linux-stable/kernel/module/main.c
Suren Baghdasaryan a473573964 lib: code tagging module support
Add support for code tagging from dynamically loaded modules.

Link: https://lkml.kernel.org/r/20240321163705.3067592-12-surenb@google.com
Signed-off-by: Suren Baghdasaryan <surenb@google.com>
Co-developed-by: Kent Overstreet <kent.overstreet@linux.dev>
Signed-off-by: Kent Overstreet <kent.overstreet@linux.dev>
Tested-by: Kees Cook <keescook@chromium.org>
Cc: Alexander Viro <viro@zeniv.linux.org.uk>
Cc: Alex Gaynor <alex.gaynor@gmail.com>
Cc: Alice Ryhl <aliceryhl@google.com>
Cc: Andreas Hindborg <a.hindborg@samsung.com>
Cc: Benno Lossin <benno.lossin@proton.me>
Cc: "Björn Roy Baron" <bjorn3_gh@protonmail.com>
Cc: Boqun Feng <boqun.feng@gmail.com>
Cc: Christoph Lameter <cl@linux.com>
Cc: Dennis Zhou <dennis@kernel.org>
Cc: Gary Guo <gary@garyguo.net>
Cc: Miguel Ojeda <ojeda@kernel.org>
Cc: Pasha Tatashin <pasha.tatashin@soleen.com>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Tejun Heo <tj@kernel.org>
Cc: Vlastimil Babka <vbabka@suse.cz>
Cc: Wedson Almeida Filho <wedsonaf@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-04-25 20:55:52 -07:00

3391 lines
86 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Copyright (C) 2002 Richard Henderson
* Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
* Copyright (C) 2023 Luis Chamberlain <mcgrof@kernel.org>
*/
#define INCLUDE_VERMAGIC
#include <linux/export.h>
#include <linux/extable.h>
#include <linux/moduleloader.h>
#include <linux/module_signature.h>
#include <linux/trace_events.h>
#include <linux/init.h>
#include <linux/kallsyms.h>
#include <linux/buildid.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/kernel_read_file.h>
#include <linux/kstrtox.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/elf.h>
#include <linux/seq_file.h>
#include <linux/syscalls.h>
#include <linux/fcntl.h>
#include <linux/rcupdate.h>
#include <linux/capability.h>
#include <linux/cpu.h>
#include <linux/moduleparam.h>
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/vermagic.h>
#include <linux/notifier.h>
#include <linux/sched.h>
#include <linux/device.h>
#include <linux/string.h>
#include <linux/mutex.h>
#include <linux/rculist.h>
#include <linux/uaccess.h>
#include <asm/cacheflush.h>
#include <linux/set_memory.h>
#include <asm/mmu_context.h>
#include <linux/license.h>
#include <asm/sections.h>
#include <linux/tracepoint.h>
#include <linux/ftrace.h>
#include <linux/livepatch.h>
#include <linux/async.h>
#include <linux/percpu.h>
#include <linux/kmemleak.h>
#include <linux/jump_label.h>
#include <linux/pfn.h>
#include <linux/bsearch.h>
#include <linux/dynamic_debug.h>
#include <linux/audit.h>
#include <linux/cfi.h>
#include <linux/codetag.h>
#include <linux/debugfs.h>
#include <uapi/linux/module.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/module.h>
/*
* Mutex protects:
* 1) List of modules (also safely readable with preempt_disable),
* 2) module_use links,
* 3) mod_tree.addr_min/mod_tree.addr_max.
* (delete and add uses RCU list operations).
*/
DEFINE_MUTEX(module_mutex);
LIST_HEAD(modules);
/* Work queue for freeing init sections in success case */
static void do_free_init(struct work_struct *w);
static DECLARE_WORK(init_free_wq, do_free_init);
static LLIST_HEAD(init_free_list);
struct mod_tree_root mod_tree __cacheline_aligned = {
.addr_min = -1UL,
};
struct symsearch {
const struct kernel_symbol *start, *stop;
const s32 *crcs;
enum mod_license license;
};
/*
* Bounds of module memory, for speeding up __module_address.
* Protected by module_mutex.
*/
static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
unsigned int size, struct mod_tree_root *tree)
{
unsigned long min = (unsigned long)base;
unsigned long max = min + size;
#ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
if (mod_mem_type_is_core_data(type)) {
if (min < tree->data_addr_min)
tree->data_addr_min = min;
if (max > tree->data_addr_max)
tree->data_addr_max = max;
return;
}
#endif
if (min < tree->addr_min)
tree->addr_min = min;
if (max > tree->addr_max)
tree->addr_max = max;
}
static void mod_update_bounds(struct module *mod)
{
for_each_mod_mem_type(type) {
struct module_memory *mod_mem = &mod->mem[type];
if (mod_mem->size)
__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
}
}
/* Block module loading/unloading? */
int modules_disabled;
core_param(nomodule, modules_disabled, bint, 0);
/* Waiting for a module to finish initializing? */
static DECLARE_WAIT_QUEUE_HEAD(module_wq);
static BLOCKING_NOTIFIER_HEAD(module_notify_list);
int register_module_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_register(&module_notify_list, nb);
}
EXPORT_SYMBOL(register_module_notifier);
int unregister_module_notifier(struct notifier_block *nb)
{
return blocking_notifier_chain_unregister(&module_notify_list, nb);
}
EXPORT_SYMBOL(unregister_module_notifier);
/*
* We require a truly strong try_module_get(): 0 means success.
* Otherwise an error is returned due to ongoing or failed
* initialization etc.
*/
static inline int strong_try_module_get(struct module *mod)
{
BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
if (mod && mod->state == MODULE_STATE_COMING)
return -EBUSY;
if (try_module_get(mod))
return 0;
else
return -ENOENT;
}
static inline void add_taint_module(struct module *mod, unsigned flag,
enum lockdep_ok lockdep_ok)
{
add_taint(flag, lockdep_ok);
set_bit(flag, &mod->taints);
}
/*
* A thread that wants to hold a reference to a module only while it
* is running can call this to safely exit.
*/
void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
{
module_put(mod);
kthread_exit(code);
}
EXPORT_SYMBOL(__module_put_and_kthread_exit);
/* Find a module section: 0 means not found. */
static unsigned int find_sec(const struct load_info *info, const char *name)
{
unsigned int i;
for (i = 1; i < info->hdr->e_shnum; i++) {
Elf_Shdr *shdr = &info->sechdrs[i];
/* Alloc bit cleared means "ignore it." */
if ((shdr->sh_flags & SHF_ALLOC)
&& strcmp(info->secstrings + shdr->sh_name, name) == 0)
return i;
}
return 0;
}
/* Find a module section, or NULL. */
static void *section_addr(const struct load_info *info, const char *name)
{
/* Section 0 has sh_addr 0. */
return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
}
/* Find a module section, or NULL. Fill in number of "objects" in section. */
static void *section_objs(const struct load_info *info,
const char *name,
size_t object_size,
unsigned int *num)
{
unsigned int sec = find_sec(info, name);
/* Section 0 has sh_addr 0 and sh_size 0. */
*num = info->sechdrs[sec].sh_size / object_size;
return (void *)info->sechdrs[sec].sh_addr;
}
/* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
static unsigned int find_any_sec(const struct load_info *info, const char *name)
{
unsigned int i;
for (i = 1; i < info->hdr->e_shnum; i++) {
Elf_Shdr *shdr = &info->sechdrs[i];
if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
return i;
}
return 0;
}
/*
* Find a module section, or NULL. Fill in number of "objects" in section.
* Ignores SHF_ALLOC flag.
*/
static __maybe_unused void *any_section_objs(const struct load_info *info,
const char *name,
size_t object_size,
unsigned int *num)
{
unsigned int sec = find_any_sec(info, name);
/* Section 0 has sh_addr 0 and sh_size 0. */
*num = info->sechdrs[sec].sh_size / object_size;
return (void *)info->sechdrs[sec].sh_addr;
}
#ifndef CONFIG_MODVERSIONS
#define symversion(base, idx) NULL
#else
#define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
#endif
static const char *kernel_symbol_name(const struct kernel_symbol *sym)
{
#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
return offset_to_ptr(&sym->name_offset);
#else
return sym->name;
#endif
}
static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
{
#ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
if (!sym->namespace_offset)
return NULL;
return offset_to_ptr(&sym->namespace_offset);
#else
return sym->namespace;
#endif
}
int cmp_name(const void *name, const void *sym)
{
return strcmp(name, kernel_symbol_name(sym));
}
static bool find_exported_symbol_in_section(const struct symsearch *syms,
struct module *owner,
struct find_symbol_arg *fsa)
{
struct kernel_symbol *sym;
if (!fsa->gplok && syms->license == GPL_ONLY)
return false;
sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
sizeof(struct kernel_symbol), cmp_name);
if (!sym)
return false;
fsa->owner = owner;
fsa->crc = symversion(syms->crcs, sym - syms->start);
fsa->sym = sym;
fsa->license = syms->license;
return true;
}
/*
* Find an exported symbol and return it, along with, (optional) crc and
* (optional) module which owns it. Needs preempt disabled or module_mutex.
*/
bool find_symbol(struct find_symbol_arg *fsa)
{
static const struct symsearch arr[] = {
{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
NOT_GPL_ONLY },
{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
__start___kcrctab_gpl,
GPL_ONLY },
};
struct module *mod;
unsigned int i;
module_assert_mutex_or_preempt();
for (i = 0; i < ARRAY_SIZE(arr); i++)
if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
return true;
list_for_each_entry_rcu(mod, &modules, list,
lockdep_is_held(&module_mutex)) {
struct symsearch arr[] = {
{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
NOT_GPL_ONLY },
{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
mod->gpl_crcs,
GPL_ONLY },
};
if (mod->state == MODULE_STATE_UNFORMED)
continue;
for (i = 0; i < ARRAY_SIZE(arr); i++)
if (find_exported_symbol_in_section(&arr[i], mod, fsa))
return true;
}
pr_debug("Failed to find symbol %s\n", fsa->name);
return false;
}
/*
* Search for module by name: must hold module_mutex (or preempt disabled
* for read-only access).
*/
struct module *find_module_all(const char *name, size_t len,
bool even_unformed)
{
struct module *mod;
module_assert_mutex_or_preempt();
list_for_each_entry_rcu(mod, &modules, list,
lockdep_is_held(&module_mutex)) {
if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
continue;
if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
return mod;
}
return NULL;
}
struct module *find_module(const char *name)
{
return find_module_all(name, strlen(name), false);
}
#ifdef CONFIG_SMP
static inline void __percpu *mod_percpu(struct module *mod)
{
return mod->percpu;
}
static int percpu_modalloc(struct module *mod, struct load_info *info)
{
Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
unsigned long align = pcpusec->sh_addralign;
if (!pcpusec->sh_size)
return 0;
if (align > PAGE_SIZE) {
pr_warn("%s: per-cpu alignment %li > %li\n",
mod->name, align, PAGE_SIZE);
align = PAGE_SIZE;
}
mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
if (!mod->percpu) {
pr_warn("%s: Could not allocate %lu bytes percpu data\n",
mod->name, (unsigned long)pcpusec->sh_size);
return -ENOMEM;
}
mod->percpu_size = pcpusec->sh_size;
return 0;
}
static void percpu_modfree(struct module *mod)
{
free_percpu(mod->percpu);
}
static unsigned int find_pcpusec(struct load_info *info)
{
return find_sec(info, ".data..percpu");
}
static void percpu_modcopy(struct module *mod,
const void *from, unsigned long size)
{
int cpu;
for_each_possible_cpu(cpu)
memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
}
bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
{
struct module *mod;
unsigned int cpu;
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (mod->state == MODULE_STATE_UNFORMED)
continue;
if (!mod->percpu_size)
continue;
for_each_possible_cpu(cpu) {
void *start = per_cpu_ptr(mod->percpu, cpu);
void *va = (void *)addr;
if (va >= start && va < start + mod->percpu_size) {
if (can_addr) {
*can_addr = (unsigned long) (va - start);
*can_addr += (unsigned long)
per_cpu_ptr(mod->percpu,
get_boot_cpu_id());
}
preempt_enable();
return true;
}
}
}
preempt_enable();
return false;
}
/**
* is_module_percpu_address() - test whether address is from module static percpu
* @addr: address to test
*
* Test whether @addr belongs to module static percpu area.
*
* Return: %true if @addr is from module static percpu area
*/
bool is_module_percpu_address(unsigned long addr)
{
return __is_module_percpu_address(addr, NULL);
}
#else /* ... !CONFIG_SMP */
static inline void __percpu *mod_percpu(struct module *mod)
{
return NULL;
}
static int percpu_modalloc(struct module *mod, struct load_info *info)
{
/* UP modules shouldn't have this section: ENOMEM isn't quite right */
if (info->sechdrs[info->index.pcpu].sh_size != 0)
return -ENOMEM;
return 0;
}
static inline void percpu_modfree(struct module *mod)
{
}
static unsigned int find_pcpusec(struct load_info *info)
{
return 0;
}
static inline void percpu_modcopy(struct module *mod,
const void *from, unsigned long size)
{
/* pcpusec should be 0, and size of that section should be 0. */
BUG_ON(size != 0);
}
bool is_module_percpu_address(unsigned long addr)
{
return false;
}
bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
{
return false;
}
#endif /* CONFIG_SMP */
#define MODINFO_ATTR(field) \
static void setup_modinfo_##field(struct module *mod, const char *s) \
{ \
mod->field = kstrdup(s, GFP_KERNEL); \
} \
static ssize_t show_modinfo_##field(struct module_attribute *mattr, \
struct module_kobject *mk, char *buffer) \
{ \
return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
} \
static int modinfo_##field##_exists(struct module *mod) \
{ \
return mod->field != NULL; \
} \
static void free_modinfo_##field(struct module *mod) \
{ \
kfree(mod->field); \
mod->field = NULL; \
} \
static struct module_attribute modinfo_##field = { \
.attr = { .name = __stringify(field), .mode = 0444 }, \
.show = show_modinfo_##field, \
.setup = setup_modinfo_##field, \
.test = modinfo_##field##_exists, \
.free = free_modinfo_##field, \
};
MODINFO_ATTR(version);
MODINFO_ATTR(srcversion);
static struct {
char name[MODULE_NAME_LEN + 1];
char taints[MODULE_FLAGS_BUF_SIZE];
} last_unloaded_module;
#ifdef CONFIG_MODULE_UNLOAD
EXPORT_TRACEPOINT_SYMBOL(module_get);
/* MODULE_REF_BASE is the base reference count by kmodule loader. */
#define MODULE_REF_BASE 1
/* Init the unload section of the module. */
static int module_unload_init(struct module *mod)
{
/*
* Initialize reference counter to MODULE_REF_BASE.
* refcnt == 0 means module is going.
*/
atomic_set(&mod->refcnt, MODULE_REF_BASE);
INIT_LIST_HEAD(&mod->source_list);
INIT_LIST_HEAD(&mod->target_list);
/* Hold reference count during initialization. */
atomic_inc(&mod->refcnt);
return 0;
}
/* Does a already use b? */
static int already_uses(struct module *a, struct module *b)
{
struct module_use *use;
list_for_each_entry(use, &b->source_list, source_list) {
if (use->source == a)
return 1;
}
pr_debug("%s does not use %s!\n", a->name, b->name);
return 0;
}
/*
* Module a uses b
* - we add 'a' as a "source", 'b' as a "target" of module use
* - the module_use is added to the list of 'b' sources (so
* 'b' can walk the list to see who sourced them), and of 'a'
* targets (so 'a' can see what modules it targets).
*/
static int add_module_usage(struct module *a, struct module *b)
{
struct module_use *use;
pr_debug("Allocating new usage for %s.\n", a->name);
use = kmalloc(sizeof(*use), GFP_ATOMIC);
if (!use)
return -ENOMEM;
use->source = a;
use->target = b;
list_add(&use->source_list, &b->source_list);
list_add(&use->target_list, &a->target_list);
return 0;
}
/* Module a uses b: caller needs module_mutex() */
static int ref_module(struct module *a, struct module *b)
{
int err;
if (b == NULL || already_uses(a, b))
return 0;
/* If module isn't available, we fail. */
err = strong_try_module_get(b);
if (err)
return err;
err = add_module_usage(a, b);
if (err) {
module_put(b);
return err;
}
return 0;
}
/* Clear the unload stuff of the module. */
static void module_unload_free(struct module *mod)
{
struct module_use *use, *tmp;
mutex_lock(&module_mutex);
list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
struct module *i = use->target;
pr_debug("%s unusing %s\n", mod->name, i->name);
module_put(i);
list_del(&use->source_list);
list_del(&use->target_list);
kfree(use);
}
mutex_unlock(&module_mutex);
}
#ifdef CONFIG_MODULE_FORCE_UNLOAD
static inline int try_force_unload(unsigned int flags)
{
int ret = (flags & O_TRUNC);
if (ret)
add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
return ret;
}
#else
static inline int try_force_unload(unsigned int flags)
{
return 0;
}
#endif /* CONFIG_MODULE_FORCE_UNLOAD */
/* Try to release refcount of module, 0 means success. */
static int try_release_module_ref(struct module *mod)
{
int ret;
/* Try to decrement refcnt which we set at loading */
ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
BUG_ON(ret < 0);
if (ret)
/* Someone can put this right now, recover with checking */
ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
return ret;
}
static int try_stop_module(struct module *mod, int flags, int *forced)
{
/* If it's not unused, quit unless we're forcing. */
if (try_release_module_ref(mod) != 0) {
*forced = try_force_unload(flags);
if (!(*forced))
return -EWOULDBLOCK;
}
/* Mark it as dying. */
mod->state = MODULE_STATE_GOING;
return 0;
}
/**
* module_refcount() - return the refcount or -1 if unloading
* @mod: the module we're checking
*
* Return:
* -1 if the module is in the process of unloading
* otherwise the number of references in the kernel to the module
*/
int module_refcount(struct module *mod)
{
return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
}
EXPORT_SYMBOL(module_refcount);
/* This exists whether we can unload or not */
static void free_module(struct module *mod);
SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
unsigned int, flags)
{
struct module *mod;
char name[MODULE_NAME_LEN];
char buf[MODULE_FLAGS_BUF_SIZE];
int ret, forced = 0;
if (!capable(CAP_SYS_MODULE) || modules_disabled)
return -EPERM;
if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
return -EFAULT;
name[MODULE_NAME_LEN-1] = '\0';
audit_log_kern_module(name);
if (mutex_lock_interruptible(&module_mutex) != 0)
return -EINTR;
mod = find_module(name);
if (!mod) {
ret = -ENOENT;
goto out;
}
if (!list_empty(&mod->source_list)) {
/* Other modules depend on us: get rid of them first. */
ret = -EWOULDBLOCK;
goto out;
}
/* Doing init or already dying? */
if (mod->state != MODULE_STATE_LIVE) {
/* FIXME: if (force), slam module count damn the torpedoes */
pr_debug("%s already dying\n", mod->name);
ret = -EBUSY;
goto out;
}
/* If it has an init func, it must have an exit func to unload */
if (mod->init && !mod->exit) {
forced = try_force_unload(flags);
if (!forced) {
/* This module can't be removed */
ret = -EBUSY;
goto out;
}
}
ret = try_stop_module(mod, flags, &forced);
if (ret != 0)
goto out;
mutex_unlock(&module_mutex);
/* Final destruction now no one is using it. */
if (mod->exit != NULL)
mod->exit();
blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_GOING, mod);
klp_module_going(mod);
ftrace_release_mod(mod);
async_synchronize_full();
/* Store the name and taints of the last unloaded module for diagnostic purposes */
strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
free_module(mod);
/* someone could wait for the module in add_unformed_module() */
wake_up_all(&module_wq);
return 0;
out:
mutex_unlock(&module_mutex);
return ret;
}
void __symbol_put(const char *symbol)
{
struct find_symbol_arg fsa = {
.name = symbol,
.gplok = true,
};
preempt_disable();
BUG_ON(!find_symbol(&fsa));
module_put(fsa.owner);
preempt_enable();
}
EXPORT_SYMBOL(__symbol_put);
/* Note this assumes addr is a function, which it currently always is. */
void symbol_put_addr(void *addr)
{
struct module *modaddr;
unsigned long a = (unsigned long)dereference_function_descriptor(addr);
if (core_kernel_text(a))
return;
/*
* Even though we hold a reference on the module; we still need to
* disable preemption in order to safely traverse the data structure.
*/
preempt_disable();
modaddr = __module_text_address(a);
BUG_ON(!modaddr);
module_put(modaddr);
preempt_enable();
}
EXPORT_SYMBOL_GPL(symbol_put_addr);
static ssize_t show_refcnt(struct module_attribute *mattr,
struct module_kobject *mk, char *buffer)
{
return sprintf(buffer, "%i\n", module_refcount(mk->mod));
}
static struct module_attribute modinfo_refcnt =
__ATTR(refcnt, 0444, show_refcnt, NULL);
void __module_get(struct module *module)
{
if (module) {
atomic_inc(&module->refcnt);
trace_module_get(module, _RET_IP_);
}
}
EXPORT_SYMBOL(__module_get);
bool try_module_get(struct module *module)
{
bool ret = true;
if (module) {
/* Note: here, we can fail to get a reference */
if (likely(module_is_live(module) &&
atomic_inc_not_zero(&module->refcnt) != 0))
trace_module_get(module, _RET_IP_);
else
ret = false;
}
return ret;
}
EXPORT_SYMBOL(try_module_get);
void module_put(struct module *module)
{
int ret;
if (module) {
ret = atomic_dec_if_positive(&module->refcnt);
WARN_ON(ret < 0); /* Failed to put refcount */
trace_module_put(module, _RET_IP_);
}
}
EXPORT_SYMBOL(module_put);
#else /* !CONFIG_MODULE_UNLOAD */
static inline void module_unload_free(struct module *mod)
{
}
static int ref_module(struct module *a, struct module *b)
{
return strong_try_module_get(b);
}
static inline int module_unload_init(struct module *mod)
{
return 0;
}
#endif /* CONFIG_MODULE_UNLOAD */
size_t module_flags_taint(unsigned long taints, char *buf)
{
size_t l = 0;
int i;
for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
if (taint_flags[i].module && test_bit(i, &taints))
buf[l++] = taint_flags[i].c_true;
}
return l;
}
static ssize_t show_initstate(struct module_attribute *mattr,
struct module_kobject *mk, char *buffer)
{
const char *state = "unknown";
switch (mk->mod->state) {
case MODULE_STATE_LIVE:
state = "live";
break;
case MODULE_STATE_COMING:
state = "coming";
break;
case MODULE_STATE_GOING:
state = "going";
break;
default:
BUG();
}
return sprintf(buffer, "%s\n", state);
}
static struct module_attribute modinfo_initstate =
__ATTR(initstate, 0444, show_initstate, NULL);
static ssize_t store_uevent(struct module_attribute *mattr,
struct module_kobject *mk,
const char *buffer, size_t count)
{
int rc;
rc = kobject_synth_uevent(&mk->kobj, buffer, count);
return rc ? rc : count;
}
struct module_attribute module_uevent =
__ATTR(uevent, 0200, NULL, store_uevent);
static ssize_t show_coresize(struct module_attribute *mattr,
struct module_kobject *mk, char *buffer)
{
unsigned int size = mk->mod->mem[MOD_TEXT].size;
if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
for_class_mod_mem_type(type, core_data)
size += mk->mod->mem[type].size;
}
return sprintf(buffer, "%u\n", size);
}
static struct module_attribute modinfo_coresize =
__ATTR(coresize, 0444, show_coresize, NULL);
#ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
static ssize_t show_datasize(struct module_attribute *mattr,
struct module_kobject *mk, char *buffer)
{
unsigned int size = 0;
for_class_mod_mem_type(type, core_data)
size += mk->mod->mem[type].size;
return sprintf(buffer, "%u\n", size);
}
static struct module_attribute modinfo_datasize =
__ATTR(datasize, 0444, show_datasize, NULL);
#endif
static ssize_t show_initsize(struct module_attribute *mattr,
struct module_kobject *mk, char *buffer)
{
unsigned int size = 0;
for_class_mod_mem_type(type, init)
size += mk->mod->mem[type].size;
return sprintf(buffer, "%u\n", size);
}
static struct module_attribute modinfo_initsize =
__ATTR(initsize, 0444, show_initsize, NULL);
static ssize_t show_taint(struct module_attribute *mattr,
struct module_kobject *mk, char *buffer)
{
size_t l;
l = module_flags_taint(mk->mod->taints, buffer);
buffer[l++] = '\n';
return l;
}
static struct module_attribute modinfo_taint =
__ATTR(taint, 0444, show_taint, NULL);
struct module_attribute *modinfo_attrs[] = {
&module_uevent,
&modinfo_version,
&modinfo_srcversion,
&modinfo_initstate,
&modinfo_coresize,
#ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
&modinfo_datasize,
#endif
&modinfo_initsize,
&modinfo_taint,
#ifdef CONFIG_MODULE_UNLOAD
&modinfo_refcnt,
#endif
NULL,
};
size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
static const char vermagic[] = VERMAGIC_STRING;
int try_to_force_load(struct module *mod, const char *reason)
{
#ifdef CONFIG_MODULE_FORCE_LOAD
if (!test_taint(TAINT_FORCED_MODULE))
pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
return 0;
#else
return -ENOEXEC;
#endif
}
/* Parse tag=value strings from .modinfo section */
char *module_next_tag_pair(char *string, unsigned long *secsize)
{
/* Skip non-zero chars */
while (string[0]) {
string++;
if ((*secsize)-- <= 1)
return NULL;
}
/* Skip any zero padding. */
while (!string[0]) {
string++;
if ((*secsize)-- <= 1)
return NULL;
}
return string;
}
static char *get_next_modinfo(const struct load_info *info, const char *tag,
char *prev)
{
char *p;
unsigned int taglen = strlen(tag);
Elf_Shdr *infosec = &info->sechdrs[info->index.info];
unsigned long size = infosec->sh_size;
/*
* get_modinfo() calls made before rewrite_section_headers()
* must use sh_offset, as sh_addr isn't set!
*/
char *modinfo = (char *)info->hdr + infosec->sh_offset;
if (prev) {
size -= prev - modinfo;
modinfo = module_next_tag_pair(prev, &size);
}
for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
return p + taglen + 1;
}
return NULL;
}
static char *get_modinfo(const struct load_info *info, const char *tag)
{
return get_next_modinfo(info, tag, NULL);
}
static int verify_namespace_is_imported(const struct load_info *info,
const struct kernel_symbol *sym,
struct module *mod)
{
const char *namespace;
char *imported_namespace;
namespace = kernel_symbol_namespace(sym);
if (namespace && namespace[0]) {
for_each_modinfo_entry(imported_namespace, info, "import_ns") {
if (strcmp(namespace, imported_namespace) == 0)
return 0;
}
#ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
pr_warn(
#else
pr_err(
#endif
"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
mod->name, kernel_symbol_name(sym), namespace);
#ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
return -EINVAL;
#endif
}
return 0;
}
static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
{
if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
return true;
if (mod->using_gplonly_symbols) {
pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
mod->name, name, owner->name);
return false;
}
if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
mod->name, name, owner->name);
set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
}
return true;
}
/* Resolve a symbol for this module. I.e. if we find one, record usage. */
static const struct kernel_symbol *resolve_symbol(struct module *mod,
const struct load_info *info,
const char *name,
char ownername[])
{
struct find_symbol_arg fsa = {
.name = name,
.gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
.warn = true,
};
int err;
/*
* The module_mutex should not be a heavily contended lock;
* if we get the occasional sleep here, we'll go an extra iteration
* in the wait_event_interruptible(), which is harmless.
*/
sched_annotate_sleep();
mutex_lock(&module_mutex);
if (!find_symbol(&fsa))
goto unlock;
if (fsa.license == GPL_ONLY)
mod->using_gplonly_symbols = true;
if (!inherit_taint(mod, fsa.owner, name)) {
fsa.sym = NULL;
goto getname;
}
if (!check_version(info, name, mod, fsa.crc)) {
fsa.sym = ERR_PTR(-EINVAL);
goto getname;
}
err = verify_namespace_is_imported(info, fsa.sym, mod);
if (err) {
fsa.sym = ERR_PTR(err);
goto getname;
}
err = ref_module(mod, fsa.owner);
if (err) {
fsa.sym = ERR_PTR(err);
goto getname;
}
getname:
/* We must make copy under the lock if we failed to get ref. */
strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
unlock:
mutex_unlock(&module_mutex);
return fsa.sym;
}
static const struct kernel_symbol *
resolve_symbol_wait(struct module *mod,
const struct load_info *info,
const char *name)
{
const struct kernel_symbol *ksym;
char owner[MODULE_NAME_LEN];
if (wait_event_interruptible_timeout(module_wq,
!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
|| PTR_ERR(ksym) != -EBUSY,
30 * HZ) <= 0) {
pr_warn("%s: gave up waiting for init of module %s.\n",
mod->name, owner);
}
return ksym;
}
void __weak module_memfree(void *module_region)
{
/*
* This memory may be RO, and freeing RO memory in an interrupt is not
* supported by vmalloc.
*/
WARN_ON(in_interrupt());
vfree(module_region);
}
void __weak module_arch_cleanup(struct module *mod)
{
}
void __weak module_arch_freeing_init(struct module *mod)
{
}
static bool mod_mem_use_vmalloc(enum mod_mem_type type)
{
return IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC) &&
mod_mem_type_is_core_data(type);
}
static void *module_memory_alloc(unsigned int size, enum mod_mem_type type)
{
if (mod_mem_use_vmalloc(type))
return vzalloc(size);
return module_alloc(size);
}
static void module_memory_free(void *ptr, enum mod_mem_type type)
{
if (mod_mem_use_vmalloc(type))
vfree(ptr);
else
module_memfree(ptr);
}
static void free_mod_mem(struct module *mod)
{
for_each_mod_mem_type(type) {
struct module_memory *mod_mem = &mod->mem[type];
if (type == MOD_DATA)
continue;
/* Free lock-classes; relies on the preceding sync_rcu(). */
lockdep_free_key_range(mod_mem->base, mod_mem->size);
if (mod_mem->size)
module_memory_free(mod_mem->base, type);
}
/* MOD_DATA hosts mod, so free it at last */
lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
module_memory_free(mod->mem[MOD_DATA].base, MOD_DATA);
}
/* Free a module, remove from lists, etc. */
static void free_module(struct module *mod)
{
trace_module_free(mod);
codetag_unload_module(mod);
mod_sysfs_teardown(mod);
/*
* We leave it in list to prevent duplicate loads, but make sure
* that noone uses it while it's being deconstructed.
*/
mutex_lock(&module_mutex);
mod->state = MODULE_STATE_UNFORMED;
mutex_unlock(&module_mutex);
/* Arch-specific cleanup. */
module_arch_cleanup(mod);
/* Module unload stuff */
module_unload_free(mod);
/* Free any allocated parameters. */
destroy_params(mod->kp, mod->num_kp);
if (is_livepatch_module(mod))
free_module_elf(mod);
/* Now we can delete it from the lists */
mutex_lock(&module_mutex);
/* Unlink carefully: kallsyms could be walking list. */
list_del_rcu(&mod->list);
mod_tree_remove(mod);
/* Remove this module from bug list, this uses list_del_rcu */
module_bug_cleanup(mod);
/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
synchronize_rcu();
if (try_add_tainted_module(mod))
pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
mod->name);
mutex_unlock(&module_mutex);
/* This may be empty, but that's OK */
module_arch_freeing_init(mod);
kfree(mod->args);
percpu_modfree(mod);
free_mod_mem(mod);
}
void *__symbol_get(const char *symbol)
{
struct find_symbol_arg fsa = {
.name = symbol,
.gplok = true,
.warn = true,
};
preempt_disable();
if (!find_symbol(&fsa))
goto fail;
if (fsa.license != GPL_ONLY) {
pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
symbol);
goto fail;
}
if (strong_try_module_get(fsa.owner))
goto fail;
preempt_enable();
return (void *)kernel_symbol_value(fsa.sym);
fail:
preempt_enable();
return NULL;
}
EXPORT_SYMBOL_GPL(__symbol_get);
/*
* Ensure that an exported symbol [global namespace] does not already exist
* in the kernel or in some other module's exported symbol table.
*
* You must hold the module_mutex.
*/
static int verify_exported_symbols(struct module *mod)
{
unsigned int i;
const struct kernel_symbol *s;
struct {
const struct kernel_symbol *sym;
unsigned int num;
} arr[] = {
{ mod->syms, mod->num_syms },
{ mod->gpl_syms, mod->num_gpl_syms },
};
for (i = 0; i < ARRAY_SIZE(arr); i++) {
for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
struct find_symbol_arg fsa = {
.name = kernel_symbol_name(s),
.gplok = true,
};
if (find_symbol(&fsa)) {
pr_err("%s: exports duplicate symbol %s"
" (owned by %s)\n",
mod->name, kernel_symbol_name(s),
module_name(fsa.owner));
return -ENOEXEC;
}
}
}
return 0;
}
static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
{
/*
* On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
* before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
* i386 has a similar problem but may not deserve a fix.
*
* If we ever have to ignore many symbols, consider refactoring the code to
* only warn if referenced by a relocation.
*/
if (emachine == EM_386 || emachine == EM_X86_64)
return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
return false;
}
/* Change all symbols so that st_value encodes the pointer directly. */
static int simplify_symbols(struct module *mod, const struct load_info *info)
{
Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
Elf_Sym *sym = (void *)symsec->sh_addr;
unsigned long secbase;
unsigned int i;
int ret = 0;
const struct kernel_symbol *ksym;
for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
const char *name = info->strtab + sym[i].st_name;
switch (sym[i].st_shndx) {
case SHN_COMMON:
/* Ignore common symbols */
if (!strncmp(name, "__gnu_lto", 9))
break;
/*
* We compiled with -fno-common. These are not
* supposed to happen.
*/
pr_debug("Common symbol: %s\n", name);
pr_warn("%s: please compile with -fno-common\n",
mod->name);
ret = -ENOEXEC;
break;
case SHN_ABS:
/* Don't need to do anything */
pr_debug("Absolute symbol: 0x%08lx %s\n",
(long)sym[i].st_value, name);
break;
case SHN_LIVEPATCH:
/* Livepatch symbols are resolved by livepatch */
break;
case SHN_UNDEF:
ksym = resolve_symbol_wait(mod, info, name);
/* Ok if resolved. */
if (ksym && !IS_ERR(ksym)) {
sym[i].st_value = kernel_symbol_value(ksym);
break;
}
/* Ok if weak or ignored. */
if (!ksym &&
(ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
ignore_undef_symbol(info->hdr->e_machine, name)))
break;
ret = PTR_ERR(ksym) ?: -ENOENT;
pr_warn("%s: Unknown symbol %s (err %d)\n",
mod->name, name, ret);
break;
default:
/* Divert to percpu allocation if a percpu var. */
if (sym[i].st_shndx == info->index.pcpu)
secbase = (unsigned long)mod_percpu(mod);
else
secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
sym[i].st_value += secbase;
break;
}
}
return ret;
}
static int apply_relocations(struct module *mod, const struct load_info *info)
{
unsigned int i;
int err = 0;
/* Now do relocations. */
for (i = 1; i < info->hdr->e_shnum; i++) {
unsigned int infosec = info->sechdrs[i].sh_info;
/* Not a valid relocation section? */
if (infosec >= info->hdr->e_shnum)
continue;
/* Don't bother with non-allocated sections */
if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
continue;
if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
err = klp_apply_section_relocs(mod, info->sechdrs,
info->secstrings,
info->strtab,
info->index.sym, i,
NULL);
else if (info->sechdrs[i].sh_type == SHT_REL)
err = apply_relocate(info->sechdrs, info->strtab,
info->index.sym, i, mod);
else if (info->sechdrs[i].sh_type == SHT_RELA)
err = apply_relocate_add(info->sechdrs, info->strtab,
info->index.sym, i, mod);
if (err < 0)
break;
}
return err;
}
/* Additional bytes needed by arch in front of individual sections */
unsigned int __weak arch_mod_section_prepend(struct module *mod,
unsigned int section)
{
/* default implementation just returns zero */
return 0;
}
long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
Elf_Shdr *sechdr, unsigned int section)
{
long offset;
long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
mod->mem[type].size += arch_mod_section_prepend(mod, section);
offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
mod->mem[type].size = offset + sechdr->sh_size;
WARN_ON_ONCE(offset & mask);
return offset | mask;
}
bool module_init_layout_section(const char *sname)
{
#ifndef CONFIG_MODULE_UNLOAD
if (module_exit_section(sname))
return true;
#endif
return module_init_section(sname);
}
static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
{
unsigned int m, i;
static const unsigned long masks[][2] = {
/*
* NOTE: all executable code must be the first section
* in this array; otherwise modify the text_size
* finder in the two loops below
*/
{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
};
static const int core_m_to_mem_type[] = {
MOD_TEXT,
MOD_RODATA,
MOD_RO_AFTER_INIT,
MOD_DATA,
MOD_DATA,
};
static const int init_m_to_mem_type[] = {
MOD_INIT_TEXT,
MOD_INIT_RODATA,
MOD_INVALID,
MOD_INIT_DATA,
MOD_INIT_DATA,
};
for (m = 0; m < ARRAY_SIZE(masks); ++m) {
enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
for (i = 0; i < info->hdr->e_shnum; ++i) {
Elf_Shdr *s = &info->sechdrs[i];
const char *sname = info->secstrings + s->sh_name;
if ((s->sh_flags & masks[m][0]) != masks[m][0]
|| (s->sh_flags & masks[m][1])
|| s->sh_entsize != ~0UL
|| is_init != module_init_layout_section(sname))
continue;
if (WARN_ON_ONCE(type == MOD_INVALID))
continue;
s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
pr_debug("\t%s\n", sname);
}
}
}
/*
* Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
* might -- code, read-only data, read-write data, small data. Tally
* sizes, and place the offsets into sh_entsize fields: high bit means it
* belongs in init.
*/
static void layout_sections(struct module *mod, struct load_info *info)
{
unsigned int i;
for (i = 0; i < info->hdr->e_shnum; i++)
info->sechdrs[i].sh_entsize = ~0UL;
pr_debug("Core section allocation order for %s:\n", mod->name);
__layout_sections(mod, info, false);
pr_debug("Init section allocation order for %s:\n", mod->name);
__layout_sections(mod, info, true);
}
static void module_license_taint_check(struct module *mod, const char *license)
{
if (!license)
license = "unspecified";
if (!license_is_gpl_compatible(license)) {
if (!test_taint(TAINT_PROPRIETARY_MODULE))
pr_warn("%s: module license '%s' taints kernel.\n",
mod->name, license);
add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
LOCKDEP_NOW_UNRELIABLE);
}
}
static void setup_modinfo(struct module *mod, struct load_info *info)
{
struct module_attribute *attr;
int i;
for (i = 0; (attr = modinfo_attrs[i]); i++) {
if (attr->setup)
attr->setup(mod, get_modinfo(info, attr->attr.name));
}
}
static void free_modinfo(struct module *mod)
{
struct module_attribute *attr;
int i;
for (i = 0; (attr = modinfo_attrs[i]); i++) {
if (attr->free)
attr->free(mod);
}
}
void * __weak module_alloc(unsigned long size)
{
return __vmalloc_node_range(size, 1, VMALLOC_START, VMALLOC_END,
GFP_KERNEL, PAGE_KERNEL_EXEC, VM_FLUSH_RESET_PERMS,
NUMA_NO_NODE, __builtin_return_address(0));
}
bool __weak module_init_section(const char *name)
{
return strstarts(name, ".init");
}
bool __weak module_exit_section(const char *name)
{
return strstarts(name, ".exit");
}
static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
{
#if defined(CONFIG_64BIT)
unsigned long long secend;
#else
unsigned long secend;
#endif
/*
* Check for both overflow and offset/size being
* too large.
*/
secend = shdr->sh_offset + shdr->sh_size;
if (secend < shdr->sh_offset || secend > info->len)
return -ENOEXEC;
return 0;
}
/*
* Check userspace passed ELF module against our expectations, and cache
* useful variables for further processing as we go.
*
* This does basic validity checks against section offsets and sizes, the
* section name string table, and the indices used for it (sh_name).
*
* As a last step, since we're already checking the ELF sections we cache
* useful variables which will be used later for our convenience:
*
* o pointers to section headers
* o cache the modinfo symbol section
* o cache the string symbol section
* o cache the module section
*
* As a last step we set info->mod to the temporary copy of the module in
* info->hdr. The final one will be allocated in move_module(). Any
* modifications we make to our copy of the module will be carried over
* to the final minted module.
*/
static int elf_validity_cache_copy(struct load_info *info, int flags)
{
unsigned int i;
Elf_Shdr *shdr, *strhdr;
int err;
unsigned int num_mod_secs = 0, mod_idx;
unsigned int num_info_secs = 0, info_idx;
unsigned int num_sym_secs = 0, sym_idx;
if (info->len < sizeof(*(info->hdr))) {
pr_err("Invalid ELF header len %lu\n", info->len);
goto no_exec;
}
if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
goto no_exec;
}
if (info->hdr->e_type != ET_REL) {
pr_err("Invalid ELF header type: %u != %u\n",
info->hdr->e_type, ET_REL);
goto no_exec;
}
if (!elf_check_arch(info->hdr)) {
pr_err("Invalid architecture in ELF header: %u\n",
info->hdr->e_machine);
goto no_exec;
}
if (!module_elf_check_arch(info->hdr)) {
pr_err("Invalid module architecture in ELF header: %u\n",
info->hdr->e_machine);
goto no_exec;
}
if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
pr_err("Invalid ELF section header size\n");
goto no_exec;
}
/*
* e_shnum is 16 bits, and sizeof(Elf_Shdr) is
* known and small. So e_shnum * sizeof(Elf_Shdr)
* will not overflow unsigned long on any platform.
*/
if (info->hdr->e_shoff >= info->len
|| (info->hdr->e_shnum * sizeof(Elf_Shdr) >
info->len - info->hdr->e_shoff)) {
pr_err("Invalid ELF section header overflow\n");
goto no_exec;
}
info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
/*
* Verify if the section name table index is valid.
*/
if (info->hdr->e_shstrndx == SHN_UNDEF
|| info->hdr->e_shstrndx >= info->hdr->e_shnum) {
pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
info->hdr->e_shstrndx, info->hdr->e_shstrndx,
info->hdr->e_shnum);
goto no_exec;
}
strhdr = &info->sechdrs[info->hdr->e_shstrndx];
err = validate_section_offset(info, strhdr);
if (err < 0) {
pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
return err;
}
/*
* The section name table must be NUL-terminated, as required
* by the spec. This makes strcmp and pr_* calls that access
* strings in the section safe.
*/
info->secstrings = (void *)info->hdr + strhdr->sh_offset;
if (strhdr->sh_size == 0) {
pr_err("empty section name table\n");
goto no_exec;
}
if (info->secstrings[strhdr->sh_size - 1] != '\0') {
pr_err("ELF Spec violation: section name table isn't null terminated\n");
goto no_exec;
}
/*
* The code assumes that section 0 has a length of zero and
* an addr of zero, so check for it.
*/
if (info->sechdrs[0].sh_type != SHT_NULL
|| info->sechdrs[0].sh_size != 0
|| info->sechdrs[0].sh_addr != 0) {
pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
info->sechdrs[0].sh_type);
goto no_exec;
}
for (i = 1; i < info->hdr->e_shnum; i++) {
shdr = &info->sechdrs[i];
switch (shdr->sh_type) {
case SHT_NULL:
case SHT_NOBITS:
continue;
case SHT_SYMTAB:
if (shdr->sh_link == SHN_UNDEF
|| shdr->sh_link >= info->hdr->e_shnum) {
pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
shdr->sh_link, shdr->sh_link,
info->hdr->e_shnum);
goto no_exec;
}
num_sym_secs++;
sym_idx = i;
fallthrough;
default:
err = validate_section_offset(info, shdr);
if (err < 0) {
pr_err("Invalid ELF section in module (section %u type %u)\n",
i, shdr->sh_type);
return err;
}
if (strcmp(info->secstrings + shdr->sh_name,
".gnu.linkonce.this_module") == 0) {
num_mod_secs++;
mod_idx = i;
} else if (strcmp(info->secstrings + shdr->sh_name,
".modinfo") == 0) {
num_info_secs++;
info_idx = i;
}
if (shdr->sh_flags & SHF_ALLOC) {
if (shdr->sh_name >= strhdr->sh_size) {
pr_err("Invalid ELF section name in module (section %u type %u)\n",
i, shdr->sh_type);
return -ENOEXEC;
}
}
break;
}
}
if (num_info_secs > 1) {
pr_err("Only one .modinfo section must exist.\n");
goto no_exec;
} else if (num_info_secs == 1) {
/* Try to find a name early so we can log errors with a module name */
info->index.info = info_idx;
info->name = get_modinfo(info, "name");
}
if (num_sym_secs != 1) {
pr_warn("%s: module has no symbols (stripped?)\n",
info->name ?: "(missing .modinfo section or name field)");
goto no_exec;
}
/* Sets internal symbols and strings. */
info->index.sym = sym_idx;
shdr = &info->sechdrs[sym_idx];
info->index.str = shdr->sh_link;
info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset;
/*
* The ".gnu.linkonce.this_module" ELF section is special. It is
* what modpost uses to refer to __this_module and let's use rely
* on THIS_MODULE to point to &__this_module properly. The kernel's
* modpost declares it on each modules's *.mod.c file. If the struct
* module of the kernel changes a full kernel rebuild is required.
*
* We have a few expectaions for this special section, the following
* code validates all this for us:
*
* o Only one section must exist
* o We expect the kernel to always have to allocate it: SHF_ALLOC
* o The section size must match the kernel's run time's struct module
* size
*/
if (num_mod_secs != 1) {
pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n",
info->name ?: "(missing .modinfo section or name field)");
goto no_exec;
}
shdr = &info->sechdrs[mod_idx];
/*
* This is already implied on the switch above, however let's be
* pedantic about it.
*/
if (shdr->sh_type == SHT_NOBITS) {
pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
info->name ?: "(missing .modinfo section or name field)");
goto no_exec;
}
if (!(shdr->sh_flags & SHF_ALLOC)) {
pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
info->name ?: "(missing .modinfo section or name field)");
goto no_exec;
}
if (shdr->sh_size != sizeof(struct module)) {
pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
info->name ?: "(missing .modinfo section or name field)");
goto no_exec;
}
info->index.mod = mod_idx;
/* This is temporary: point mod into copy of data. */
info->mod = (void *)info->hdr + shdr->sh_offset;
/*
* If we didn't load the .modinfo 'name' field earlier, fall back to
* on-disk struct mod 'name' field.
*/
if (!info->name)
info->name = info->mod->name;
if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
info->index.vers = 0; /* Pretend no __versions section! */
else
info->index.vers = find_sec(info, "__versions");
info->index.pcpu = find_pcpusec(info);
return 0;
no_exec:
return -ENOEXEC;
}
#define COPY_CHUNK_SIZE (16*PAGE_SIZE)
static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
{
do {
unsigned long n = min(len, COPY_CHUNK_SIZE);
if (copy_from_user(dst, usrc, n) != 0)
return -EFAULT;
cond_resched();
dst += n;
usrc += n;
len -= n;
} while (len);
return 0;
}
static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
{
if (!get_modinfo(info, "livepatch"))
/* Nothing more to do */
return 0;
if (set_livepatch_module(mod))
return 0;
pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
mod->name);
return -ENOEXEC;
}
static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
{
if (retpoline_module_ok(get_modinfo(info, "retpoline")))
return;
pr_warn("%s: loading module not compiled with retpoline compiler.\n",
mod->name);
}
/* Sets info->hdr and info->len. */
static int copy_module_from_user(const void __user *umod, unsigned long len,
struct load_info *info)
{
int err;
info->len = len;
if (info->len < sizeof(*(info->hdr)))
return -ENOEXEC;
err = security_kernel_load_data(LOADING_MODULE, true);
if (err)
return err;
/* Suck in entire file: we'll want most of it. */
info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
if (!info->hdr)
return -ENOMEM;
if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
err = -EFAULT;
goto out;
}
err = security_kernel_post_load_data((char *)info->hdr, info->len,
LOADING_MODULE, "init_module");
out:
if (err)
vfree(info->hdr);
return err;
}
static void free_copy(struct load_info *info, int flags)
{
if (flags & MODULE_INIT_COMPRESSED_FILE)
module_decompress_cleanup(info);
else
vfree(info->hdr);
}
static int rewrite_section_headers(struct load_info *info, int flags)
{
unsigned int i;
/* This should always be true, but let's be sure. */
info->sechdrs[0].sh_addr = 0;
for (i = 1; i < info->hdr->e_shnum; i++) {
Elf_Shdr *shdr = &info->sechdrs[i];
/*
* Mark all sections sh_addr with their address in the
* temporary image.
*/
shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
}
/* Track but don't keep modinfo and version sections. */
info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
return 0;
}
/*
* These calls taint the kernel depending certain module circumstances */
static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
{
int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
if (!get_modinfo(info, "intree")) {
if (!test_taint(TAINT_OOT_MODULE))
pr_warn("%s: loading out-of-tree module taints kernel.\n",
mod->name);
add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
}
check_modinfo_retpoline(mod, info);
if (get_modinfo(info, "staging")) {
add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
pr_warn("%s: module is from the staging directory, the quality "
"is unknown, you have been warned.\n", mod->name);
}
if (is_livepatch_module(mod)) {
add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
mod->name);
}
module_license_taint_check(mod, get_modinfo(info, "license"));
if (get_modinfo(info, "test")) {
if (!test_taint(TAINT_TEST))
pr_warn("%s: loading test module taints kernel.\n",
mod->name);
add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
}
#ifdef CONFIG_MODULE_SIG
mod->sig_ok = info->sig_ok;
if (!mod->sig_ok) {
pr_notice_once("%s: module verification failed: signature "
"and/or required key missing - tainting "
"kernel\n", mod->name);
add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
}
#endif
/*
* ndiswrapper is under GPL by itself, but loads proprietary modules.
* Don't use add_taint_module(), as it would prevent ndiswrapper from
* using GPL-only symbols it needs.
*/
if (strcmp(mod->name, "ndiswrapper") == 0)
add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
/* driverloader was caught wrongly pretending to be under GPL */
if (strcmp(mod->name, "driverloader") == 0)
add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
LOCKDEP_NOW_UNRELIABLE);
/* lve claims to be GPL but upstream won't provide source */
if (strcmp(mod->name, "lve") == 0)
add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
LOCKDEP_NOW_UNRELIABLE);
if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
pr_warn("%s: module license taints kernel.\n", mod->name);
}
static int check_modinfo(struct module *mod, struct load_info *info, int flags)
{
const char *modmagic = get_modinfo(info, "vermagic");
int err;
if (flags & MODULE_INIT_IGNORE_VERMAGIC)
modmagic = NULL;
/* This is allowed: modprobe --force will invalidate it. */
if (!modmagic) {
err = try_to_force_load(mod, "bad vermagic");
if (err)
return err;
} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
pr_err("%s: version magic '%s' should be '%s'\n",
info->name, modmagic, vermagic);
return -ENOEXEC;
}
err = check_modinfo_livepatch(mod, info);
if (err)
return err;
return 0;
}
static int find_module_sections(struct module *mod, struct load_info *info)
{
mod->kp = section_objs(info, "__param",
sizeof(*mod->kp), &mod->num_kp);
mod->syms = section_objs(info, "__ksymtab",
sizeof(*mod->syms), &mod->num_syms);
mod->crcs = section_addr(info, "__kcrctab");
mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
sizeof(*mod->gpl_syms),
&mod->num_gpl_syms);
mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
#ifdef CONFIG_CONSTRUCTORS
mod->ctors = section_objs(info, ".ctors",
sizeof(*mod->ctors), &mod->num_ctors);
if (!mod->ctors)
mod->ctors = section_objs(info, ".init_array",
sizeof(*mod->ctors), &mod->num_ctors);
else if (find_sec(info, ".init_array")) {
/*
* This shouldn't happen with same compiler and binutils
* building all parts of the module.
*/
pr_warn("%s: has both .ctors and .init_array.\n",
mod->name);
return -EINVAL;
}
#endif
mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
&mod->noinstr_text_size);
#ifdef CONFIG_TRACEPOINTS
mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
sizeof(*mod->tracepoints_ptrs),
&mod->num_tracepoints);
#endif
#ifdef CONFIG_TREE_SRCU
mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
sizeof(*mod->srcu_struct_ptrs),
&mod->num_srcu_structs);
#endif
#ifdef CONFIG_BPF_EVENTS
mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
sizeof(*mod->bpf_raw_events),
&mod->num_bpf_raw_events);
#endif
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
#endif
#ifdef CONFIG_JUMP_LABEL
mod->jump_entries = section_objs(info, "__jump_table",
sizeof(*mod->jump_entries),
&mod->num_jump_entries);
#endif
#ifdef CONFIG_EVENT_TRACING
mod->trace_events = section_objs(info, "_ftrace_events",
sizeof(*mod->trace_events),
&mod->num_trace_events);
mod->trace_evals = section_objs(info, "_ftrace_eval_map",
sizeof(*mod->trace_evals),
&mod->num_trace_evals);
#endif
#ifdef CONFIG_TRACING
mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
sizeof(*mod->trace_bprintk_fmt_start),
&mod->num_trace_bprintk_fmt);
#endif
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
/* sechdrs[0].sh_size is always zero */
mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
sizeof(*mod->ftrace_callsites),
&mod->num_ftrace_callsites);
#endif
#ifdef CONFIG_FUNCTION_ERROR_INJECTION
mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
sizeof(*mod->ei_funcs),
&mod->num_ei_funcs);
#endif
#ifdef CONFIG_KPROBES
mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
&mod->kprobes_text_size);
mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
sizeof(unsigned long),
&mod->num_kprobe_blacklist);
#endif
#ifdef CONFIG_PRINTK_INDEX
mod->printk_index_start = section_objs(info, ".printk_index",
sizeof(*mod->printk_index_start),
&mod->printk_index_size);
#endif
#ifdef CONFIG_HAVE_STATIC_CALL_INLINE
mod->static_call_sites = section_objs(info, ".static_call_sites",
sizeof(*mod->static_call_sites),
&mod->num_static_call_sites);
#endif
#if IS_ENABLED(CONFIG_KUNIT)
mod->kunit_suites = section_objs(info, ".kunit_test_suites",
sizeof(*mod->kunit_suites),
&mod->num_kunit_suites);
mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
sizeof(*mod->kunit_init_suites),
&mod->num_kunit_init_suites);
#endif
mod->extable = section_objs(info, "__ex_table",
sizeof(*mod->extable), &mod->num_exentries);
if (section_addr(info, "__obsparm"))
pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
#ifdef CONFIG_DYNAMIC_DEBUG_CORE
mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
sizeof(*mod->dyndbg_info.descs),
&mod->dyndbg_info.num_descs);
mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
sizeof(*mod->dyndbg_info.classes),
&mod->dyndbg_info.num_classes);
#endif
return 0;
}
static int move_module(struct module *mod, struct load_info *info)
{
int i;
void *ptr;
enum mod_mem_type t = 0;
int ret = -ENOMEM;
for_each_mod_mem_type(type) {
if (!mod->mem[type].size) {
mod->mem[type].base = NULL;
continue;
}
mod->mem[type].size = PAGE_ALIGN(mod->mem[type].size);
ptr = module_memory_alloc(mod->mem[type].size, type);
/*
* The pointer to these blocks of memory are stored on the module
* structure and we keep that around so long as the module is
* around. We only free that memory when we unload the module.
* Just mark them as not being a leak then. The .init* ELF
* sections *do* get freed after boot so we *could* treat them
* slightly differently with kmemleak_ignore() and only grey
* them out as they work as typical memory allocations which
* *do* eventually get freed, but let's just keep things simple
* and avoid *any* false positives.
*/
kmemleak_not_leak(ptr);
if (!ptr) {
t = type;
goto out_enomem;
}
memset(ptr, 0, mod->mem[type].size);
mod->mem[type].base = ptr;
}
/* Transfer each section which specifies SHF_ALLOC */
pr_debug("Final section addresses for %s:\n", mod->name);
for (i = 0; i < info->hdr->e_shnum; i++) {
void *dest;
Elf_Shdr *shdr = &info->sechdrs[i];
enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
if (!(shdr->sh_flags & SHF_ALLOC))
continue;
dest = mod->mem[type].base + (shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK);
if (shdr->sh_type != SHT_NOBITS) {
/*
* Our ELF checker already validated this, but let's
* be pedantic and make the goal clearer. We actually
* end up copying over all modifications made to the
* userspace copy of the entire struct module.
*/
if (i == info->index.mod &&
(WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
ret = -ENOEXEC;
goto out_enomem;
}
memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
}
/*
* Update the userspace copy's ELF section address to point to
* our newly allocated memory as a pure convenience so that
* users of info can keep taking advantage and using the newly
* minted official memory area.
*/
shdr->sh_addr = (unsigned long)dest;
pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
(long)shdr->sh_size, info->secstrings + shdr->sh_name);
}
return 0;
out_enomem:
for (t--; t >= 0; t--)
module_memory_free(mod->mem[t].base, t);
return ret;
}
static int check_export_symbol_versions(struct module *mod)
{
#ifdef CONFIG_MODVERSIONS
if ((mod->num_syms && !mod->crcs) ||
(mod->num_gpl_syms && !mod->gpl_crcs)) {
return try_to_force_load(mod,
"no versions for exported symbols");
}
#endif
return 0;
}
static void flush_module_icache(const struct module *mod)
{
/*
* Flush the instruction cache, since we've played with text.
* Do it before processing of module parameters, so the module
* can provide parameter accessor functions of its own.
*/
for_each_mod_mem_type(type) {
const struct module_memory *mod_mem = &mod->mem[type];
if (mod_mem->size) {
flush_icache_range((unsigned long)mod_mem->base,
(unsigned long)mod_mem->base + mod_mem->size);
}
}
}
bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
{
return true;
}
int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
Elf_Shdr *sechdrs,
char *secstrings,
struct module *mod)
{
return 0;
}
/* module_blacklist is a comma-separated list of module names */
static char *module_blacklist;
static bool blacklisted(const char *module_name)
{
const char *p;
size_t len;
if (!module_blacklist)
return false;
for (p = module_blacklist; *p; p += len) {
len = strcspn(p, ",");
if (strlen(module_name) == len && !memcmp(module_name, p, len))
return true;
if (p[len] == ',')
len++;
}
return false;
}
core_param(module_blacklist, module_blacklist, charp, 0400);
static struct module *layout_and_allocate(struct load_info *info, int flags)
{
struct module *mod;
unsigned int ndx;
int err;
/* Allow arches to frob section contents and sizes. */
err = module_frob_arch_sections(info->hdr, info->sechdrs,
info->secstrings, info->mod);
if (err < 0)
return ERR_PTR(err);
err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
info->secstrings, info->mod);
if (err < 0)
return ERR_PTR(err);
/* We will do a special allocation for per-cpu sections later. */
info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
/*
* Mark ro_after_init section with SHF_RO_AFTER_INIT so that
* layout_sections() can put it in the right place.
* Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
*/
ndx = find_sec(info, ".data..ro_after_init");
if (ndx)
info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
/*
* Mark the __jump_table section as ro_after_init as well: these data
* structures are never modified, with the exception of entries that
* refer to code in the __init section, which are annotated as such
* at module load time.
*/
ndx = find_sec(info, "__jump_table");
if (ndx)
info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
/*
* Determine total sizes, and put offsets in sh_entsize. For now
* this is done generically; there doesn't appear to be any
* special cases for the architectures.
*/
layout_sections(info->mod, info);
layout_symtab(info->mod, info);
/* Allocate and move to the final place */
err = move_module(info->mod, info);
if (err)
return ERR_PTR(err);
/* Module has been copied to its final place now: return it. */
mod = (void *)info->sechdrs[info->index.mod].sh_addr;
kmemleak_load_module(mod, info);
return mod;
}
/* mod is no longer valid after this! */
static void module_deallocate(struct module *mod, struct load_info *info)
{
percpu_modfree(mod);
module_arch_freeing_init(mod);
free_mod_mem(mod);
}
int __weak module_finalize(const Elf_Ehdr *hdr,
const Elf_Shdr *sechdrs,
struct module *me)
{
return 0;
}
static int post_relocation(struct module *mod, const struct load_info *info)
{
/* Sort exception table now relocations are done. */
sort_extable(mod->extable, mod->extable + mod->num_exentries);
/* Copy relocated percpu area over. */
percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
info->sechdrs[info->index.pcpu].sh_size);
/* Setup kallsyms-specific fields. */
add_kallsyms(mod, info);
/* Arch-specific module finalizing. */
return module_finalize(info->hdr, info->sechdrs, mod);
}
/* Call module constructors. */
static void do_mod_ctors(struct module *mod)
{
#ifdef CONFIG_CONSTRUCTORS
unsigned long i;
for (i = 0; i < mod->num_ctors; i++)
mod->ctors[i]();
#endif
}
/* For freeing module_init on success, in case kallsyms traversing */
struct mod_initfree {
struct llist_node node;
void *init_text;
void *init_data;
void *init_rodata;
};
static void do_free_init(struct work_struct *w)
{
struct llist_node *pos, *n, *list;
struct mod_initfree *initfree;
list = llist_del_all(&init_free_list);
synchronize_rcu();
llist_for_each_safe(pos, n, list) {
initfree = container_of(pos, struct mod_initfree, node);
module_memfree(initfree->init_text);
module_memfree(initfree->init_data);
module_memfree(initfree->init_rodata);
kfree(initfree);
}
}
void flush_module_init_free_work(void)
{
flush_work(&init_free_wq);
}
#undef MODULE_PARAM_PREFIX
#define MODULE_PARAM_PREFIX "module."
/* Default value for module->async_probe_requested */
static bool async_probe;
module_param(async_probe, bool, 0644);
/*
* This is where the real work happens.
*
* Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
* helper command 'lx-symbols'.
*/
static noinline int do_init_module(struct module *mod)
{
int ret = 0;
struct mod_initfree *freeinit;
#if defined(CONFIG_MODULE_STATS)
unsigned int text_size = 0, total_size = 0;
for_each_mod_mem_type(type) {
const struct module_memory *mod_mem = &mod->mem[type];
if (mod_mem->size) {
total_size += mod_mem->size;
if (type == MOD_TEXT || type == MOD_INIT_TEXT)
text_size += mod_mem->size;
}
}
#endif
freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
if (!freeinit) {
ret = -ENOMEM;
goto fail;
}
freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
do_mod_ctors(mod);
/* Start the module */
if (mod->init != NULL)
ret = do_one_initcall(mod->init);
if (ret < 0) {
goto fail_free_freeinit;
}
if (ret > 0) {
pr_warn("%s: '%s'->init suspiciously returned %d, it should "
"follow 0/-E convention\n"
"%s: loading module anyway...\n",
__func__, mod->name, ret, __func__);
dump_stack();
}
/* Now it's a first class citizen! */
mod->state = MODULE_STATE_LIVE;
blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_LIVE, mod);
/* Delay uevent until module has finished its init routine */
kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
/*
* We need to finish all async code before the module init sequence
* is done. This has potential to deadlock if synchronous module
* loading is requested from async (which is not allowed!).
*
* See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
* request_module() from async workers") for more details.
*/
if (!mod->async_probe_requested)
async_synchronize_full();
ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
mutex_lock(&module_mutex);
/* Drop initial reference. */
module_put(mod);
trim_init_extable(mod);
#ifdef CONFIG_KALLSYMS
/* Switch to core kallsyms now init is done: kallsyms may be walking! */
rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
#endif
ret = module_enable_rodata_ro(mod, true);
if (ret)
goto fail_mutex_unlock;
mod_tree_remove_init(mod);
module_arch_freeing_init(mod);
for_class_mod_mem_type(type, init) {
mod->mem[type].base = NULL;
mod->mem[type].size = 0;
}
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointer */
mod->btf_data = NULL;
#endif
/*
* We want to free module_init, but be aware that kallsyms may be
* walking this with preempt disabled. In all the failure paths, we
* call synchronize_rcu(), but we don't want to slow down the success
* path. module_memfree() cannot be called in an interrupt, so do the
* work and call synchronize_rcu() in a work queue.
*
* Note that module_alloc() on most architectures creates W+X page
* mappings which won't be cleaned up until do_free_init() runs. Any
* code such as mark_rodata_ro() which depends on those mappings to
* be cleaned up needs to sync with the queued work by invoking
* flush_module_init_free_work().
*/
if (llist_add(&freeinit->node, &init_free_list))
schedule_work(&init_free_wq);
mutex_unlock(&module_mutex);
wake_up_all(&module_wq);
mod_stat_add_long(text_size, &total_text_size);
mod_stat_add_long(total_size, &total_mod_size);
mod_stat_inc(&modcount);
return 0;
fail_mutex_unlock:
mutex_unlock(&module_mutex);
fail_free_freeinit:
kfree(freeinit);
fail:
/* Try to protect us from buggy refcounters. */
mod->state = MODULE_STATE_GOING;
synchronize_rcu();
module_put(mod);
blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_GOING, mod);
klp_module_going(mod);
ftrace_release_mod(mod);
free_module(mod);
wake_up_all(&module_wq);
return ret;
}
static int may_init_module(void)
{
if (!capable(CAP_SYS_MODULE) || modules_disabled)
return -EPERM;
return 0;
}
/* Is this module of this name done loading? No locks held. */
static bool finished_loading(const char *name)
{
struct module *mod;
bool ret;
/*
* The module_mutex should not be a heavily contended lock;
* if we get the occasional sleep here, we'll go an extra iteration
* in the wait_event_interruptible(), which is harmless.
*/
sched_annotate_sleep();
mutex_lock(&module_mutex);
mod = find_module_all(name, strlen(name), true);
ret = !mod || mod->state == MODULE_STATE_LIVE
|| mod->state == MODULE_STATE_GOING;
mutex_unlock(&module_mutex);
return ret;
}
/* Must be called with module_mutex held */
static int module_patient_check_exists(const char *name,
enum fail_dup_mod_reason reason)
{
struct module *old;
int err = 0;
old = find_module_all(name, strlen(name), true);
if (old == NULL)
return 0;
if (old->state == MODULE_STATE_COMING ||
old->state == MODULE_STATE_UNFORMED) {
/* Wait in case it fails to load. */
mutex_unlock(&module_mutex);
err = wait_event_interruptible(module_wq,
finished_loading(name));
mutex_lock(&module_mutex);
if (err)
return err;
/* The module might have gone in the meantime. */
old = find_module_all(name, strlen(name), true);
}
if (try_add_failed_module(name, reason))
pr_warn("Could not add fail-tracking for module: %s\n", name);
/*
* We are here only when the same module was being loaded. Do
* not try to load it again right now. It prevents long delays
* caused by serialized module load failures. It might happen
* when more devices of the same type trigger load of
* a particular module.
*/
if (old && old->state == MODULE_STATE_LIVE)
return -EEXIST;
return -EBUSY;
}
/*
* We try to place it in the list now to make sure it's unique before
* we dedicate too many resources. In particular, temporary percpu
* memory exhaustion.
*/
static int add_unformed_module(struct module *mod)
{
int err;
mod->state = MODULE_STATE_UNFORMED;
mutex_lock(&module_mutex);
err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
if (err)
goto out;
mod_update_bounds(mod);
list_add_rcu(&mod->list, &modules);
mod_tree_insert(mod);
err = 0;
out:
mutex_unlock(&module_mutex);
return err;
}
static int complete_formation(struct module *mod, struct load_info *info)
{
int err;
mutex_lock(&module_mutex);
/* Find duplicate symbols (must be called under lock). */
err = verify_exported_symbols(mod);
if (err < 0)
goto out;
/* These rely on module_mutex for list integrity. */
module_bug_finalize(info->hdr, info->sechdrs, mod);
module_cfi_finalize(info->hdr, info->sechdrs, mod);
err = module_enable_rodata_ro(mod, false);
if (err)
goto out_strict_rwx;
err = module_enable_data_nx(mod);
if (err)
goto out_strict_rwx;
err = module_enable_text_rox(mod);
if (err)
goto out_strict_rwx;
/*
* Mark state as coming so strong_try_module_get() ignores us,
* but kallsyms etc. can see us.
*/
mod->state = MODULE_STATE_COMING;
mutex_unlock(&module_mutex);
return 0;
out_strict_rwx:
module_bug_cleanup(mod);
out:
mutex_unlock(&module_mutex);
return err;
}
static int prepare_coming_module(struct module *mod)
{
int err;
ftrace_module_enable(mod);
err = klp_module_coming(mod);
if (err)
return err;
err = blocking_notifier_call_chain_robust(&module_notify_list,
MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
err = notifier_to_errno(err);
if (err)
klp_module_going(mod);
return err;
}
static int unknown_module_param_cb(char *param, char *val, const char *modname,
void *arg)
{
struct module *mod = arg;
int ret;
if (strcmp(param, "async_probe") == 0) {
if (kstrtobool(val, &mod->async_probe_requested))
mod->async_probe_requested = true;
return 0;
}
/* Check for magic 'dyndbg' arg */
ret = ddebug_dyndbg_module_param_cb(param, val, modname);
if (ret != 0)
pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
return 0;
}
/* Module within temporary copy, this doesn't do any allocation */
static int early_mod_check(struct load_info *info, int flags)
{
int err;
/*
* Now that we know we have the correct module name, check
* if it's blacklisted.
*/
if (blacklisted(info->name)) {
pr_err("Module %s is blacklisted\n", info->name);
return -EPERM;
}
err = rewrite_section_headers(info, flags);
if (err)
return err;
/* Check module struct version now, before we try to use module. */
if (!check_modstruct_version(info, info->mod))
return -ENOEXEC;
err = check_modinfo(info->mod, info, flags);
if (err)
return err;
mutex_lock(&module_mutex);
err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
mutex_unlock(&module_mutex);
return err;
}
/*
* Allocate and load the module: note that size of section 0 is always
* zero, and we rely on this for optional sections.
*/
static int load_module(struct load_info *info, const char __user *uargs,
int flags)
{
struct module *mod;
bool module_allocated = false;
long err = 0;
char *after_dashes;
/*
* Do the signature check (if any) first. All that
* the signature check needs is info->len, it does
* not need any of the section info. That can be
* set up later. This will minimize the chances
* of a corrupt module causing problems before
* we even get to the signature check.
*
* The check will also adjust info->len by stripping
* off the sig length at the end of the module, making
* checks against info->len more correct.
*/
err = module_sig_check(info, flags);
if (err)
goto free_copy;
/*
* Do basic sanity checks against the ELF header and
* sections. Cache useful sections and set the
* info->mod to the userspace passed struct module.
*/
err = elf_validity_cache_copy(info, flags);
if (err)
goto free_copy;
err = early_mod_check(info, flags);
if (err)
goto free_copy;
/* Figure out module layout, and allocate all the memory. */
mod = layout_and_allocate(info, flags);
if (IS_ERR(mod)) {
err = PTR_ERR(mod);
goto free_copy;
}
module_allocated = true;
audit_log_kern_module(mod->name);
/* Reserve our place in the list. */
err = add_unformed_module(mod);
if (err)
goto free_module;
/*
* We are tainting your kernel if your module gets into
* the modules linked list somehow.
*/
module_augment_kernel_taints(mod, info);
/* To avoid stressing percpu allocator, do this once we're unique. */
err = percpu_modalloc(mod, info);
if (err)
goto unlink_mod;
/* Now module is in final location, initialize linked lists, etc. */
err = module_unload_init(mod);
if (err)
goto unlink_mod;
init_param_lock(mod);
/*
* Now we've got everything in the final locations, we can
* find optional sections.
*/
err = find_module_sections(mod, info);
if (err)
goto free_unload;
err = check_export_symbol_versions(mod);
if (err)
goto free_unload;
/* Set up MODINFO_ATTR fields */
setup_modinfo(mod, info);
/* Fix up syms, so that st_value is a pointer to location. */
err = simplify_symbols(mod, info);
if (err < 0)
goto free_modinfo;
err = apply_relocations(mod, info);
if (err < 0)
goto free_modinfo;
err = post_relocation(mod, info);
if (err < 0)
goto free_modinfo;
flush_module_icache(mod);
/* Now copy in args */
mod->args = strndup_user(uargs, ~0UL >> 1);
if (IS_ERR(mod->args)) {
err = PTR_ERR(mod->args);
goto free_arch_cleanup;
}
init_build_id(mod, info);
/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
ftrace_module_init(mod);
/* Finally it's fully formed, ready to start executing. */
err = complete_formation(mod, info);
if (err)
goto ddebug_cleanup;
err = prepare_coming_module(mod);
if (err)
goto bug_cleanup;
mod->async_probe_requested = async_probe;
/* Module is ready to execute: parsing args may do that. */
after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
-32768, 32767, mod,
unknown_module_param_cb);
if (IS_ERR(after_dashes)) {
err = PTR_ERR(after_dashes);
goto coming_cleanup;
} else if (after_dashes) {
pr_warn("%s: parameters '%s' after `--' ignored\n",
mod->name, after_dashes);
}
/* Link in to sysfs. */
err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
if (err < 0)
goto coming_cleanup;
if (is_livepatch_module(mod)) {
err = copy_module_elf(mod, info);
if (err < 0)
goto sysfs_cleanup;
}
/* Get rid of temporary copy. */
free_copy(info, flags);
codetag_load_module(mod);
/* Done! */
trace_module_load(mod);
return do_init_module(mod);
sysfs_cleanup:
mod_sysfs_teardown(mod);
coming_cleanup:
mod->state = MODULE_STATE_GOING;
destroy_params(mod->kp, mod->num_kp);
blocking_notifier_call_chain(&module_notify_list,
MODULE_STATE_GOING, mod);
klp_module_going(mod);
bug_cleanup:
mod->state = MODULE_STATE_GOING;
/* module_bug_cleanup needs module_mutex protection */
mutex_lock(&module_mutex);
module_bug_cleanup(mod);
mutex_unlock(&module_mutex);
ddebug_cleanup:
ftrace_release_mod(mod);
synchronize_rcu();
kfree(mod->args);
free_arch_cleanup:
module_arch_cleanup(mod);
free_modinfo:
free_modinfo(mod);
free_unload:
module_unload_free(mod);
unlink_mod:
mutex_lock(&module_mutex);
/* Unlink carefully: kallsyms could be walking list. */
list_del_rcu(&mod->list);
mod_tree_remove(mod);
wake_up_all(&module_wq);
/* Wait for RCU-sched synchronizing before releasing mod->list. */
synchronize_rcu();
mutex_unlock(&module_mutex);
free_module:
mod_stat_bump_invalid(info, flags);
/* Free lock-classes; relies on the preceding sync_rcu() */
for_class_mod_mem_type(type, core_data) {
lockdep_free_key_range(mod->mem[type].base,
mod->mem[type].size);
}
module_deallocate(mod, info);
free_copy:
/*
* The info->len is always set. We distinguish between
* failures once the proper module was allocated and
* before that.
*/
if (!module_allocated)
mod_stat_bump_becoming(info, flags);
free_copy(info, flags);
return err;
}
SYSCALL_DEFINE3(init_module, void __user *, umod,
unsigned long, len, const char __user *, uargs)
{
int err;
struct load_info info = { };
err = may_init_module();
if (err)
return err;
pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
umod, len, uargs);
err = copy_module_from_user(umod, len, &info);
if (err) {
mod_stat_inc(&failed_kreads);
mod_stat_add_long(len, &invalid_kread_bytes);
return err;
}
return load_module(&info, uargs, 0);
}
struct idempotent {
const void *cookie;
struct hlist_node entry;
struct completion complete;
int ret;
};
#define IDEM_HASH_BITS 8
static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
static DEFINE_SPINLOCK(idem_lock);
static bool idempotent(struct idempotent *u, const void *cookie)
{
int hash = hash_ptr(cookie, IDEM_HASH_BITS);
struct hlist_head *head = idem_hash + hash;
struct idempotent *existing;
bool first;
u->ret = 0;
u->cookie = cookie;
init_completion(&u->complete);
spin_lock(&idem_lock);
first = true;
hlist_for_each_entry(existing, head, entry) {
if (existing->cookie != cookie)
continue;
first = false;
break;
}
hlist_add_head(&u->entry, idem_hash + hash);
spin_unlock(&idem_lock);
return !first;
}
/*
* We were the first one with 'cookie' on the list, and we ended
* up completing the operation. We now need to walk the list,
* remove everybody - which includes ourselves - fill in the return
* value, and then complete the operation.
*/
static int idempotent_complete(struct idempotent *u, int ret)
{
const void *cookie = u->cookie;
int hash = hash_ptr(cookie, IDEM_HASH_BITS);
struct hlist_head *head = idem_hash + hash;
struct hlist_node *next;
struct idempotent *pos;
spin_lock(&idem_lock);
hlist_for_each_entry_safe(pos, next, head, entry) {
if (pos->cookie != cookie)
continue;
hlist_del(&pos->entry);
pos->ret = ret;
complete(&pos->complete);
}
spin_unlock(&idem_lock);
return ret;
}
static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
{
struct load_info info = { };
void *buf = NULL;
int len;
len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
if (len < 0) {
mod_stat_inc(&failed_kreads);
return len;
}
if (flags & MODULE_INIT_COMPRESSED_FILE) {
int err = module_decompress(&info, buf, len);
vfree(buf); /* compressed data is no longer needed */
if (err) {
mod_stat_inc(&failed_decompress);
mod_stat_add_long(len, &invalid_decompress_bytes);
return err;
}
} else {
info.hdr = buf;
info.len = len;
}
return load_module(&info, uargs, flags);
}
static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
{
struct idempotent idem;
if (!f || !(f->f_mode & FMODE_READ))
return -EBADF;
/* See if somebody else is doing the operation? */
if (idempotent(&idem, file_inode(f))) {
wait_for_completion(&idem.complete);
return idem.ret;
}
/* Otherwise, we'll do it and complete others */
return idempotent_complete(&idem,
init_module_from_file(f, uargs, flags));
}
SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
{
int err;
struct fd f;
err = may_init_module();
if (err)
return err;
pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
|MODULE_INIT_IGNORE_VERMAGIC
|MODULE_INIT_COMPRESSED_FILE))
return -EINVAL;
f = fdget(fd);
err = idempotent_init_module(f.file, uargs, flags);
fdput(f);
return err;
}
/* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
char *module_flags(struct module *mod, char *buf, bool show_state)
{
int bx = 0;
BUG_ON(mod->state == MODULE_STATE_UNFORMED);
if (!mod->taints && !show_state)
goto out;
if (mod->taints ||
mod->state == MODULE_STATE_GOING ||
mod->state == MODULE_STATE_COMING) {
buf[bx++] = '(';
bx += module_flags_taint(mod->taints, buf + bx);
/* Show a - for module-is-being-unloaded */
if (mod->state == MODULE_STATE_GOING && show_state)
buf[bx++] = '-';
/* Show a + for module-is-being-loaded */
if (mod->state == MODULE_STATE_COMING && show_state)
buf[bx++] = '+';
buf[bx++] = ')';
}
out:
buf[bx] = '\0';
return buf;
}
/* Given an address, look for it in the module exception tables. */
const struct exception_table_entry *search_module_extables(unsigned long addr)
{
const struct exception_table_entry *e = NULL;
struct module *mod;
preempt_disable();
mod = __module_address(addr);
if (!mod)
goto out;
if (!mod->num_exentries)
goto out;
e = search_extable(mod->extable,
mod->num_exentries,
addr);
out:
preempt_enable();
/*
* Now, if we found one, we are running inside it now, hence
* we cannot unload the module, hence no refcnt needed.
*/
return e;
}
/**
* is_module_address() - is this address inside a module?
* @addr: the address to check.
*
* See is_module_text_address() if you simply want to see if the address
* is code (not data).
*/
bool is_module_address(unsigned long addr)
{
bool ret;
preempt_disable();
ret = __module_address(addr) != NULL;
preempt_enable();
return ret;
}
/**
* __module_address() - get the module which contains an address.
* @addr: the address.
*
* Must be called with preempt disabled or module mutex held so that
* module doesn't get freed during this.
*/
struct module *__module_address(unsigned long addr)
{
struct module *mod;
if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
goto lookup;
#ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
goto lookup;
#endif
return NULL;
lookup:
module_assert_mutex_or_preempt();
mod = mod_find(addr, &mod_tree);
if (mod) {
BUG_ON(!within_module(addr, mod));
if (mod->state == MODULE_STATE_UNFORMED)
mod = NULL;
}
return mod;
}
/**
* is_module_text_address() - is this address inside module code?
* @addr: the address to check.
*
* See is_module_address() if you simply want to see if the address is
* anywhere in a module. See kernel_text_address() for testing if an
* address corresponds to kernel or module code.
*/
bool is_module_text_address(unsigned long addr)
{
bool ret;
preempt_disable();
ret = __module_text_address(addr) != NULL;
preempt_enable();
return ret;
}
/**
* __module_text_address() - get the module whose code contains an address.
* @addr: the address.
*
* Must be called with preempt disabled or module mutex held so that
* module doesn't get freed during this.
*/
struct module *__module_text_address(unsigned long addr)
{
struct module *mod = __module_address(addr);
if (mod) {
/* Make sure it's within the text section. */
if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
!within_module_mem_type(addr, mod, MOD_INIT_TEXT))
mod = NULL;
}
return mod;
}
/* Don't grab lock, we're oopsing. */
void print_modules(void)
{
struct module *mod;
char buf[MODULE_FLAGS_BUF_SIZE];
printk(KERN_DEFAULT "Modules linked in:");
/* Most callers should already have preempt disabled, but make sure */
preempt_disable();
list_for_each_entry_rcu(mod, &modules, list) {
if (mod->state == MODULE_STATE_UNFORMED)
continue;
pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
}
print_unloaded_tainted_modules();
preempt_enable();
if (last_unloaded_module.name[0])
pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
last_unloaded_module.taints);
pr_cont("\n");
}
#ifdef CONFIG_MODULE_DEBUGFS
struct dentry *mod_debugfs_root;
static int module_debugfs_init(void)
{
mod_debugfs_root = debugfs_create_dir("modules", NULL);
return 0;
}
module_init(module_debugfs_init);
#endif