linux-stable/security/security.c
Linus Torvalds 7b47a9e7c8 Merge branch 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
Pull vfs mount infrastructure updates from Al Viro:
 "The rest of core infrastructure; no new syscalls in that pile, but the
  old parts are switched to new infrastructure. At that point
  conversions of individual filesystems can happen independently; some
  are done here (afs, cgroup, procfs, etc.), there's also a large series
  outside of that pile dealing with NFS (quite a bit of option-parsing
  stuff is getting used there - it's one of the most convoluted
  filesystems in terms of mount-related logics), but NFS bits are the
  next cycle fodder.

  It got seriously simplified since the last cycle; documentation is
  probably the weakest bit at the moment - I considered dropping the
  commit introducing Documentation/filesystems/mount_api.txt (cutting
  the size increase by quarter ;-), but decided that it would be better
  to fix it up after -rc1 instead.

  That pile allows to do followup work in independent branches, which
  should make life much easier for the next cycle. fs/super.c size
  increase is unpleasant; there's a followup series that allows to
  shrink it considerably, but I decided to leave that until the next
  cycle"

* 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs: (41 commits)
  afs: Use fs_context to pass parameters over automount
  afs: Add fs_context support
  vfs: Add some logging to the core users of the fs_context log
  vfs: Implement logging through fs_context
  vfs: Provide documentation for new mount API
  vfs: Remove kern_mount_data()
  hugetlbfs: Convert to fs_context
  cpuset: Use fs_context
  kernfs, sysfs, cgroup, intel_rdt: Support fs_context
  cgroup: store a reference to cgroup_ns into cgroup_fs_context
  cgroup1_get_tree(): separate "get cgroup_root to use" into a separate helper
  cgroup_do_mount(): massage calling conventions
  cgroup: stash cgroup_root reference into cgroup_fs_context
  cgroup2: switch to option-by-option parsing
  cgroup1: switch to option-by-option parsing
  cgroup: take options parsing into ->parse_monolithic()
  cgroup: fold cgroup1_mount() into cgroup1_get_tree()
  cgroup: start switching to fs_context
  ipc: Convert mqueue fs to fs_context
  proc: Add fs_context support to procfs
  ...
2019-03-12 14:08:19 -07:00

2351 lines
58 KiB
C

/*
* Security plug functions
*
* Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
* Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
* Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
* Copyright (C) 2016 Mellanox Technologies
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#define pr_fmt(fmt) "LSM: " fmt
#include <linux/bpf.h>
#include <linux/capability.h>
#include <linux/dcache.h>
#include <linux/export.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/lsm_hooks.h>
#include <linux/integrity.h>
#include <linux/ima.h>
#include <linux/evm.h>
#include <linux/fsnotify.h>
#include <linux/mman.h>
#include <linux/mount.h>
#include <linux/personality.h>
#include <linux/backing-dev.h>
#include <linux/string.h>
#include <linux/msg.h>
#include <net/flow.h>
#define MAX_LSM_EVM_XATTR 2
/* How many LSMs were built into the kernel? */
#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
struct security_hook_heads security_hook_heads __lsm_ro_after_init;
static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
static struct kmem_cache *lsm_file_cache;
static struct kmem_cache *lsm_inode_cache;
char *lsm_names;
static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
/* Boot-time LSM user choice */
static __initdata const char *chosen_lsm_order;
static __initdata const char *chosen_major_lsm;
static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
/* Ordered list of LSMs to initialize. */
static __initdata struct lsm_info **ordered_lsms;
static __initdata struct lsm_info *exclusive;
static __initdata bool debug;
#define init_debug(...) \
do { \
if (debug) \
pr_info(__VA_ARGS__); \
} while (0)
static bool __init is_enabled(struct lsm_info *lsm)
{
if (!lsm->enabled)
return false;
return *lsm->enabled;
}
/* Mark an LSM's enabled flag. */
static int lsm_enabled_true __initdata = 1;
static int lsm_enabled_false __initdata = 0;
static void __init set_enabled(struct lsm_info *lsm, bool enabled)
{
/*
* When an LSM hasn't configured an enable variable, we can use
* a hard-coded location for storing the default enabled state.
*/
if (!lsm->enabled) {
if (enabled)
lsm->enabled = &lsm_enabled_true;
else
lsm->enabled = &lsm_enabled_false;
} else if (lsm->enabled == &lsm_enabled_true) {
if (!enabled)
lsm->enabled = &lsm_enabled_false;
} else if (lsm->enabled == &lsm_enabled_false) {
if (enabled)
lsm->enabled = &lsm_enabled_true;
} else {
*lsm->enabled = enabled;
}
}
/* Is an LSM already listed in the ordered LSMs list? */
static bool __init exists_ordered_lsm(struct lsm_info *lsm)
{
struct lsm_info **check;
for (check = ordered_lsms; *check; check++)
if (*check == lsm)
return true;
return false;
}
/* Append an LSM to the list of ordered LSMs to initialize. */
static int last_lsm __initdata;
static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
{
/* Ignore duplicate selections. */
if (exists_ordered_lsm(lsm))
return;
if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
return;
/* Enable this LSM, if it is not already set. */
if (!lsm->enabled)
lsm->enabled = &lsm_enabled_true;
ordered_lsms[last_lsm++] = lsm;
init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
is_enabled(lsm) ? "en" : "dis");
}
/* Is an LSM allowed to be initialized? */
static bool __init lsm_allowed(struct lsm_info *lsm)
{
/* Skip if the LSM is disabled. */
if (!is_enabled(lsm))
return false;
/* Not allowed if another exclusive LSM already initialized. */
if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
init_debug("exclusive disabled: %s\n", lsm->name);
return false;
}
return true;
}
static void __init lsm_set_blob_size(int *need, int *lbs)
{
int offset;
if (*need > 0) {
offset = *lbs;
*lbs += *need;
*need = offset;
}
}
static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
{
if (!needed)
return;
lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
/*
* The inode blob gets an rcu_head in addition to
* what the modules might need.
*/
if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
blob_sizes.lbs_inode = sizeof(struct rcu_head);
lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
}
/* Prepare LSM for initialization. */
static void __init prepare_lsm(struct lsm_info *lsm)
{
int enabled = lsm_allowed(lsm);
/* Record enablement (to handle any following exclusive LSMs). */
set_enabled(lsm, enabled);
/* If enabled, do pre-initialization work. */
if (enabled) {
if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
exclusive = lsm;
init_debug("exclusive chosen: %s\n", lsm->name);
}
lsm_set_blob_sizes(lsm->blobs);
}
}
/* Initialize a given LSM, if it is enabled. */
static void __init initialize_lsm(struct lsm_info *lsm)
{
if (is_enabled(lsm)) {
int ret;
init_debug("initializing %s\n", lsm->name);
ret = lsm->init();
WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
}
}
/* Populate ordered LSMs list from comma-separated LSM name list. */
static void __init ordered_lsm_parse(const char *order, const char *origin)
{
struct lsm_info *lsm;
char *sep, *name, *next;
/* LSM_ORDER_FIRST is always first. */
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
if (lsm->order == LSM_ORDER_FIRST)
append_ordered_lsm(lsm, "first");
}
/* Process "security=", if given. */
if (chosen_major_lsm) {
struct lsm_info *major;
/*
* To match the original "security=" behavior, this
* explicitly does NOT fallback to another Legacy Major
* if the selected one was separately disabled: disable
* all non-matching Legacy Major LSMs.
*/
for (major = __start_lsm_info; major < __end_lsm_info;
major++) {
if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
strcmp(major->name, chosen_major_lsm) != 0) {
set_enabled(major, false);
init_debug("security=%s disabled: %s\n",
chosen_major_lsm, major->name);
}
}
}
sep = kstrdup(order, GFP_KERNEL);
next = sep;
/* Walk the list, looking for matching LSMs. */
while ((name = strsep(&next, ",")) != NULL) {
bool found = false;
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
if (lsm->order == LSM_ORDER_MUTABLE &&
strcmp(lsm->name, name) == 0) {
append_ordered_lsm(lsm, origin);
found = true;
}
}
if (!found)
init_debug("%s ignored: %s\n", origin, name);
}
/* Process "security=", if given. */
if (chosen_major_lsm) {
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
if (exists_ordered_lsm(lsm))
continue;
if (strcmp(lsm->name, chosen_major_lsm) == 0)
append_ordered_lsm(lsm, "security=");
}
}
/* Disable all LSMs not in the ordered list. */
for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
if (exists_ordered_lsm(lsm))
continue;
set_enabled(lsm, false);
init_debug("%s disabled: %s\n", origin, lsm->name);
}
kfree(sep);
}
static void __init lsm_early_cred(struct cred *cred);
static void __init lsm_early_task(struct task_struct *task);
static void __init ordered_lsm_init(void)
{
struct lsm_info **lsm;
ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
GFP_KERNEL);
if (chosen_lsm_order) {
if (chosen_major_lsm) {
pr_info("security= is ignored because it is superseded by lsm=\n");
chosen_major_lsm = NULL;
}
ordered_lsm_parse(chosen_lsm_order, "cmdline");
} else
ordered_lsm_parse(builtin_lsm_order, "builtin");
for (lsm = ordered_lsms; *lsm; lsm++)
prepare_lsm(*lsm);
init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
init_debug("file blob size = %d\n", blob_sizes.lbs_file);
init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
init_debug("task blob size = %d\n", blob_sizes.lbs_task);
/*
* Create any kmem_caches needed for blobs
*/
if (blob_sizes.lbs_file)
lsm_file_cache = kmem_cache_create("lsm_file_cache",
blob_sizes.lbs_file, 0,
SLAB_PANIC, NULL);
if (blob_sizes.lbs_inode)
lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
blob_sizes.lbs_inode, 0,
SLAB_PANIC, NULL);
lsm_early_cred((struct cred *) current->cred);
lsm_early_task(current);
for (lsm = ordered_lsms; *lsm; lsm++)
initialize_lsm(*lsm);
kfree(ordered_lsms);
}
/**
* security_init - initializes the security framework
*
* This should be called early in the kernel initialization sequence.
*/
int __init security_init(void)
{
int i;
struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
pr_info("Security Framework initializing\n");
for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
i++)
INIT_HLIST_HEAD(&list[i]);
/* Load LSMs in specified order. */
ordered_lsm_init();
return 0;
}
/* Save user chosen LSM */
static int __init choose_major_lsm(char *str)
{
chosen_major_lsm = str;
return 1;
}
__setup("security=", choose_major_lsm);
/* Explicitly choose LSM initialization order. */
static int __init choose_lsm_order(char *str)
{
chosen_lsm_order = str;
return 1;
}
__setup("lsm=", choose_lsm_order);
/* Enable LSM order debugging. */
static int __init enable_debug(char *str)
{
debug = true;
return 1;
}
__setup("lsm.debug", enable_debug);
static bool match_last_lsm(const char *list, const char *lsm)
{
const char *last;
if (WARN_ON(!list || !lsm))
return false;
last = strrchr(list, ',');
if (last)
/* Pass the comma, strcmp() will check for '\0' */
last++;
else
last = list;
return !strcmp(last, lsm);
}
static int lsm_append(char *new, char **result)
{
char *cp;
if (*result == NULL) {
*result = kstrdup(new, GFP_KERNEL);
if (*result == NULL)
return -ENOMEM;
} else {
/* Check if it is the last registered name */
if (match_last_lsm(*result, new))
return 0;
cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
if (cp == NULL)
return -ENOMEM;
kfree(*result);
*result = cp;
}
return 0;
}
/**
* security_add_hooks - Add a modules hooks to the hook lists.
* @hooks: the hooks to add
* @count: the number of hooks to add
* @lsm: the name of the security module
*
* Each LSM has to register its hooks with the infrastructure.
*/
void __init security_add_hooks(struct security_hook_list *hooks, int count,
char *lsm)
{
int i;
for (i = 0; i < count; i++) {
hooks[i].lsm = lsm;
hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
}
if (lsm_append(lsm, &lsm_names) < 0)
panic("%s - Cannot get early memory.\n", __func__);
}
int call_lsm_notifier(enum lsm_event event, void *data)
{
return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
}
EXPORT_SYMBOL(call_lsm_notifier);
int register_lsm_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
}
EXPORT_SYMBOL(register_lsm_notifier);
int unregister_lsm_notifier(struct notifier_block *nb)
{
return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
}
EXPORT_SYMBOL(unregister_lsm_notifier);
/**
* lsm_cred_alloc - allocate a composite cred blob
* @cred: the cred that needs a blob
* @gfp: allocation type
*
* Allocate the cred blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
{
if (blob_sizes.lbs_cred == 0) {
cred->security = NULL;
return 0;
}
cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
if (cred->security == NULL)
return -ENOMEM;
return 0;
}
/**
* lsm_early_cred - during initialization allocate a composite cred blob
* @cred: the cred that needs a blob
*
* Allocate the cred blob for all the modules
*/
static void __init lsm_early_cred(struct cred *cred)
{
int rc = lsm_cred_alloc(cred, GFP_KERNEL);
if (rc)
panic("%s: Early cred alloc failed.\n", __func__);
}
/**
* lsm_file_alloc - allocate a composite file blob
* @file: the file that needs a blob
*
* Allocate the file blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_file_alloc(struct file *file)
{
if (!lsm_file_cache) {
file->f_security = NULL;
return 0;
}
file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
if (file->f_security == NULL)
return -ENOMEM;
return 0;
}
/**
* lsm_inode_alloc - allocate a composite inode blob
* @inode: the inode that needs a blob
*
* Allocate the inode blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
int lsm_inode_alloc(struct inode *inode)
{
if (!lsm_inode_cache) {
inode->i_security = NULL;
return 0;
}
inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
if (inode->i_security == NULL)
return -ENOMEM;
return 0;
}
/**
* lsm_task_alloc - allocate a composite task blob
* @task: the task that needs a blob
*
* Allocate the task blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_task_alloc(struct task_struct *task)
{
if (blob_sizes.lbs_task == 0) {
task->security = NULL;
return 0;
}
task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
if (task->security == NULL)
return -ENOMEM;
return 0;
}
/**
* lsm_ipc_alloc - allocate a composite ipc blob
* @kip: the ipc that needs a blob
*
* Allocate the ipc blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
{
if (blob_sizes.lbs_ipc == 0) {
kip->security = NULL;
return 0;
}
kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
if (kip->security == NULL)
return -ENOMEM;
return 0;
}
/**
* lsm_msg_msg_alloc - allocate a composite msg_msg blob
* @mp: the msg_msg that needs a blob
*
* Allocate the ipc blob for all the modules
*
* Returns 0, or -ENOMEM if memory can't be allocated.
*/
static int lsm_msg_msg_alloc(struct msg_msg *mp)
{
if (blob_sizes.lbs_msg_msg == 0) {
mp->security = NULL;
return 0;
}
mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
if (mp->security == NULL)
return -ENOMEM;
return 0;
}
/**
* lsm_early_task - during initialization allocate a composite task blob
* @task: the task that needs a blob
*
* Allocate the task blob for all the modules
*/
static void __init lsm_early_task(struct task_struct *task)
{
int rc = lsm_task_alloc(task);
if (rc)
panic("%s: Early task alloc failed.\n", __func__);
}
/*
* Hook list operation macros.
*
* call_void_hook:
* This is a hook that does not return a value.
*
* call_int_hook:
* This is a hook that returns a value.
*/
#define call_void_hook(FUNC, ...) \
do { \
struct security_hook_list *P; \
\
hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
P->hook.FUNC(__VA_ARGS__); \
} while (0)
#define call_int_hook(FUNC, IRC, ...) ({ \
int RC = IRC; \
do { \
struct security_hook_list *P; \
\
hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
RC = P->hook.FUNC(__VA_ARGS__); \
if (RC != 0) \
break; \
} \
} while (0); \
RC; \
})
/* Security operations */
int security_binder_set_context_mgr(struct task_struct *mgr)
{
return call_int_hook(binder_set_context_mgr, 0, mgr);
}
int security_binder_transaction(struct task_struct *from,
struct task_struct *to)
{
return call_int_hook(binder_transaction, 0, from, to);
}
int security_binder_transfer_binder(struct task_struct *from,
struct task_struct *to)
{
return call_int_hook(binder_transfer_binder, 0, from, to);
}
int security_binder_transfer_file(struct task_struct *from,
struct task_struct *to, struct file *file)
{
return call_int_hook(binder_transfer_file, 0, from, to, file);
}
int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
{
return call_int_hook(ptrace_access_check, 0, child, mode);
}
int security_ptrace_traceme(struct task_struct *parent)
{
return call_int_hook(ptrace_traceme, 0, parent);
}
int security_capget(struct task_struct *target,
kernel_cap_t *effective,
kernel_cap_t *inheritable,
kernel_cap_t *permitted)
{
return call_int_hook(capget, 0, target,
effective, inheritable, permitted);
}
int security_capset(struct cred *new, const struct cred *old,
const kernel_cap_t *effective,
const kernel_cap_t *inheritable,
const kernel_cap_t *permitted)
{
return call_int_hook(capset, 0, new, old,
effective, inheritable, permitted);
}
int security_capable(const struct cred *cred,
struct user_namespace *ns,
int cap,
unsigned int opts)
{
return call_int_hook(capable, 0, cred, ns, cap, opts);
}
int security_quotactl(int cmds, int type, int id, struct super_block *sb)
{
return call_int_hook(quotactl, 0, cmds, type, id, sb);
}
int security_quota_on(struct dentry *dentry)
{
return call_int_hook(quota_on, 0, dentry);
}
int security_syslog(int type)
{
return call_int_hook(syslog, 0, type);
}
int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
{
return call_int_hook(settime, 0, ts, tz);
}
int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
{
struct security_hook_list *hp;
int cap_sys_admin = 1;
int rc;
/*
* The module will respond with a positive value if
* it thinks the __vm_enough_memory() call should be
* made with the cap_sys_admin set. If all of the modules
* agree that it should be set it will. If any module
* thinks it should not be set it won't.
*/
hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
rc = hp->hook.vm_enough_memory(mm, pages);
if (rc <= 0) {
cap_sys_admin = 0;
break;
}
}
return __vm_enough_memory(mm, pages, cap_sys_admin);
}
int security_bprm_set_creds(struct linux_binprm *bprm)
{
return call_int_hook(bprm_set_creds, 0, bprm);
}
int security_bprm_check(struct linux_binprm *bprm)
{
int ret;
ret = call_int_hook(bprm_check_security, 0, bprm);
if (ret)
return ret;
return ima_bprm_check(bprm);
}
void security_bprm_committing_creds(struct linux_binprm *bprm)
{
call_void_hook(bprm_committing_creds, bprm);
}
void security_bprm_committed_creds(struct linux_binprm *bprm)
{
call_void_hook(bprm_committed_creds, bprm);
}
int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
{
return call_int_hook(fs_context_dup, 0, fc, src_fc);
}
int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
{
return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
}
int security_sb_alloc(struct super_block *sb)
{
return call_int_hook(sb_alloc_security, 0, sb);
}
void security_sb_free(struct super_block *sb)
{
call_void_hook(sb_free_security, sb);
}
void security_free_mnt_opts(void **mnt_opts)
{
if (!*mnt_opts)
return;
call_void_hook(sb_free_mnt_opts, *mnt_opts);
*mnt_opts = NULL;
}
EXPORT_SYMBOL(security_free_mnt_opts);
int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
{
return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
}
EXPORT_SYMBOL(security_sb_eat_lsm_opts);
int security_sb_remount(struct super_block *sb,
void *mnt_opts)
{
return call_int_hook(sb_remount, 0, sb, mnt_opts);
}
EXPORT_SYMBOL(security_sb_remount);
int security_sb_kern_mount(struct super_block *sb)
{
return call_int_hook(sb_kern_mount, 0, sb);
}
int security_sb_show_options(struct seq_file *m, struct super_block *sb)
{
return call_int_hook(sb_show_options, 0, m, sb);
}
int security_sb_statfs(struct dentry *dentry)
{
return call_int_hook(sb_statfs, 0, dentry);
}
int security_sb_mount(const char *dev_name, const struct path *path,
const char *type, unsigned long flags, void *data)
{
return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
}
int security_sb_umount(struct vfsmount *mnt, int flags)
{
return call_int_hook(sb_umount, 0, mnt, flags);
}
int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
{
return call_int_hook(sb_pivotroot, 0, old_path, new_path);
}
int security_sb_set_mnt_opts(struct super_block *sb,
void *mnt_opts,
unsigned long kern_flags,
unsigned long *set_kern_flags)
{
return call_int_hook(sb_set_mnt_opts,
mnt_opts ? -EOPNOTSUPP : 0, sb,
mnt_opts, kern_flags, set_kern_flags);
}
EXPORT_SYMBOL(security_sb_set_mnt_opts);
int security_sb_clone_mnt_opts(const struct super_block *oldsb,
struct super_block *newsb,
unsigned long kern_flags,
unsigned long *set_kern_flags)
{
return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
kern_flags, set_kern_flags);
}
EXPORT_SYMBOL(security_sb_clone_mnt_opts);
int security_add_mnt_opt(const char *option, const char *val, int len,
void **mnt_opts)
{
return call_int_hook(sb_add_mnt_opt, -EINVAL,
option, val, len, mnt_opts);
}
EXPORT_SYMBOL(security_add_mnt_opt);
int security_inode_alloc(struct inode *inode)
{
int rc = lsm_inode_alloc(inode);
if (unlikely(rc))
return rc;
rc = call_int_hook(inode_alloc_security, 0, inode);
if (unlikely(rc))
security_inode_free(inode);
return rc;
}
static void inode_free_by_rcu(struct rcu_head *head)
{
/*
* The rcu head is at the start of the inode blob
*/
kmem_cache_free(lsm_inode_cache, head);
}
void security_inode_free(struct inode *inode)
{
integrity_inode_free(inode);
call_void_hook(inode_free_security, inode);
/*
* The inode may still be referenced in a path walk and
* a call to security_inode_permission() can be made
* after inode_free_security() is called. Ideally, the VFS
* wouldn't do this, but fixing that is a much harder
* job. For now, simply free the i_security via RCU, and
* leave the current inode->i_security pointer intact.
* The inode will be freed after the RCU grace period too.
*/
if (inode->i_security)
call_rcu((struct rcu_head *)inode->i_security,
inode_free_by_rcu);
}
int security_dentry_init_security(struct dentry *dentry, int mode,
const struct qstr *name, void **ctx,
u32 *ctxlen)
{
return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
name, ctx, ctxlen);
}
EXPORT_SYMBOL(security_dentry_init_security);
int security_dentry_create_files_as(struct dentry *dentry, int mode,
struct qstr *name,
const struct cred *old, struct cred *new)
{
return call_int_hook(dentry_create_files_as, 0, dentry, mode,
name, old, new);
}
EXPORT_SYMBOL(security_dentry_create_files_as);
int security_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr,
const initxattrs initxattrs, void *fs_data)
{
struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
struct xattr *lsm_xattr, *evm_xattr, *xattr;
int ret;
if (unlikely(IS_PRIVATE(inode)))
return 0;
if (!initxattrs)
return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
dir, qstr, NULL, NULL, NULL);
memset(new_xattrs, 0, sizeof(new_xattrs));
lsm_xattr = new_xattrs;
ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
&lsm_xattr->name,
&lsm_xattr->value,
&lsm_xattr->value_len);
if (ret)
goto out;
evm_xattr = lsm_xattr + 1;
ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
if (ret)
goto out;
ret = initxattrs(inode, new_xattrs, fs_data);
out:
for (xattr = new_xattrs; xattr->value != NULL; xattr++)
kfree(xattr->value);
return (ret == -EOPNOTSUPP) ? 0 : ret;
}
EXPORT_SYMBOL(security_inode_init_security);
int security_old_inode_init_security(struct inode *inode, struct inode *dir,
const struct qstr *qstr, const char **name,
void **value, size_t *len)
{
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
qstr, name, value, len);
}
EXPORT_SYMBOL(security_old_inode_init_security);
#ifdef CONFIG_SECURITY_PATH
int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
unsigned int dev)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
}
EXPORT_SYMBOL(security_path_mknod);
int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_mkdir, 0, dir, dentry, mode);
}
EXPORT_SYMBOL(security_path_mkdir);
int security_path_rmdir(const struct path *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_rmdir, 0, dir, dentry);
}
int security_path_unlink(const struct path *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_unlink, 0, dir, dentry);
}
EXPORT_SYMBOL(security_path_unlink);
int security_path_symlink(const struct path *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
return 0;
return call_int_hook(path_symlink, 0, dir, dentry, old_name);
}
int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
return 0;
return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
}
int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
const struct path *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
(d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
return 0;
if (flags & RENAME_EXCHANGE) {
int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
old_dir, old_dentry);
if (err)
return err;
}
return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
new_dentry);
}
EXPORT_SYMBOL(security_path_rename);
int security_path_truncate(const struct path *path)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(path_truncate, 0, path);
}
int security_path_chmod(const struct path *path, umode_t mode)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(path_chmod, 0, path, mode);
}
int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(path_chown, 0, path, uid, gid);
}
int security_path_chroot(const struct path *path)
{
return call_int_hook(path_chroot, 0, path);
}
#endif
int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_create, 0, dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_create);
int security_inode_link(struct dentry *old_dentry, struct inode *dir,
struct dentry *new_dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
return 0;
return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
}
int security_inode_unlink(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_unlink, 0, dir, dentry);
}
int security_inode_symlink(struct inode *dir, struct dentry *dentry,
const char *old_name)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
}
int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
}
EXPORT_SYMBOL_GPL(security_inode_mkdir);
int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_rmdir, 0, dir, dentry);
}
int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
{
if (unlikely(IS_PRIVATE(dir)))
return 0;
return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
}
int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
struct inode *new_dir, struct dentry *new_dentry,
unsigned int flags)
{
if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
(d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
return 0;
if (flags & RENAME_EXCHANGE) {
int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
old_dir, old_dentry);
if (err)
return err;
}
return call_int_hook(inode_rename, 0, old_dir, old_dentry,
new_dir, new_dentry);
}
int security_inode_readlink(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_readlink, 0, dentry);
}
int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
bool rcu)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
}
int security_inode_permission(struct inode *inode, int mask)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return call_int_hook(inode_permission, 0, inode, mask);
}
int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
{
int ret;
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
ret = call_int_hook(inode_setattr, 0, dentry, attr);
if (ret)
return ret;
return evm_inode_setattr(dentry, attr);
}
EXPORT_SYMBOL_GPL(security_inode_setattr);
int security_inode_getattr(const struct path *path)
{
if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
return 0;
return call_int_hook(inode_getattr, 0, path);
}
int security_inode_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
int ret;
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
/*
* SELinux and Smack integrate the cap call,
* so assume that all LSMs supplying this call do so.
*/
ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
flags);
if (ret == 1)
ret = cap_inode_setxattr(dentry, name, value, size, flags);
if (ret)
return ret;
ret = ima_inode_setxattr(dentry, name, value, size);
if (ret)
return ret;
return evm_inode_setxattr(dentry, name, value, size);
}
void security_inode_post_setxattr(struct dentry *dentry, const char *name,
const void *value, size_t size, int flags)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return;
call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
evm_inode_post_setxattr(dentry, name, value, size);
}
int security_inode_getxattr(struct dentry *dentry, const char *name)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_getxattr, 0, dentry, name);
}
int security_inode_listxattr(struct dentry *dentry)
{
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
return call_int_hook(inode_listxattr, 0, dentry);
}
int security_inode_removexattr(struct dentry *dentry, const char *name)
{
int ret;
if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
return 0;
/*
* SELinux and Smack integrate the cap call,
* so assume that all LSMs supplying this call do so.
*/
ret = call_int_hook(inode_removexattr, 1, dentry, name);
if (ret == 1)
ret = cap_inode_removexattr(dentry, name);
if (ret)
return ret;
ret = ima_inode_removexattr(dentry, name);
if (ret)
return ret;
return evm_inode_removexattr(dentry, name);
}
int security_inode_need_killpriv(struct dentry *dentry)
{
return call_int_hook(inode_need_killpriv, 0, dentry);
}
int security_inode_killpriv(struct dentry *dentry)
{
return call_int_hook(inode_killpriv, 0, dentry);
}
int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
{
struct security_hook_list *hp;
int rc;
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
/*
* Only one module will provide an attribute with a given name.
*/
hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
if (rc != -EOPNOTSUPP)
return rc;
}
return -EOPNOTSUPP;
}
int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
{
struct security_hook_list *hp;
int rc;
if (unlikely(IS_PRIVATE(inode)))
return -EOPNOTSUPP;
/*
* Only one module will provide an attribute with a given name.
*/
hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
rc = hp->hook.inode_setsecurity(inode, name, value, size,
flags);
if (rc != -EOPNOTSUPP)
return rc;
}
return -EOPNOTSUPP;
}
int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
{
if (unlikely(IS_PRIVATE(inode)))
return 0;
return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
}
EXPORT_SYMBOL(security_inode_listsecurity);
void security_inode_getsecid(struct inode *inode, u32 *secid)
{
call_void_hook(inode_getsecid, inode, secid);
}
int security_inode_copy_up(struct dentry *src, struct cred **new)
{
return call_int_hook(inode_copy_up, 0, src, new);
}
EXPORT_SYMBOL(security_inode_copy_up);
int security_inode_copy_up_xattr(const char *name)
{
return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
}
EXPORT_SYMBOL(security_inode_copy_up_xattr);
int security_file_permission(struct file *file, int mask)
{
int ret;
ret = call_int_hook(file_permission, 0, file, mask);
if (ret)
return ret;
return fsnotify_perm(file, mask);
}
int security_file_alloc(struct file *file)
{
int rc = lsm_file_alloc(file);
if (rc)
return rc;
rc = call_int_hook(file_alloc_security, 0, file);
if (unlikely(rc))
security_file_free(file);
return rc;
}
void security_file_free(struct file *file)
{
void *blob;
call_void_hook(file_free_security, file);
blob = file->f_security;
if (blob) {
file->f_security = NULL;
kmem_cache_free(lsm_file_cache, blob);
}
}
int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
{
return call_int_hook(file_ioctl, 0, file, cmd, arg);
}
static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
{
/*
* Does we have PROT_READ and does the application expect
* it to imply PROT_EXEC? If not, nothing to talk about...
*/
if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
return prot;
if (!(current->personality & READ_IMPLIES_EXEC))
return prot;
/*
* if that's an anonymous mapping, let it.
*/
if (!file)
return prot | PROT_EXEC;
/*
* ditto if it's not on noexec mount, except that on !MMU we need
* NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
*/
if (!path_noexec(&file->f_path)) {
#ifndef CONFIG_MMU
if (file->f_op->mmap_capabilities) {
unsigned caps = file->f_op->mmap_capabilities(file);
if (!(caps & NOMMU_MAP_EXEC))
return prot;
}
#endif
return prot | PROT_EXEC;
}
/* anything on noexec mount won't get PROT_EXEC */
return prot;
}
int security_mmap_file(struct file *file, unsigned long prot,
unsigned long flags)
{
int ret;
ret = call_int_hook(mmap_file, 0, file, prot,
mmap_prot(file, prot), flags);
if (ret)
return ret;
return ima_file_mmap(file, prot);
}
int security_mmap_addr(unsigned long addr)
{
return call_int_hook(mmap_addr, 0, addr);
}
int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
unsigned long prot)
{
return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
}
int security_file_lock(struct file *file, unsigned int cmd)
{
return call_int_hook(file_lock, 0, file, cmd);
}
int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
{
return call_int_hook(file_fcntl, 0, file, cmd, arg);
}
void security_file_set_fowner(struct file *file)
{
call_void_hook(file_set_fowner, file);
}
int security_file_send_sigiotask(struct task_struct *tsk,
struct fown_struct *fown, int sig)
{
return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
}
int security_file_receive(struct file *file)
{
return call_int_hook(file_receive, 0, file);
}
int security_file_open(struct file *file)
{
int ret;
ret = call_int_hook(file_open, 0, file);
if (ret)
return ret;
return fsnotify_perm(file, MAY_OPEN);
}
int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
{
int rc = lsm_task_alloc(task);
if (rc)
return rc;
rc = call_int_hook(task_alloc, 0, task, clone_flags);
if (unlikely(rc))
security_task_free(task);
return rc;
}
void security_task_free(struct task_struct *task)
{
call_void_hook(task_free, task);
kfree(task->security);
task->security = NULL;
}
int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
{
int rc = lsm_cred_alloc(cred, gfp);
if (rc)
return rc;
rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
if (unlikely(rc))
security_cred_free(cred);
return rc;
}
void security_cred_free(struct cred *cred)
{
/*
* There is a failure case in prepare_creds() that
* may result in a call here with ->security being NULL.
*/
if (unlikely(cred->security == NULL))
return;
call_void_hook(cred_free, cred);
kfree(cred->security);
cred->security = NULL;
}
int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
{
int rc = lsm_cred_alloc(new, gfp);
if (rc)
return rc;
rc = call_int_hook(cred_prepare, 0, new, old, gfp);
if (unlikely(rc))
security_cred_free(new);
return rc;
}
void security_transfer_creds(struct cred *new, const struct cred *old)
{
call_void_hook(cred_transfer, new, old);
}
void security_cred_getsecid(const struct cred *c, u32 *secid)
{
*secid = 0;
call_void_hook(cred_getsecid, c, secid);
}
EXPORT_SYMBOL(security_cred_getsecid);
int security_kernel_act_as(struct cred *new, u32 secid)
{
return call_int_hook(kernel_act_as, 0, new, secid);
}
int security_kernel_create_files_as(struct cred *new, struct inode *inode)
{
return call_int_hook(kernel_create_files_as, 0, new, inode);
}
int security_kernel_module_request(char *kmod_name)
{
int ret;
ret = call_int_hook(kernel_module_request, 0, kmod_name);
if (ret)
return ret;
return integrity_kernel_module_request(kmod_name);
}
int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
{
int ret;
ret = call_int_hook(kernel_read_file, 0, file, id);
if (ret)
return ret;
return ima_read_file(file, id);
}
EXPORT_SYMBOL_GPL(security_kernel_read_file);
int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
enum kernel_read_file_id id)
{
int ret;
ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
if (ret)
return ret;
return ima_post_read_file(file, buf, size, id);
}
EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
int security_kernel_load_data(enum kernel_load_data_id id)
{
int ret;
ret = call_int_hook(kernel_load_data, 0, id);
if (ret)
return ret;
return ima_load_data(id);
}
EXPORT_SYMBOL_GPL(security_kernel_load_data);
int security_task_fix_setuid(struct cred *new, const struct cred *old,
int flags)
{
return call_int_hook(task_fix_setuid, 0, new, old, flags);
}
int security_task_setpgid(struct task_struct *p, pid_t pgid)
{
return call_int_hook(task_setpgid, 0, p, pgid);
}
int security_task_getpgid(struct task_struct *p)
{
return call_int_hook(task_getpgid, 0, p);
}
int security_task_getsid(struct task_struct *p)
{
return call_int_hook(task_getsid, 0, p);
}
void security_task_getsecid(struct task_struct *p, u32 *secid)
{
*secid = 0;
call_void_hook(task_getsecid, p, secid);
}
EXPORT_SYMBOL(security_task_getsecid);
int security_task_setnice(struct task_struct *p, int nice)
{
return call_int_hook(task_setnice, 0, p, nice);
}
int security_task_setioprio(struct task_struct *p, int ioprio)
{
return call_int_hook(task_setioprio, 0, p, ioprio);
}
int security_task_getioprio(struct task_struct *p)
{
return call_int_hook(task_getioprio, 0, p);
}
int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
unsigned int flags)
{
return call_int_hook(task_prlimit, 0, cred, tcred, flags);
}
int security_task_setrlimit(struct task_struct *p, unsigned int resource,
struct rlimit *new_rlim)
{
return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
}
int security_task_setscheduler(struct task_struct *p)
{
return call_int_hook(task_setscheduler, 0, p);
}
int security_task_getscheduler(struct task_struct *p)
{
return call_int_hook(task_getscheduler, 0, p);
}
int security_task_movememory(struct task_struct *p)
{
return call_int_hook(task_movememory, 0, p);
}
int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
int sig, const struct cred *cred)
{
return call_int_hook(task_kill, 0, p, info, sig, cred);
}
int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
unsigned long arg4, unsigned long arg5)
{
int thisrc;
int rc = -ENOSYS;
struct security_hook_list *hp;
hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
if (thisrc != -ENOSYS) {
rc = thisrc;
if (thisrc != 0)
break;
}
}
return rc;
}
void security_task_to_inode(struct task_struct *p, struct inode *inode)
{
call_void_hook(task_to_inode, p, inode);
}
int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
{
return call_int_hook(ipc_permission, 0, ipcp, flag);
}
void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
{
*secid = 0;
call_void_hook(ipc_getsecid, ipcp, secid);
}
int security_msg_msg_alloc(struct msg_msg *msg)
{
int rc = lsm_msg_msg_alloc(msg);
if (unlikely(rc))
return rc;
rc = call_int_hook(msg_msg_alloc_security, 0, msg);
if (unlikely(rc))
security_msg_msg_free(msg);
return rc;
}
void security_msg_msg_free(struct msg_msg *msg)
{
call_void_hook(msg_msg_free_security, msg);
kfree(msg->security);
msg->security = NULL;
}
int security_msg_queue_alloc(struct kern_ipc_perm *msq)
{
int rc = lsm_ipc_alloc(msq);
if (unlikely(rc))
return rc;
rc = call_int_hook(msg_queue_alloc_security, 0, msq);
if (unlikely(rc))
security_msg_queue_free(msq);
return rc;
}
void security_msg_queue_free(struct kern_ipc_perm *msq)
{
call_void_hook(msg_queue_free_security, msq);
kfree(msq->security);
msq->security = NULL;
}
int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
{
return call_int_hook(msg_queue_associate, 0, msq, msqflg);
}
int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
{
return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
}
int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
struct msg_msg *msg, int msqflg)
{
return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
}
int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
struct task_struct *target, long type, int mode)
{
return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
}
int security_shm_alloc(struct kern_ipc_perm *shp)
{
int rc = lsm_ipc_alloc(shp);
if (unlikely(rc))
return rc;
rc = call_int_hook(shm_alloc_security, 0, shp);
if (unlikely(rc))
security_shm_free(shp);
return rc;
}
void security_shm_free(struct kern_ipc_perm *shp)
{
call_void_hook(shm_free_security, shp);
kfree(shp->security);
shp->security = NULL;
}
int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
{
return call_int_hook(shm_associate, 0, shp, shmflg);
}
int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
{
return call_int_hook(shm_shmctl, 0, shp, cmd);
}
int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
{
return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
}
int security_sem_alloc(struct kern_ipc_perm *sma)
{
int rc = lsm_ipc_alloc(sma);
if (unlikely(rc))
return rc;
rc = call_int_hook(sem_alloc_security, 0, sma);
if (unlikely(rc))
security_sem_free(sma);
return rc;
}
void security_sem_free(struct kern_ipc_perm *sma)
{
call_void_hook(sem_free_security, sma);
kfree(sma->security);
sma->security = NULL;
}
int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
{
return call_int_hook(sem_associate, 0, sma, semflg);
}
int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
{
return call_int_hook(sem_semctl, 0, sma, cmd);
}
int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
unsigned nsops, int alter)
{
return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
}
void security_d_instantiate(struct dentry *dentry, struct inode *inode)
{
if (unlikely(inode && IS_PRIVATE(inode)))
return;
call_void_hook(d_instantiate, dentry, inode);
}
EXPORT_SYMBOL(security_d_instantiate);
int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
char **value)
{
struct security_hook_list *hp;
hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
if (lsm != NULL && strcmp(lsm, hp->lsm))
continue;
return hp->hook.getprocattr(p, name, value);
}
return -EINVAL;
}
int security_setprocattr(const char *lsm, const char *name, void *value,
size_t size)
{
struct security_hook_list *hp;
hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
if (lsm != NULL && strcmp(lsm, hp->lsm))
continue;
return hp->hook.setprocattr(name, value, size);
}
return -EINVAL;
}
int security_netlink_send(struct sock *sk, struct sk_buff *skb)
{
return call_int_hook(netlink_send, 0, sk, skb);
}
int security_ismaclabel(const char *name)
{
return call_int_hook(ismaclabel, 0, name);
}
EXPORT_SYMBOL(security_ismaclabel);
int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
{
return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
seclen);
}
EXPORT_SYMBOL(security_secid_to_secctx);
int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
{
*secid = 0;
return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
}
EXPORT_SYMBOL(security_secctx_to_secid);
void security_release_secctx(char *secdata, u32 seclen)
{
call_void_hook(release_secctx, secdata, seclen);
}
EXPORT_SYMBOL(security_release_secctx);
void security_inode_invalidate_secctx(struct inode *inode)
{
call_void_hook(inode_invalidate_secctx, inode);
}
EXPORT_SYMBOL(security_inode_invalidate_secctx);
int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
{
return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_notifysecctx);
int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
{
return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_setsecctx);
int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
{
return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
}
EXPORT_SYMBOL(security_inode_getsecctx);
#ifdef CONFIG_SECURITY_NETWORK
int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
{
return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
}
EXPORT_SYMBOL(security_unix_stream_connect);
int security_unix_may_send(struct socket *sock, struct socket *other)
{
return call_int_hook(unix_may_send, 0, sock, other);
}
EXPORT_SYMBOL(security_unix_may_send);
int security_socket_create(int family, int type, int protocol, int kern)
{
return call_int_hook(socket_create, 0, family, type, protocol, kern);
}
int security_socket_post_create(struct socket *sock, int family,
int type, int protocol, int kern)
{
return call_int_hook(socket_post_create, 0, sock, family, type,
protocol, kern);
}
int security_socket_socketpair(struct socket *socka, struct socket *sockb)
{
return call_int_hook(socket_socketpair, 0, socka, sockb);
}
EXPORT_SYMBOL(security_socket_socketpair);
int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
{
return call_int_hook(socket_bind, 0, sock, address, addrlen);
}
int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
{
return call_int_hook(socket_connect, 0, sock, address, addrlen);
}
int security_socket_listen(struct socket *sock, int backlog)
{
return call_int_hook(socket_listen, 0, sock, backlog);
}
int security_socket_accept(struct socket *sock, struct socket *newsock)
{
return call_int_hook(socket_accept, 0, sock, newsock);
}
int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
{
return call_int_hook(socket_sendmsg, 0, sock, msg, size);
}
int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
int size, int flags)
{
return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
}
int security_socket_getsockname(struct socket *sock)
{
return call_int_hook(socket_getsockname, 0, sock);
}
int security_socket_getpeername(struct socket *sock)
{
return call_int_hook(socket_getpeername, 0, sock);
}
int security_socket_getsockopt(struct socket *sock, int level, int optname)
{
return call_int_hook(socket_getsockopt, 0, sock, level, optname);
}
int security_socket_setsockopt(struct socket *sock, int level, int optname)
{
return call_int_hook(socket_setsockopt, 0, sock, level, optname);
}
int security_socket_shutdown(struct socket *sock, int how)
{
return call_int_hook(socket_shutdown, 0, sock, how);
}
int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
{
return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
}
EXPORT_SYMBOL(security_sock_rcv_skb);
int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
int __user *optlen, unsigned len)
{
return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
optval, optlen, len);
}
int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
{
return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
skb, secid);
}
EXPORT_SYMBOL(security_socket_getpeersec_dgram);
int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
{
return call_int_hook(sk_alloc_security, 0, sk, family, priority);
}
void security_sk_free(struct sock *sk)
{
call_void_hook(sk_free_security, sk);
}
void security_sk_clone(const struct sock *sk, struct sock *newsk)
{
call_void_hook(sk_clone_security, sk, newsk);
}
EXPORT_SYMBOL(security_sk_clone);
void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
{
call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
}
EXPORT_SYMBOL(security_sk_classify_flow);
void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
{
call_void_hook(req_classify_flow, req, fl);
}
EXPORT_SYMBOL(security_req_classify_flow);
void security_sock_graft(struct sock *sk, struct socket *parent)
{
call_void_hook(sock_graft, sk, parent);
}
EXPORT_SYMBOL(security_sock_graft);
int security_inet_conn_request(struct sock *sk,
struct sk_buff *skb, struct request_sock *req)
{
return call_int_hook(inet_conn_request, 0, sk, skb, req);
}
EXPORT_SYMBOL(security_inet_conn_request);
void security_inet_csk_clone(struct sock *newsk,
const struct request_sock *req)
{
call_void_hook(inet_csk_clone, newsk, req);
}
void security_inet_conn_established(struct sock *sk,
struct sk_buff *skb)
{
call_void_hook(inet_conn_established, sk, skb);
}
EXPORT_SYMBOL(security_inet_conn_established);
int security_secmark_relabel_packet(u32 secid)
{
return call_int_hook(secmark_relabel_packet, 0, secid);
}
EXPORT_SYMBOL(security_secmark_relabel_packet);
void security_secmark_refcount_inc(void)
{
call_void_hook(secmark_refcount_inc);
}
EXPORT_SYMBOL(security_secmark_refcount_inc);
void security_secmark_refcount_dec(void)
{
call_void_hook(secmark_refcount_dec);
}
EXPORT_SYMBOL(security_secmark_refcount_dec);
int security_tun_dev_alloc_security(void **security)
{
return call_int_hook(tun_dev_alloc_security, 0, security);
}
EXPORT_SYMBOL(security_tun_dev_alloc_security);
void security_tun_dev_free_security(void *security)
{
call_void_hook(tun_dev_free_security, security);
}
EXPORT_SYMBOL(security_tun_dev_free_security);
int security_tun_dev_create(void)
{
return call_int_hook(tun_dev_create, 0);
}
EXPORT_SYMBOL(security_tun_dev_create);
int security_tun_dev_attach_queue(void *security)
{
return call_int_hook(tun_dev_attach_queue, 0, security);
}
EXPORT_SYMBOL(security_tun_dev_attach_queue);
int security_tun_dev_attach(struct sock *sk, void *security)
{
return call_int_hook(tun_dev_attach, 0, sk, security);
}
EXPORT_SYMBOL(security_tun_dev_attach);
int security_tun_dev_open(void *security)
{
return call_int_hook(tun_dev_open, 0, security);
}
EXPORT_SYMBOL(security_tun_dev_open);
int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
{
return call_int_hook(sctp_assoc_request, 0, ep, skb);
}
EXPORT_SYMBOL(security_sctp_assoc_request);
int security_sctp_bind_connect(struct sock *sk, int optname,
struct sockaddr *address, int addrlen)
{
return call_int_hook(sctp_bind_connect, 0, sk, optname,
address, addrlen);
}
EXPORT_SYMBOL(security_sctp_bind_connect);
void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
struct sock *newsk)
{
call_void_hook(sctp_sk_clone, ep, sk, newsk);
}
EXPORT_SYMBOL(security_sctp_sk_clone);
#endif /* CONFIG_SECURITY_NETWORK */
#ifdef CONFIG_SECURITY_INFINIBAND
int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
{
return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
}
EXPORT_SYMBOL(security_ib_pkey_access);
int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
{
return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
}
EXPORT_SYMBOL(security_ib_endport_manage_subnet);
int security_ib_alloc_security(void **sec)
{
return call_int_hook(ib_alloc_security, 0, sec);
}
EXPORT_SYMBOL(security_ib_alloc_security);
void security_ib_free_security(void *sec)
{
call_void_hook(ib_free_security, sec);
}
EXPORT_SYMBOL(security_ib_free_security);
#endif /* CONFIG_SECURITY_INFINIBAND */
#ifdef CONFIG_SECURITY_NETWORK_XFRM
int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
struct xfrm_user_sec_ctx *sec_ctx,
gfp_t gfp)
{
return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
}
EXPORT_SYMBOL(security_xfrm_policy_alloc);
int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
struct xfrm_sec_ctx **new_ctxp)
{
return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
}
void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
{
call_void_hook(xfrm_policy_free_security, ctx);
}
EXPORT_SYMBOL(security_xfrm_policy_free);
int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
{
return call_int_hook(xfrm_policy_delete_security, 0, ctx);
}
int security_xfrm_state_alloc(struct xfrm_state *x,
struct xfrm_user_sec_ctx *sec_ctx)
{
return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
}
EXPORT_SYMBOL(security_xfrm_state_alloc);
int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
struct xfrm_sec_ctx *polsec, u32 secid)
{
return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
}
int security_xfrm_state_delete(struct xfrm_state *x)
{
return call_int_hook(xfrm_state_delete_security, 0, x);
}
EXPORT_SYMBOL(security_xfrm_state_delete);
void security_xfrm_state_free(struct xfrm_state *x)
{
call_void_hook(xfrm_state_free_security, x);
}
int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
{
return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
}
int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
struct xfrm_policy *xp,
const struct flowi *fl)
{
struct security_hook_list *hp;
int rc = 1;
/*
* Since this function is expected to return 0 or 1, the judgment
* becomes difficult if multiple LSMs supply this call. Fortunately,
* we can use the first LSM's judgment because currently only SELinux
* supplies this call.
*
* For speed optimization, we explicitly break the loop rather than
* using the macro
*/
hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
list) {
rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
break;
}
return rc;
}
int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
{
return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
}
void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
{
int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
0);
BUG_ON(rc);
}
EXPORT_SYMBOL(security_skb_classify_flow);
#endif /* CONFIG_SECURITY_NETWORK_XFRM */
#ifdef CONFIG_KEYS
int security_key_alloc(struct key *key, const struct cred *cred,
unsigned long flags)
{
return call_int_hook(key_alloc, 0, key, cred, flags);
}
void security_key_free(struct key *key)
{
call_void_hook(key_free, key);
}
int security_key_permission(key_ref_t key_ref,
const struct cred *cred, unsigned perm)
{
return call_int_hook(key_permission, 0, key_ref, cred, perm);
}
int security_key_getsecurity(struct key *key, char **_buffer)
{
*_buffer = NULL;
return call_int_hook(key_getsecurity, 0, key, _buffer);
}
#endif /* CONFIG_KEYS */
#ifdef CONFIG_AUDIT
int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
{
return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
}
int security_audit_rule_known(struct audit_krule *krule)
{
return call_int_hook(audit_rule_known, 0, krule);
}
void security_audit_rule_free(void *lsmrule)
{
call_void_hook(audit_rule_free, lsmrule);
}
int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
{
return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
}
#endif /* CONFIG_AUDIT */
#ifdef CONFIG_BPF_SYSCALL
int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
{
return call_int_hook(bpf, 0, cmd, attr, size);
}
int security_bpf_map(struct bpf_map *map, fmode_t fmode)
{
return call_int_hook(bpf_map, 0, map, fmode);
}
int security_bpf_prog(struct bpf_prog *prog)
{
return call_int_hook(bpf_prog, 0, prog);
}
int security_bpf_map_alloc(struct bpf_map *map)
{
return call_int_hook(bpf_map_alloc_security, 0, map);
}
int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
{
return call_int_hook(bpf_prog_alloc_security, 0, aux);
}
void security_bpf_map_free(struct bpf_map *map)
{
call_void_hook(bpf_map_free_security, map);
}
void security_bpf_prog_free(struct bpf_prog_aux *aux)
{
call_void_hook(bpf_prog_free_security, aux);
}
#endif /* CONFIG_BPF_SYSCALL */