: ret=%d\n",
i + 1, algo, -ret);
goto out;
}
if (dlen != ctemplate[i].inlen) {
printk(KERN_ERR "alg: comp: Compression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(decomp_output, ctemplate[i].input,
ctemplate[i].inlen)) {
pr_err("alg: comp: compression failed: output differs: on test %d for %s\n",
i + 1, algo);
hexdump(decomp_output, dlen);
ret = -EINVAL;
goto out;
}
}
for (i = 0; i < dtcount; i++) {
int ilen;
unsigned int dlen = COMP_BUF_SIZE;
memset(decomp_output, 0, COMP_BUF_SIZE);
ilen = dtemplate[i].inlen;
ret = crypto_comp_decompress(tfm, dtemplate[i].input,
ilen, decomp_output, &dlen);
if (ret) {
printk(KERN_ERR "alg: comp: decompression failed "
"on test %d for %s: ret=%d\n", i + 1, algo,
-ret);
goto out;
}
if (dlen != dtemplate[i].outlen) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s: output len = %d\n", i + 1, algo,
dlen);
ret = -EINVAL;
goto out;
}
if (memcmp(decomp_output, dtemplate[i].output, dlen)) {
printk(KERN_ERR "alg: comp: Decompression test %d "
"failed for %s\n", i + 1, algo);
hexdump(decomp_output, dlen);
ret = -EINVAL;
goto out;
}
}
ret = 0;
out:
kfree(decomp_output);
kfree(output);
return ret;
}
static int test_acomp(struct crypto_acomp *tfm,
const struct comp_testvec *ctemplate,
const struct comp_testvec *dtemplate,
int ctcount, int dtcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_acomp_tfm(tfm));
unsigned int i;
char *output, *decomp_out;
int ret;
struct scatterlist src, dst;
struct acomp_req *req;
struct crypto_wait wait;
output = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!output)
return -ENOMEM;
decomp_out = kmalloc(COMP_BUF_SIZE, GFP_KERNEL);
if (!decomp_out) {
kfree(output);
return -ENOMEM;
}
for (i = 0; i < ctcount; i++) {
unsigned int dlen = COMP_BUF_SIZE;
int ilen = ctemplate[i].inlen;
void *input_vec;
input_vec = kmemdup(ctemplate[i].input, ilen, GFP_KERNEL);
if (!input_vec) {
ret = -ENOMEM;
goto out;
}
memset(output, 0, dlen);
crypto_init_wait(&wait);
sg_init_one(&src, input_vec, ilen);
sg_init_one(&dst, output, dlen);
req = acomp_request_alloc(tfm);
if (!req) {
pr_err("alg: acomp: request alloc failed for %s\n",
algo);
kfree(input_vec);
ret = -ENOMEM;
goto out;
}
acomp_request_set_params(req, &src, &dst, ilen, dlen);
acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_acomp_compress(req), &wait);
if (ret) {
pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
ilen = req->dlen;
dlen = COMP_BUF_SIZE;
sg_init_one(&src, output, ilen);
sg_init_one(&dst, decomp_out, dlen);
crypto_init_wait(&wait);
acomp_request_set_params(req, &src, &dst, ilen, dlen);
ret = crypto_wait_req(crypto_acomp_decompress(req), &wait);
if (ret) {
pr_err("alg: acomp: compression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (req->dlen != ctemplate[i].inlen) {
pr_err("alg: acomp: Compression test %d failed for %s: output len = %d\n",
i + 1, algo, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (memcmp(input_vec, decomp_out, req->dlen)) {
pr_err("alg: acomp: Compression test %d failed for %s\n",
i + 1, algo);
hexdump(output, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
crypto_init_wait(&wait);
sg_init_one(&src, input_vec, ilen);
acomp_request_set_params(req, &src, NULL, ilen, 0);
ret = crypto_wait_req(crypto_acomp_compress(req), &wait);
if (ret) {
pr_err("alg: acomp: compression failed on NULL dst buffer test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
#endif
kfree(input_vec);
acomp_request_free(req);
}
for (i = 0; i < dtcount; i++) {
unsigned int dlen = COMP_BUF_SIZE;
int ilen = dtemplate[i].inlen;
void *input_vec;
input_vec = kmemdup(dtemplate[i].input, ilen, GFP_KERNEL);
if (!input_vec) {
ret = -ENOMEM;
goto out;
}
memset(output, 0, dlen);
crypto_init_wait(&wait);
sg_init_one(&src, input_vec, ilen);
sg_init_one(&dst, output, dlen);
req = acomp_request_alloc(tfm);
if (!req) {
pr_err("alg: acomp: request alloc failed for %s\n",
algo);
kfree(input_vec);
ret = -ENOMEM;
goto out;
}
acomp_request_set_params(req, &src, &dst, ilen, dlen);
acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
ret = crypto_wait_req(crypto_acomp_decompress(req), &wait);
if (ret) {
pr_err("alg: acomp: decompression failed on test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (req->dlen != dtemplate[i].outlen) {
pr_err("alg: acomp: Decompression test %d failed for %s: output len = %d\n",
i + 1, algo, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
if (memcmp(output, dtemplate[i].output, req->dlen)) {
pr_err("alg: acomp: Decompression test %d failed for %s\n",
i + 1, algo);
hexdump(output, req->dlen);
ret = -EINVAL;
kfree(input_vec);
acomp_request_free(req);
goto out;
}
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
crypto_init_wait(&wait);
acomp_request_set_params(req, &src, NULL, ilen, 0);
ret = crypto_wait_req(crypto_acomp_decompress(req), &wait);
if (ret) {
pr_err("alg: acomp: decompression failed on NULL dst buffer test %d for %s: ret=%d\n",
i + 1, algo, -ret);
kfree(input_vec);
acomp_request_free(req);
goto out;
}
#endif
kfree(input_vec);
acomp_request_free(req);
}
ret = 0;
out:
kfree(decomp_out);
kfree(output);
return ret;
}
static int test_cprng(struct crypto_rng *tfm,
const struct cprng_testvec *template,
unsigned int tcount)
{
const char *algo = crypto_tfm_alg_driver_name(crypto_rng_tfm(tfm));
int err = 0, i, j, seedsize;
u8 *seed;
char result[32];
seedsize = crypto_rng_seedsize(tfm);
seed = kmalloc(seedsize, GFP_KERNEL);
if (!seed) {
printk(KERN_ERR "alg: cprng: Failed to allocate seed space "
"for %s\n", algo);
return -ENOMEM;
}
for (i = 0; i < tcount; i++) {
memset(result, 0, 32);
memcpy(seed, template[i].v, template[i].vlen);
memcpy(seed + template[i].vlen, template[i].key,
template[i].klen);
memcpy(seed + template[i].vlen + template[i].klen,
template[i].dt, template[i].dtlen);
err = crypto_rng_reset(tfm, seed, seedsize);
if (err) {
printk(KERN_ERR "alg: cprng: Failed to reset rng "
"for %s\n", algo);
goto out;
}
for (j = 0; j < template[i].loops; j++) {
err = crypto_rng_get_bytes(tfm, result,
template[i].rlen);
if (err < 0) {
printk(KERN_ERR "alg: cprng: Failed to obtain "
"the correct amount of random data for "
"%s (requested %d)\n", algo,
template[i].rlen);
goto out;
}
}
err = memcmp(result, template[i].result,
template[i].rlen);
if (err) {
printk(KERN_ERR "alg: cprng: Test %d failed for %s\n",
i, algo);
hexdump(result, template[i].rlen);
err = -EINVAL;
goto out;
}
}
out:
kfree(seed);
return err;
}
static int alg_test_cipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
const struct cipher_test_suite *suite = &desc->suite.cipher;
struct crypto_cipher *tfm;
int err;
tfm = crypto_alloc_cipher(driver, type, mask);
if (IS_ERR(tfm)) {
printk(KERN_ERR "alg: cipher: Failed to load transform for "
"%s: %ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
err = test_cipher(tfm, ENCRYPT, suite->vecs, suite->count);
if (!err)
err = test_cipher(tfm, DECRYPT, suite->vecs, suite->count);
crypto_free_cipher(tfm);
return err;
}
static int alg_test_comp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_comp *comp;
struct crypto_acomp *acomp;
int err;
u32 algo_type = type & CRYPTO_ALG_TYPE_ACOMPRESS_MASK;
if (algo_type == CRYPTO_ALG_TYPE_ACOMPRESS) {
acomp = crypto_alloc_acomp(driver, type, mask);
if (IS_ERR(acomp)) {
pr_err("alg: acomp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(acomp));
return PTR_ERR(acomp);
}
err = test_acomp(acomp, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_acomp(acomp);
} else {
comp = crypto_alloc_comp(driver, type, mask);
if (IS_ERR(comp)) {
pr_err("alg: comp: Failed to load transform for %s: %ld\n",
driver, PTR_ERR(comp));
return PTR_ERR(comp);
}
err = test_comp(comp, desc->suite.comp.comp.vecs,
desc->suite.comp.decomp.vecs,
desc->suite.comp.comp.count,
desc->suite.comp.decomp.count);
crypto_free_comp(comp);
}
return err;
}
static int alg_test_crc32c(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_shash *tfm;
__le32 val;
int err;
err = alg_test_hash(desc, driver, type, mask);
if (err)
return err;
tfm = crypto_alloc_shash(driver, type, mask);
if (IS_ERR(tfm)) {
if (PTR_ERR(tfm) == -ENOENT) {
/*
* This crc32c implementation is only available through
* ahash API, not the shash API, so the remaining part
* of the test is not applicable to it.
*/
return 0;
}
printk(KERN_ERR "alg: crc32c: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
driver = crypto_shash_driver_name(tfm);
do {
SHASH_DESC_ON_STACK(shash, tfm);
u32 *ctx = (u32 *)shash_desc_ctx(shash);
shash->tfm = tfm;
*ctx = 420553207;
err = crypto_shash_final(shash, (u8 *)&val);
if (err) {
printk(KERN_ERR "alg: crc32c: Operation failed for "
"%s: %d\n", driver, err);
break;
}
if (val != cpu_to_le32(~420553207)) {
pr_err("alg: crc32c: Test failed for %s: %u\n",
driver, le32_to_cpu(val));
err = -EINVAL;
}
} while (0);
crypto_free_shash(tfm);
return err;
}
static int alg_test_cprng(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_rng *rng;
int err;
rng = crypto_alloc_rng(driver, type, mask);
if (IS_ERR(rng)) {
printk(KERN_ERR "alg: cprng: Failed to load transform for %s: "
"%ld\n", driver, PTR_ERR(rng));
return PTR_ERR(rng);
}
err = test_cprng(rng, desc->suite.cprng.vecs, desc->suite.cprng.count);
crypto_free_rng(rng);
return err;
}
static int drbg_cavs_test(const struct drbg_testvec *test, int pr,
const char *driver, u32 type, u32 mask)
{
int ret = -EAGAIN;
struct crypto_rng *drng;
struct drbg_test_data test_data;
struct drbg_string addtl, pers, testentropy;
unsigned char *buf = kzalloc(test->expectedlen, GFP_KERNEL);
if (!buf)
return -ENOMEM;
drng = crypto_alloc_rng(driver, type, mask);
if (IS_ERR(drng)) {
printk(KERN_ERR "alg: drbg: could not allocate DRNG handle for "
"%s\n", driver);
kfree_sensitive(buf);
return -ENOMEM;
}
test_data.testentropy = &testentropy;
drbg_string_fill(&testentropy, test->entropy, test->entropylen);
drbg_string_fill(&pers, test->pers, test->perslen);
ret = crypto_drbg_reset_test(drng, &pers, &test_data);
if (ret) {
printk(KERN_ERR "alg: drbg: Failed to reset rng\n");
goto outbuf;
}
drbg_string_fill(&addtl, test->addtla, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entpra, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
drbg_string_fill(&addtl, test->addtlb, test->addtllen);
if (pr) {
drbg_string_fill(&testentropy, test->entprb, test->entprlen);
ret = crypto_drbg_get_bytes_addtl_test(drng,
buf, test->expectedlen, &addtl, &test_data);
} else {
ret = crypto_drbg_get_bytes_addtl(drng,
buf, test->expectedlen, &addtl);
}
if (ret < 0) {
printk(KERN_ERR "alg: drbg: could not obtain random data for "
"driver %s\n", driver);
goto outbuf;
}
ret = memcmp(test->expected, buf, test->expectedlen);
outbuf:
crypto_free_rng(drng);
kfree_sensitive(buf);
return ret;
}
static int alg_test_drbg(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
int err = 0;
int pr = 0;
int i = 0;
const struct drbg_testvec *template = desc->suite.drbg.vecs;
unsigned int tcount = desc->suite.drbg.count;
if (0 == memcmp(driver, "drbg_pr_", 8))
pr = 1;
for (i = 0; i < tcount; i++) {
err = drbg_cavs_test(&template[i], pr, driver, type, mask);
if (err) {
printk(KERN_ERR "alg: drbg: Test %d failed for %s\n",
i, driver);
err = -EINVAL;
break;
}
}
return err;
}
static int do_test_kpp(struct crypto_kpp *tfm, const struct kpp_testvec *vec,
const char *alg)
{
struct kpp_request *req;
void *input_buf = NULL;
void *output_buf = NULL;
void *a_public = NULL;
void *a_ss = NULL;
void *shared_secret = NULL;
struct crypto_wait wait;
unsigned int out_len_max;
int err = -ENOMEM;
struct scatterlist src, dst;
req = kpp_request_alloc(tfm, GFP_KERNEL);
if (!req)
return err;
crypto_init_wait(&wait);
err = crypto_kpp_set_secret(tfm, vec->secret, vec->secret_size);
if (err < 0)
goto free_req;
out_len_max = crypto_kpp_maxsize(tfm);
output_buf = kzalloc(out_len_max, GFP_KERNEL);
if (!output_buf) {
err = -ENOMEM;
goto free_req;
}
/* Use appropriate parameter as base */
kpp_request_set_input(req, NULL, 0);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
/* Compute party A's public key */
err = crypto_wait_req(crypto_kpp_generate_public_key(req), &wait);
if (err) {
pr_err("alg: %s: Party A: generate public key test failed. err %d\n",
alg, err);
goto free_output;
}
if (vec->genkey) {
/* Save party A's public key */
a_public = kmemdup(sg_virt(req->dst), out_len_max, GFP_KERNEL);
if (!a_public) {
err = -ENOMEM;
goto free_output;
}
} else {
/* Verify calculated public key */
if (memcmp(vec->expected_a_public, sg_virt(req->dst),
vec->expected_a_public_size)) {
pr_err("alg: %s: Party A: generate public key test failed. Invalid output\n",
alg);
err = -EINVAL;
goto free_output;
}
}
/* Calculate shared secret key by using counter part (b) public key. */
input_buf = kmemdup(vec->b_public, vec->b_public_size, GFP_KERNEL);
if (!input_buf) {
err = -ENOMEM;
goto free_output;
}
sg_init_one(&src, input_buf, vec->b_public_size);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_input(req, &src, vec->b_public_size);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
err = crypto_wait_req(crypto_kpp_compute_shared_secret(req), &wait);
if (err) {
pr_err("alg: %s: Party A: compute shared secret test failed. err %d\n",
alg, err);
goto free_all;
}
if (vec->genkey) {
/* Save the shared secret obtained by party A */
a_ss = kmemdup(sg_virt(req->dst), vec->expected_ss_size, GFP_KERNEL);
if (!a_ss) {
err = -ENOMEM;
goto free_all;
}
/*
* Calculate party B's shared secret by using party A's
* public key.
*/
err = crypto_kpp_set_secret(tfm, vec->b_secret,
vec->b_secret_size);
if (err < 0)
goto free_all;
sg_init_one(&src, a_public, vec->expected_a_public_size);
sg_init_one(&dst, output_buf, out_len_max);
kpp_request_set_input(req, &src, vec->expected_a_public_size);
kpp_request_set_output(req, &dst, out_len_max);
kpp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
err = crypto_wait_req(crypto_kpp_compute_shared_secret(req),
&wait);
if (err) {
pr_err("alg: %s: Party B: compute shared secret failed. err %d\n",
alg, err);
goto free_all;
}
shared_secret = a_ss;
} else {
shared_secret = (void *)vec->expected_ss;
}
/*
* verify shared secret from which the user will derive
* secret key by executing whatever hash it has chosen
*/
if (memcmp(shared_secret, sg_virt(req->dst),
vec->expected_ss_size)) {
pr_err("alg: %s: compute shared secret test failed. Invalid output\n",
alg);
err = -EINVAL;
}
free_all:
kfree(a_ss);
kfree(input_buf);
free_output:
kfree(a_public);
kfree(output_buf);
free_req:
kpp_request_free(req);
return err;
}
static int test_kpp(struct crypto_kpp *tfm, const char *alg,
const struct kpp_testvec *vecs, unsigned int tcount)
{
int ret, i;
for (i = 0; i < tcount; i++) {
ret = do_test_kpp(tfm, vecs++, alg);
if (ret) {
pr_err("alg: %s: test failed on vector %d, err=%d\n",
alg, i + 1, ret);
return ret;
}
}
return 0;
}
static int alg_test_kpp(const struct alg_test_desc *desc, const char *driver,
u32 type, u32 mask)
{
struct crypto_kpp *tfm;
int err = 0;
tfm = crypto_alloc_kpp(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: kpp: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.kpp.vecs)
err = test_kpp(tfm, desc->alg, desc->suite.kpp.vecs,
desc->suite.kpp.count);
crypto_free_kpp(tfm);
return err;
}
static u8 *test_pack_u32(u8 *dst, u32 val)
{
memcpy(dst, &val, sizeof(val));
return dst + sizeof(val);
}
static int test_akcipher_one(struct crypto_akcipher *tfm,
const struct akcipher_testvec *vecs)
{
char *xbuf[XBUFSIZE];
struct akcipher_request *req;
void *outbuf_enc = NULL;
void *outbuf_dec = NULL;
struct crypto_wait wait;
unsigned int out_len_max, out_len = 0;
int err = -ENOMEM;
struct scatterlist src, dst, src_tab[3];
const char *m, *c;
unsigned int m_size, c_size;
const char *op;
u8 *key, *ptr;
if (testmgr_alloc_buf(xbuf))
return err;
req = akcipher_request_alloc(tfm, GFP_KERNEL);
if (!req)
goto free_xbuf;
crypto_init_wait(&wait);
key = kmalloc(vecs->key_len + sizeof(u32) * 2 + vecs->param_len,
GFP_KERNEL);
if (!key)
goto free_req;
memcpy(key, vecs->key, vecs->key_len);
ptr = key + vecs->key_len;
ptr = test_pack_u32(ptr, vecs->algo);
ptr = test_pack_u32(ptr, vecs->param_len);
memcpy(ptr, vecs->params, vecs->param_len);
if (vecs->public_key_vec)
err = crypto_akcipher_set_pub_key(tfm, key, vecs->key_len);
else
err = crypto_akcipher_set_priv_key(tfm, key, vecs->key_len);
if (err)
goto free_key;
/*
* First run test which do not require a private key, such as
* encrypt or verify.
*/
err = -ENOMEM;
out_len_max = crypto_akcipher_maxsize(tfm);
outbuf_enc = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_enc)
goto free_key;
if (!vecs->siggen_sigver_test) {
m = vecs->m;
m_size = vecs->m_size;
c = vecs->c;
c_size = vecs->c_size;
op = "encrypt";
} else {
/* Swap args so we could keep plaintext (digest)
* in vecs->m, and cooked signature in vecs->c.
*/
m = vecs->c; /* signature */
m_size = vecs->c_size;
c = vecs->m; /* digest */
c_size = vecs->m_size;
op = "verify";
}
err = -E2BIG;
if (WARN_ON(m_size > PAGE_SIZE))
goto free_all;
memcpy(xbuf[0], m, m_size);
sg_init_table(src_tab, 3);
sg_set_buf(&src_tab[0], xbuf[0], 8);
sg_set_buf(&src_tab[1], xbuf[0] + 8, m_size - 8);
if (vecs->siggen_sigver_test) {
if (WARN_ON(c_size > PAGE_SIZE))
goto free_all;
memcpy(xbuf[1], c, c_size);
sg_set_buf(&src_tab[2], xbuf[1], c_size);
akcipher_request_set_crypt(req, src_tab, NULL, m_size, c_size);
} else {
sg_init_one(&dst, outbuf_enc, out_len_max);
akcipher_request_set_crypt(req, src_tab, &dst, m_size,
out_len_max);
}
akcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
crypto_req_done, &wait);
err = crypto_wait_req(vecs->siggen_sigver_test ?
/* Run asymmetric signature verification */
crypto_akcipher_verify(req) :
/* Run asymmetric encrypt */
crypto_akcipher_encrypt(req), &wait);
if (err) {
pr_err("alg: akcipher: %s test failed. err %d\n", op, err);
goto free_all;
}
if (!vecs->siggen_sigver_test && c) {
if (req->dst_len != c_size) {
pr_err("alg: akcipher: %s test failed. Invalid output len\n",
op);
err = -EINVAL;
goto free_all;
}
/* verify that encrypted message is equal to expected */
if (memcmp(c, outbuf_enc, c_size) != 0) {
pr_err("alg: akcipher: %s test failed. Invalid output\n",
op);
hexdump(outbuf_enc, c_size);
err = -EINVAL;
goto free_all;
}
}
/*
* Don't invoke (decrypt or sign) test which require a private key
* for vectors with only a public key.
*/
if (vecs->public_key_vec) {
err = 0;
goto free_all;
}
outbuf_dec = kzalloc(out_len_max, GFP_KERNEL);
if (!outbuf_dec) {
err = -ENOMEM;
goto free_all;
}
if (!vecs->siggen_sigver_test && !c) {
c = outbuf_enc;
c_size = req->dst_len;
}
err = -E2BIG;
op = vecs->siggen_sigver_test ? "sign" : "decrypt";
if (WARN_ON(c_size > PAGE_SIZE))
goto free_all;
memcpy(xbuf[0], c, c_size);
sg_init_one(&src, xbuf[0], c_size);
sg_init_one(&dst, outbuf_dec, out_len_max);
crypto_init_wait(&wait);
akcipher_request_set_crypt(req, &src, &dst, c_size, out_len_max);
err = crypto_wait_req(vecs->siggen_sigver_test ?
/* Run asymmetric signature generation */
crypto_akcipher_sign(req) :
/* Run asymmetric decrypt */
crypto_akcipher_decrypt(req), &wait);
if (err) {
pr_err("alg: akcipher: %s test failed. err %d\n", op, err);
goto free_all;
}
out_len = req->dst_len;
if (out_len < m_size) {
pr_err("alg: akcipher: %s test failed. Invalid output len %u\n",
op, out_len);
err = -EINVAL;
goto free_all;
}
/* verify that decrypted message is equal to the original msg */
if (memchr_inv(outbuf_dec, 0, out_len - m_size) ||
memcmp(m, outbuf_dec + out_len - m_size, m_size)) {
pr_err("alg: akcipher: %s test failed. Invalid output\n", op);
hexdump(outbuf_dec, out_len);
err = -EINVAL;
}
free_all:
kfree(outbuf_dec);
kfree(outbuf_enc);
free_key:
kfree(key);
free_req:
akcipher_request_free(req);
free_xbuf:
testmgr_free_buf(xbuf);
return err;
}
static int test_akcipher(struct crypto_akcipher *tfm, const char *alg,
const struct akcipher_testvec *vecs,
unsigned int tcount)
{
const char *algo =
crypto_tfm_alg_driver_name(crypto_akcipher_tfm(tfm));
int ret, i;
for (i = 0; i < tcount; i++) {
ret = test_akcipher_one(tfm, vecs++);
if (!ret)
continue;
pr_err("alg: akcipher: test %d failed for %s, err=%d\n",
i + 1, algo, ret);
return ret;
}
return 0;
}
static int alg_test_akcipher(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
struct crypto_akcipher *tfm;
int err = 0;
tfm = crypto_alloc_akcipher(driver, type, mask);
if (IS_ERR(tfm)) {
pr_err("alg: akcipher: Failed to load tfm for %s: %ld\n",
driver, PTR_ERR(tfm));
return PTR_ERR(tfm);
}
if (desc->suite.akcipher.vecs)
err = test_akcipher(tfm, desc->alg, desc->suite.akcipher.vecs,
desc->suite.akcipher.count);
crypto_free_akcipher(tfm);
return err;
}
static int alg_test_null(const struct alg_test_desc *desc,
const char *driver, u32 type, u32 mask)
{
return 0;
}
#define ____VECS(tv) .vecs = tv, .count = ARRAY_SIZE(tv)
#define __VECS(tv) { ____VECS(tv) }
/* Please keep this list sorted by algorithm name. */
static const struct alg_test_desc alg_test_descs[] = {
{
.alg = "adiantum(xchacha12,aes)",
.generic_driver = "adiantum(xchacha12-generic,aes-generic,nhpoly1305-generic)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(adiantum_xchacha12_aes_tv_template)
},
}, {
.alg = "adiantum(xchacha20,aes)",
.generic_driver = "adiantum(xchacha20-generic,aes-generic,nhpoly1305-generic)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(adiantum_xchacha20_aes_tv_template)
},
}, {
.alg = "aegis128",
.test = alg_test_aead,
.suite = {
.aead = __VECS(aegis128_tv_template)
}
}, {
.alg = "ansi_cprng",
.test = alg_test_cprng,
.suite = {
.cprng = __VECS(ansi_cprng_aes_tv_template)
}
}, {
.alg = "authenc(hmac(md5),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_md5_ecb_cipher_null_tv_template)
}
}, {
.alg = "authenc(hmac(sha1),cbc(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = __VECS(hmac_sha1_aes_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha1),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha1_des_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha1),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha1_des3_ede_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha1),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha1),ecb(cipher_null))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha1_ecb_cipher_null_tv_temp)
}
}, {
.alg = "authenc(hmac(sha1),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha224),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha224_des_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha224),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha224_des3_ede_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha256),cbc(aes))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = __VECS(hmac_sha256_aes_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha256),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha256_des_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha256),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha256_des3_ede_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha256),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha256),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha384),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha384_des_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha384),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha384_des3_ede_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha384),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha384),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha512),cbc(aes))",
.fips_allowed = 1,
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha512_aes_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha512),cbc(des))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha512_des_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha512),cbc(des3_ede))",
.test = alg_test_aead,
.suite = {
.aead = __VECS(hmac_sha512_des3_ede_cbc_tv_temp)
}
}, {
.alg = "authenc(hmac(sha512),ctr(aes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "authenc(hmac(sha512),rfc3686(ctr(aes)))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "blake2b-160",
.test = alg_test_hash,
.fips_allowed = 0,
.suite = {
.hash = __VECS(blake2b_160_tv_template)
}
}, {
.alg = "blake2b-256",
.test = alg_test_hash,
.fips_allowed = 0,
.suite = {
.hash = __VECS(blake2b_256_tv_template)
}
}, {
.alg = "blake2b-384",
.test = alg_test_hash,
.fips_allowed = 0,
.suite = {
.hash = __VECS(blake2b_384_tv_template)
}
}, {
.alg = "blake2b-512",
.test = alg_test_hash,
.fips_allowed = 0,
.suite = {
.hash = __VECS(blake2b_512_tv_template)
}
}, {
.alg = "cbc(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_cbc_tv_template)
},
}, {
.alg = "cbc(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(anubis_cbc_tv_template)
},
}, {
.alg = "cbc(aria)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aria_cbc_tv_template)
},
}, {
.alg = "cbc(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(bf_cbc_tv_template)
},
}, {
.alg = "cbc(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_cbc_tv_template)
},
}, {
.alg = "cbc(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast5_cbc_tv_template)
},
}, {
.alg = "cbc(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_cbc_tv_template)
},
}, {
.alg = "cbc(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des_cbc_tv_template)
},
}, {
.alg = "cbc(des3_ede)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des3_ede_cbc_tv_template)
},
}, {
/* Same as cbc(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "cbc(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
/* Same as cbc(sm4) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "cbc(psm4)",
.test = alg_test_null,
}, {
.alg = "cbc(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_cbc_tv_template)
},
}, {
.alg = "cbc(sm4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_cbc_tv_template)
}
}, {
.alg = "cbc(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_cbc_tv_template)
},
}, {
#if IS_ENABLED(CONFIG_CRYPTO_PAES_S390)
.alg = "cbc-paes-s390",
.fips_allowed = 1,
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aes_cbc_tv_template)
}
}, {
#endif
.alg = "cbcmac(aes)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_cbcmac_tv_template)
}
}, {
.alg = "cbcmac(sm4)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(sm4_cbcmac_tv_template)
}
}, {
.alg = "ccm(aes)",
.generic_driver = "ccm_base(ctr(aes-generic),cbcmac(aes-generic))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
____VECS(aes_ccm_tv_template),
.einval_allowed = 1,
}
}
}, {
.alg = "ccm(sm4)",
.generic_driver = "ccm_base(ctr(sm4-generic),cbcmac(sm4-generic))",
.test = alg_test_aead,
.suite = {
.aead = {
____VECS(sm4_ccm_tv_template),
.einval_allowed = 1,
}
}
}, {
.alg = "cfb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_cfb_tv_template)
},
}, {
.alg = "cfb(aria)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aria_cfb_tv_template)
},
}, {
.alg = "cfb(sm4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_cfb_tv_template)
}
}, {
.alg = "chacha20",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(chacha20_tv_template)
},
}, {
.alg = "cmac(aes)",
.fips_allowed = 1,
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_cmac128_tv_template)
}
}, {
.alg = "cmac(des3_ede)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(des3_ede_cmac64_tv_template)
}
}, {
.alg = "cmac(sm4)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(sm4_cmac128_tv_template)
}
}, {
.alg = "compress_null",
.test = alg_test_null,
}, {
.alg = "crc32",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(crc32_tv_template)
}
}, {
.alg = "crc32c",
.test = alg_test_crc32c,
.fips_allowed = 1,
.suite = {
.hash = __VECS(crc32c_tv_template)
}
}, {
.alg = "crc64-rocksoft",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(crc64_rocksoft_tv_template)
}
}, {
.alg = "crct10dif",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(crct10dif_tv_template)
}
}, {
.alg = "ctr(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_ctr_tv_template)
}
}, {
.alg = "ctr(aria)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aria_ctr_tv_template)
}
}, {
.alg = "ctr(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(bf_ctr_tv_template)
}
}, {
.alg = "ctr(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_ctr_tv_template)
}
}, {
.alg = "ctr(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast5_ctr_tv_template)
}
}, {
.alg = "ctr(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_ctr_tv_template)
}
}, {
.alg = "ctr(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des_ctr_tv_template)
}
}, {
.alg = "ctr(des3_ede)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des3_ede_ctr_tv_template)
}
}, {
/* Same as ctr(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ctr(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
/* Same as ctr(sm4) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ctr(psm4)",
.test = alg_test_null,
}, {
.alg = "ctr(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_ctr_tv_template)
}
}, {
.alg = "ctr(sm4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_ctr_tv_template)
}
}, {
.alg = "ctr(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_ctr_tv_template)
}
}, {
#if IS_ENABLED(CONFIG_CRYPTO_PAES_S390)
.alg = "ctr-paes-s390",
.fips_allowed = 1,
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aes_ctr_tv_template)
}
}, {
#endif
.alg = "cts(cbc(aes))",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(cts_mode_tv_template)
}
}, {
/* Same as cts(cbc((aes)) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "cts(cbc(paes))",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "cts(cbc(sm4))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_cts_tv_template)
}
}, {
.alg = "curve25519",
.test = alg_test_kpp,
.suite = {
.kpp = __VECS(curve25519_tv_template)
}
}, {
.alg = "deflate",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(deflate_comp_tv_template),
.decomp = __VECS(deflate_decomp_tv_template)
}
}
}, {
.alg = "dh",
.test = alg_test_kpp,
.suite = {
.kpp = __VECS(dh_tv_template)
}
}, {
.alg = "digest_null",
.test = alg_test_null,
}, {
.alg = "drbg_nopr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_ctr_aes128_tv_template)
}
}, {
.alg = "drbg_nopr_ctr_aes192",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_ctr_aes192_tv_template)
}
}, {
.alg = "drbg_nopr_ctr_aes256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_ctr_aes256_tv_template)
}
}, {
/*
* There is no need to specifically test the DRBG with every
* backend cipher -- covered by drbg_nopr_hmac_sha256 test
*/
.alg = "drbg_nopr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_hmac_sha256_tv_template)
}
}, {
/* covered by drbg_nopr_hmac_sha256 test */
.alg = "drbg_nopr_hmac_sha384",
.test = alg_test_null,
}, {
.alg = "drbg_nopr_hmac_sha512",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_hmac_sha512_tv_template)
}
}, {
.alg = "drbg_nopr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_nopr_sha256_tv_template)
}
}, {
/* covered by drbg_nopr_sha256 test */
.alg = "drbg_nopr_sha384",
.test = alg_test_null,
}, {
.alg = "drbg_nopr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes128",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_pr_ctr_aes128_tv_template)
}
}, {
/* covered by drbg_pr_ctr_aes128 test */
.alg = "drbg_pr_ctr_aes192",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_ctr_aes256",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_pr_hmac_sha256_tv_template)
}
}, {
/* covered by drbg_pr_hmac_sha256 test */
.alg = "drbg_pr_hmac_sha384",
.test = alg_test_null,
}, {
.alg = "drbg_pr_hmac_sha512",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "drbg_pr_sha1",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha256",
.test = alg_test_drbg,
.fips_allowed = 1,
.suite = {
.drbg = __VECS(drbg_pr_sha256_tv_template)
}
}, {
/* covered by drbg_pr_sha256 test */
.alg = "drbg_pr_sha384",
.test = alg_test_null,
}, {
.alg = "drbg_pr_sha512",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "ecb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_tv_template)
}
}, {
.alg = "ecb(anubis)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(anubis_tv_template)
}
}, {
.alg = "ecb(arc4)",
.generic_driver = "ecb(arc4)-generic",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(arc4_tv_template)
}
}, {
.alg = "ecb(aria)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aria_tv_template)
}
}, {
.alg = "ecb(blowfish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(bf_tv_template)
}
}, {
.alg = "ecb(camellia)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_tv_template)
}
}, {
.alg = "ecb(cast5)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast5_tv_template)
}
}, {
.alg = "ecb(cast6)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_tv_template)
}
}, {
.alg = "ecb(cipher_null)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ecb(des)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des_tv_template)
}
}, {
.alg = "ecb(des3_ede)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(des3_ede_tv_template)
}
}, {
.alg = "ecb(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = {
.vecs = fcrypt_pcbc_tv_template,
.count = 1
}
}
}, {
.alg = "ecb(khazad)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(khazad_tv_template)
}
}, {
/* Same as ecb(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ecb(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ecb(seed)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(seed_tv_template)
}
}, {
.alg = "ecb(serpent)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_tv_template)
}
}, {
.alg = "ecb(sm4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_tv_template)
}
}, {
.alg = "ecb(tea)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tea_tv_template)
}
}, {
.alg = "ecb(twofish)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_tv_template)
}
}, {
.alg = "ecb(xeta)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xeta_tv_template)
}
}, {
.alg = "ecb(xtea)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xtea_tv_template)
}
}, {
#if IS_ENABLED(CONFIG_CRYPTO_PAES_S390)
.alg = "ecb-paes-s390",
.fips_allowed = 1,
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aes_tv_template)
}
}, {
#endif
.alg = "ecdh-nist-p192",
.test = alg_test_kpp,
.suite = {
.kpp = __VECS(ecdh_p192_tv_template)
}
}, {
.alg = "ecdh-nist-p256",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(ecdh_p256_tv_template)
}
}, {
.alg = "ecdh-nist-p384",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(ecdh_p384_tv_template)
}
}, {
.alg = "ecdsa-nist-p192",
.test = alg_test_akcipher,
.suite = {
.akcipher = __VECS(ecdsa_nist_p192_tv_template)
}
}, {
.alg = "ecdsa-nist-p256",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = __VECS(ecdsa_nist_p256_tv_template)
}
}, {
.alg = "ecdsa-nist-p384",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = __VECS(ecdsa_nist_p384_tv_template)
}
}, {
.alg = "ecrdsa",
.test = alg_test_akcipher,
.suite = {
.akcipher = __VECS(ecrdsa_tv_template)
}
}, {
.alg = "essiv(authenc(hmac(sha256),cbc(aes)),sha256)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = __VECS(essiv_hmac_sha256_aes_cbc_tv_temp)
}
}, {
.alg = "essiv(cbc(aes),sha256)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(essiv_aes_cbc_tv_template)
}
}, {
#if IS_ENABLED(CONFIG_CRYPTO_DH_RFC7919_GROUPS)
.alg = "ffdhe2048(dh)",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(ffdhe2048_dh_tv_template)
}
}, {
.alg = "ffdhe3072(dh)",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(ffdhe3072_dh_tv_template)
}
}, {
.alg = "ffdhe4096(dh)",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(ffdhe4096_dh_tv_template)
}
}, {
.alg = "ffdhe6144(dh)",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(ffdhe6144_dh_tv_template)
}
}, {
.alg = "ffdhe8192(dh)",
.test = alg_test_kpp,
.fips_allowed = 1,
.suite = {
.kpp = __VECS(ffdhe8192_dh_tv_template)
}
}, {
#endif /* CONFIG_CRYPTO_DH_RFC7919_GROUPS */
.alg = "gcm(aes)",
.generic_driver = "gcm_base(ctr(aes-generic),ghash-generic)",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = __VECS(aes_gcm_tv_template)
}
}, {
.alg = "gcm(aria)",
.generic_driver = "gcm_base(ctr(aria-generic),ghash-generic)",
.test = alg_test_aead,
.suite = {
.aead = __VECS(aria_gcm_tv_template)
}
}, {
.alg = "gcm(sm4)",
.generic_driver = "gcm_base(ctr(sm4-generic),ghash-generic)",
.test = alg_test_aead,
.suite = {
.aead = __VECS(sm4_gcm_tv_template)
}
}, {
.alg = "ghash",
.test = alg_test_hash,
.suite = {
.hash = __VECS(ghash_tv_template)
}
}, {
.alg = "hctr2(aes)",
.generic_driver =
"hctr2_base(xctr(aes-generic),polyval-generic)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aes_hctr2_tv_template)
}
}, {
.alg = "hmac(md5)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_md5_tv_template)
}
}, {
.alg = "hmac(rmd160)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_rmd160_tv_template)
}
}, {
.alg = "hmac(sha1)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha1_tv_template)
}
}, {
.alg = "hmac(sha224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha224_tv_template)
}
}, {
.alg = "hmac(sha256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha256_tv_template)
}
}, {
.alg = "hmac(sha3-224)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_224_tv_template)
}
}, {
.alg = "hmac(sha3-256)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_256_tv_template)
}
}, {
.alg = "hmac(sha3-384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_384_tv_template)
}
}, {
.alg = "hmac(sha3-512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha3_512_tv_template)
}
}, {
.alg = "hmac(sha384)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha384_tv_template)
}
}, {
.alg = "hmac(sha512)",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(hmac_sha512_tv_template)
}
}, {
.alg = "hmac(sm3)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_sm3_tv_template)
}
}, {
.alg = "hmac(streebog256)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_streebog256_tv_template)
}
}, {
.alg = "hmac(streebog512)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(hmac_streebog512_tv_template)
}
}, {
.alg = "jitterentropy_rng",
.fips_allowed = 1,
.test = alg_test_null,
}, {
.alg = "kw(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_kw_tv_template)
}
}, {
.alg = "lrw(aes)",
.generic_driver = "lrw(ecb(aes-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aes_lrw_tv_template)
}
}, {
.alg = "lrw(camellia)",
.generic_driver = "lrw(ecb(camellia-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_lrw_tv_template)
}
}, {
.alg = "lrw(cast6)",
.generic_driver = "lrw(ecb(cast6-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_lrw_tv_template)
}
}, {
.alg = "lrw(serpent)",
.generic_driver = "lrw(ecb(serpent-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_lrw_tv_template)
}
}, {
.alg = "lrw(twofish)",
.generic_driver = "lrw(ecb(twofish-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_lrw_tv_template)
}
}, {
.alg = "lz4",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lz4_comp_tv_template),
.decomp = __VECS(lz4_decomp_tv_template)
}
}
}, {
.alg = "lz4hc",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lz4hc_comp_tv_template),
.decomp = __VECS(lz4hc_decomp_tv_template)
}
}
}, {
.alg = "lzo",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lzo_comp_tv_template),
.decomp = __VECS(lzo_decomp_tv_template)
}
}
}, {
.alg = "lzo-rle",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(lzorle_comp_tv_template),
.decomp = __VECS(lzorle_decomp_tv_template)
}
}
}, {
.alg = "md4",
.test = alg_test_hash,
.suite = {
.hash = __VECS(md4_tv_template)
}
}, {
.alg = "md5",
.test = alg_test_hash,
.suite = {
.hash = __VECS(md5_tv_template)
}
}, {
.alg = "michael_mic",
.test = alg_test_hash,
.suite = {
.hash = __VECS(michael_mic_tv_template)
}
}, {
.alg = "nhpoly1305",
.test = alg_test_hash,
.suite = {
.hash = __VECS(nhpoly1305_tv_template)
}
}, {
.alg = "ofb(aes)",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_ofb_tv_template)
}
}, {
/* Same as ofb(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "ofb(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "ofb(sm4)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_ofb_tv_template)
}
}, {
.alg = "pcbc(fcrypt)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(fcrypt_pcbc_tv_template)
}
}, {
.alg = "pkcs1pad(rsa,sha224)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "pkcs1pad(rsa,sha256)",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = __VECS(pkcs1pad_rsa_tv_template)
}
}, {
.alg = "pkcs1pad(rsa,sha384)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "pkcs1pad(rsa,sha512)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "poly1305",
.test = alg_test_hash,
.suite = {
.hash = __VECS(poly1305_tv_template)
}
}, {
.alg = "polyval",
.test = alg_test_hash,
.suite = {
.hash = __VECS(polyval_tv_template)
}
}, {
.alg = "rfc3686(ctr(aes))",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_ctr_rfc3686_tv_template)
}
}, {
.alg = "rfc3686(ctr(sm4))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_ctr_rfc3686_tv_template)
}
}, {
.alg = "rfc4106(gcm(aes))",
.generic_driver = "rfc4106(gcm_base(ctr(aes-generic),ghash-generic))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
____VECS(aes_gcm_rfc4106_tv_template),
.einval_allowed = 1,
.aad_iv = 1,
}
}
}, {
.alg = "rfc4309(ccm(aes))",
.generic_driver = "rfc4309(ccm_base(ctr(aes-generic),cbcmac(aes-generic)))",
.test = alg_test_aead,
.fips_allowed = 1,
.suite = {
.aead = {
____VECS(aes_ccm_rfc4309_tv_template),
.einval_allowed = 1,
.aad_iv = 1,
}
}
}, {
.alg = "rfc4543(gcm(aes))",
.generic_driver = "rfc4543(gcm_base(ctr(aes-generic),ghash-generic))",
.test = alg_test_aead,
.suite = {
.aead = {
____VECS(aes_gcm_rfc4543_tv_template),
.einval_allowed = 1,
.aad_iv = 1,
}
}
}, {
.alg = "rfc7539(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = __VECS(rfc7539_tv_template)
}
}, {
.alg = "rfc7539esp(chacha20,poly1305)",
.test = alg_test_aead,
.suite = {
.aead = {
____VECS(rfc7539esp_tv_template),
.einval_allowed = 1,
.aad_iv = 1,
}
}
}, {
.alg = "rmd160",
.test = alg_test_hash,
.suite = {
.hash = __VECS(rmd160_tv_template)
}
}, {
.alg = "rsa",
.test = alg_test_akcipher,
.fips_allowed = 1,
.suite = {
.akcipher = __VECS(rsa_tv_template)
}
}, {
.alg = "sha1",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha1_tv_template)
}
}, {
.alg = "sha224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha224_tv_template)
}
}, {
.alg = "sha256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha256_tv_template)
}
}, {
.alg = "sha3-224",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_224_tv_template)
}
}, {
.alg = "sha3-256",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_256_tv_template)
}
}, {
.alg = "sha3-384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_384_tv_template)
}
}, {
.alg = "sha3-512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha3_512_tv_template)
}
}, {
.alg = "sha384",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha384_tv_template)
}
}, {
.alg = "sha512",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(sha512_tv_template)
}
}, {
.alg = "sm2",
.test = alg_test_akcipher,
.suite = {
.akcipher = __VECS(sm2_tv_template)
}
}, {
.alg = "sm3",
.test = alg_test_hash,
.suite = {
.hash = __VECS(sm3_tv_template)
}
}, {
.alg = "streebog256",
.test = alg_test_hash,
.suite = {
.hash = __VECS(streebog256_tv_template)
}
}, {
.alg = "streebog512",
.test = alg_test_hash,
.suite = {
.hash = __VECS(streebog512_tv_template)
}
}, {
.alg = "vmac64(aes)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(vmac64_aes_tv_template)
}
}, {
.alg = "wp256",
.test = alg_test_hash,
.suite = {
.hash = __VECS(wp256_tv_template)
}
}, {
.alg = "wp384",
.test = alg_test_hash,
.suite = {
.hash = __VECS(wp384_tv_template)
}
}, {
.alg = "wp512",
.test = alg_test_hash,
.suite = {
.hash = __VECS(wp512_tv_template)
}
}, {
.alg = "xcbc(aes)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(aes_xcbc128_tv_template)
}
}, {
.alg = "xcbc(sm4)",
.test = alg_test_hash,
.suite = {
.hash = __VECS(sm4_xcbc128_tv_template)
}
}, {
.alg = "xchacha12",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xchacha12_tv_template)
},
}, {
.alg = "xchacha20",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(xchacha20_tv_template)
},
}, {
.alg = "xctr(aes)",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aes_xctr_tv_template)
}
}, {
.alg = "xts(aes)",
.generic_driver = "xts(ecb(aes-generic))",
.test = alg_test_skcipher,
.fips_allowed = 1,
.suite = {
.cipher = __VECS(aes_xts_tv_template)
}
}, {
.alg = "xts(camellia)",
.generic_driver = "xts(ecb(camellia-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(camellia_xts_tv_template)
}
}, {
.alg = "xts(cast6)",
.generic_driver = "xts(ecb(cast6-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(cast6_xts_tv_template)
}
}, {
/* Same as xts(aes) except the key is stored in
* hardware secure memory which we reference by index
*/
.alg = "xts(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "xts(serpent)",
.generic_driver = "xts(ecb(serpent-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(serpent_xts_tv_template)
}
}, {
.alg = "xts(sm4)",
.generic_driver = "xts(ecb(sm4-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(sm4_xts_tv_template)
}
}, {
.alg = "xts(twofish)",
.generic_driver = "xts(ecb(twofish-generic))",
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(tf_xts_tv_template)
}
}, {
#if IS_ENABLED(CONFIG_CRYPTO_PAES_S390)
.alg = "xts-paes-s390",
.fips_allowed = 1,
.test = alg_test_skcipher,
.suite = {
.cipher = __VECS(aes_xts_tv_template)
}
}, {
#endif
.alg = "xts4096(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "xts512(paes)",
.test = alg_test_null,
.fips_allowed = 1,
}, {
.alg = "xxhash64",
.test = alg_test_hash,
.fips_allowed = 1,
.suite = {
.hash = __VECS(xxhash64_tv_template)
}
}, {
.alg = "zlib-deflate",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(zlib_deflate_comp_tv_template),
.decomp = __VECS(zlib_deflate_decomp_tv_template)
}
}
}, {
.alg = "zstd",
.test = alg_test_comp,
.fips_allowed = 1,
.suite = {
.comp = {
.comp = __VECS(zstd_comp_tv_template),
.decomp = __VECS(zstd_decomp_tv_template)
}
}
}
};
static void alg_check_test_descs_order(void)
{
int i;
for (i = 1; i < ARRAY_SIZE(alg_test_descs); i++) {
int diff = strcmp(alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
if (WARN_ON(diff > 0)) {
pr_warn("testmgr: alg_test_descs entries in wrong order: '%s' before '%s'\n",
alg_test_descs[i - 1].alg,
alg_test_descs[i].alg);
}
if (WARN_ON(diff == 0)) {
pr_warn("testmgr: duplicate alg_test_descs entry: '%s'\n",
alg_test_descs[i].alg);
}
}
}
static void alg_check_testvec_configs(void)
{
int i;
for (i = 0; i < ARRAY_SIZE(default_cipher_testvec_configs); i++)
WARN_ON(!valid_testvec_config(
&default_cipher_testvec_configs[i]));
for (i = 0; i < ARRAY_SIZE(default_hash_testvec_configs); i++)
WARN_ON(!valid_testvec_config(
&default_hash_testvec_configs[i]));
}
static void testmgr_onetime_init(void)
{
alg_check_test_descs_order();
alg_check_testvec_configs();
#ifdef CONFIG_CRYPTO_MANAGER_EXTRA_TESTS
pr_warn("alg: extra crypto tests enabled. This is intended for developer use only.\n");
#endif
}
static int alg_find_test(const char *alg)
{
int start = 0;
int end = ARRAY_SIZE(alg_test_descs);
while (start < end) {
int i = (start + end) / 2;
int diff = strcmp(alg_test_descs[i].alg, alg);
if (diff > 0) {
end = i;
continue;
}
if (diff < 0) {
start = i + 1;
continue;
}
return i;
}
return -1;
}
static int alg_fips_disabled(const char *driver, const char *alg)
{
pr_info("alg: %s (%s) is disabled due to FIPS\n", alg, driver);
return -ECANCELED;
}
int alg_test(const char *driver, const char *alg, u32 type, u32 mask)
{
int i;
int j;
int rc;
if (!fips_enabled && notests) {
printk_once(KERN_INFO "alg: self-tests disabled\n");
return 0;
}
DO_ONCE(testmgr_onetime_init);
if ((type & CRYPTO_ALG_TYPE_MASK) == CRYPTO_ALG_TYPE_CIPHER) {
char nalg[CRYPTO_MAX_ALG_NAME];
if (snprintf(nalg, sizeof(nalg), "ecb(%s)", alg) >=
sizeof(nalg))
return -ENAMETOOLONG;
i = alg_find_test(nalg);
if (i < 0)
goto notest;
if (fips_enabled && !alg_test_descs[i].fips_allowed)
goto non_fips_alg;
rc = alg_test_cipher(alg_test_descs + i, driver, type, mask);
goto test_done;
}
i = alg_find_test(alg);
j = alg_find_test(driver);
if (i < 0 && j < 0)
goto notest;
if (fips_enabled) {
if (j >= 0 && !alg_test_descs[j].fips_allowed)
return -EINVAL;
if (i >= 0 && !alg_test_descs[i].fips_allowed)
goto non_fips_alg;
}
rc = 0;
if (i >= 0)
rc |= alg_test_descs[i].test(alg_test_descs + i, driver,
type, mask);
if (j >= 0 && j != i)
rc |= alg_test_descs[j].test(alg_test_descs + j, driver,
type, mask);
test_done:
if (rc) {
if (fips_enabled || panic_on_fail) {
fips_fail_notify();
panic("alg: self-tests for %s (%s) failed in %s mode!\n",
driver, alg,
fips_enabled ? "fips" : "panic_on_fail");
}
pr_warn("alg: self-tests for %s using %s failed (rc=%d)",
alg, driver, rc);
WARN(rc != -ENOENT,
"alg: self-tests for %s using %s failed (rc=%d)",
alg, driver, rc);
} else {
if (fips_enabled)
pr_info("alg: self-tests for %s (%s) passed\n",
driver, alg);
}
return rc;
notest:
printk(KERN_INFO "alg: No test for %s (%s)\n", alg, driver);
if (type & CRYPTO_ALG_FIPS_INTERNAL)
return alg_fips_disabled(driver, alg);
return 0;
non_fips_alg:
return alg_fips_disabled(driver, alg);
}
#endif /* CONFIG_CRYPTO_MANAGER_DISABLE_TESTS */
EXPORT_SYMBOL_GPL(alg_test);