linux-stable/mm/compaction.c
Mel Gorman a77ebd333c mm: compaction: allow compaction to isolate dirty pages
Short summary: There are severe stalls when a USB stick using VFAT is
used with THP enabled that are reduced by this series.  If you are
experiencing this problem, please test and report back and considering I
have seen complaints from openSUSE and Fedora users on this as well as a
few private mails, I'm guessing it's a widespread issue.  This is a new
type of USB-related stall because it is due to synchronous compaction
writing where as in the past the big problem was dirty pages reaching
the end of the LRU and being written by reclaim.

Am cc'ing Andrew this time and this series would replace
mm-do-not-stall-in-synchronous-compaction-for-thp-allocations.patch.
I'm also cc'ing Dave Jones as he might have merged that patch to Fedora
for wider testing and ideally it would be reverted and replaced by this
series.

That said, the later patches could really do with some review.  If this
series is not the answer then a new direction needs to be discussed
because as it is, the stalls are unacceptable as the results in this
leader show.

For testers that try backporting this to 3.1, it won't work because
there is a non-obvious dependency on not writing back pages in direct
reclaim so you need those patches too.

Changelog since V5
o Rebase to 3.2-rc5
o Tidy up the changelogs a bit

Changelog since V4
o Added reviewed-bys, credited Andrea properly for sync-light
o Allow dirty pages without mappings to be considered for migration
o Bound the number of pages freed for compaction
o Isolate PageReclaim pages on their own LRU list

This is against 3.2-rc5 and follows on from discussions on "mm: Do
not stall in synchronous compaction for THP allocations" and "[RFC
PATCH 0/5] Reduce compaction-related stalls". Initially, the proposed
patch eliminated stalls due to compaction which sometimes resulted in
user-visible interactivity problems on browsers by simply never using
sync compaction. The downside was that THP success allocation rates
were lower because dirty pages were not being migrated as reported by
Andrea. His approach at fixing this was nacked on the grounds that
it reverted fixes from Rik merged that reduced the amount of pages
reclaimed as it severely impacted his workloads performance.

This series attempts to reconcile the requirements of maximising THP
usage, without stalling in a user-visible fashion due to compaction
or cheating by reclaiming an excessive number of pages.

Patch 1 partially reverts commit 39deaf85 to allow migration to isolate
	dirty pages. This is because migration can move some dirty
	pages without blocking.

Patch 2 notes that the /proc/sys/vm/compact_memory handler is not using
	synchronous compaction when it should be. This is unrelated
	to the reported stalls but is worth fixing.

Patch 3 checks if we isolated a compound page during lumpy scan and
	account for it properly. For the most part, this affects
	tracing so it's unrelated to the stalls but worth fixing.

Patch 4 notes that it is possible to abort reclaim early for compaction
	and return 0 to the page allocator potentially entering the
	"may oom" path. This has not been observed in practice but
	the rest of the series potentially makes it easier to happen.

Patch 5 adds a sync parameter to the migratepage callback and gives
	the callback responsibility for migrating the page without
	blocking if sync==false. For example, fallback_migrate_page
	will not call writepage if sync==false. This increases the
	number of pages that can be handled by asynchronous compaction
	thereby reducing stalls.

Patch 6 restores filter-awareness to isolate_lru_page for migration.
	In practice, it means that pages under writeback and pages
	without a ->migratepage callback will not be isolated
	for migration.

Patch 7 avoids calling direct reclaim if compaction is deferred but
	makes sure that compaction is only deferred if sync
	compaction was used.

Patch 8 introduces a sync-light migration mechanism that sync compaction
	uses. The objective is to allow some stalls but to not call
	->writepage which can lead to significant user-visible stalls.

Patch 9 notes that while we want to abort reclaim ASAP to allow
	compation to go ahead that we leave a very small window of
	opportunity for compaction to run. This patch allows more pages
	to be freed by reclaim but bounds the number to a reasonable
	level based on the high watermark on each zone.

Patch 10 allows slabs to be shrunk even after compaction_ready() is
	true for one zone. This is to avoid a problem whereby a single
	small zone can abort reclaim even though no pages have been
	reclaimed and no suitably large zone is in a usable state.

Patch 11 fixes a problem with the rate of page scanning. As reclaim is
	rarely stalling on pages under writeback it means that scan
	rates are very high. This is particularly true for direct
	reclaim which is not calling writepage. The vmstat figures
	implied that much of this was busy work with PageReclaim pages
	marked for immediate reclaim. This patch is a prototype that
	moves these pages to their own LRU list.

This has been tested and other than 2 USB keys getting trashed,
nothing horrible fell out. That said, I am a bit unhappy with the
rescue logic in patch 11 but did not find a better way around it. It
does significantly reduce scan rates and System CPU time indicating
it is the right direction to take.

What is of critical importance is that stalls due to compaction
are massively reduced even though sync compaction was still
allowed. Testing from people complaining about stalls copying to USBs
with THP enabled are particularly welcome.

The following tests all involve THP usage and USB keys in some
way. Each test follows this type of pattern

1. Read from some fast fast storage, be it raw device or file. Each time
   the copy finishes, start again until the test ends
2. Write a large file to a filesystem on a USB stick. Each time the copy
   finishes, start again until the test ends
3. When memory is low, start an alloc process that creates a mapping
   the size of physical memory to stress THP allocation. This is the
   "real" part of the test and the part that is meant to trigger
   stalls when THP is enabled. Copying continues in the background.
4. Record the CPU usage and time to execute of the alloc process
5. Record the number of THP allocs and fallbacks as well as the number of THP
   pages in use a the end of the test just before alloc exited
6. Run the test 5 times to get an idea of variability
7. Between each run, sync is run and caches dropped and the test
   waits until nr_dirty is a small number to avoid interference
   or caching between iterations that would skew the figures.

The individual tests were then

writebackCPDeviceBasevfat
	Disable THP, read from a raw device (sda), vfat on USB stick
writebackCPDeviceBaseext4
	Disable THP, read from a raw device (sda), ext4 on USB stick
writebackCPDevicevfat
	THP enabled, read from a raw device (sda), vfat on USB stick
writebackCPDeviceext4
	THP enabled, read from a raw device (sda), ext4 on USB stick
writebackCPFilevfat
	THP enabled, read from a file on fast storage and USB, both vfat
writebackCPFileext4
	THP enabled, read from a file on fast storage and USB, both ext4

The kernels tested were

3.1		3.1
vanilla		3.2-rc5
freemore	Patches 1-10
immediate	Patches 1-11
andrea		The 8 patches Andrea posted as a basis of comparison

The results are very long unfortunately. I'll start with the case
where we are not using THP at all

writebackCPDeviceBasevfat
                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.28 (    0.00%)   54.49 (-4143.46%)   48.63 (-3687.69%)    4.69 ( -265.11%)   51.88 (-3940.81%)
+/-                 0.06 (    0.00%)    2.45 (-4305.55%)    4.75 (-8430.57%)    7.46 (-13282.76%)    4.76 (-8440.70%)
User Time           0.09 (    0.00%)    0.05 (   40.91%)    0.06 (   29.55%)    0.07 (   15.91%)    0.06 (   27.27%)
+/-                 0.02 (    0.00%)    0.01 (   45.39%)    0.02 (   25.07%)    0.00 (   77.06%)    0.01 (   52.24%)
Elapsed Time      110.27 (    0.00%)   56.38 (   48.87%)   49.95 (   54.70%)   11.77 (   89.33%)   53.43 (   51.54%)
+/-                 7.33 (    0.00%)    3.77 (   48.61%)    4.94 (   32.63%)    6.71 (    8.50%)    4.76 (   35.03%)
THP Active          0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
+/-                 0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
Fault Alloc         0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
+/-                 0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
Fault Fallback      0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)
+/-                 0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)    0.00 (    0.00%)

The THP figures are obviously all 0 because THP was enabled. The
main thing to watch is the elapsed times and how they compare to
times when THP is enabled later. It's also important to note that
elapsed time is improved by this series as System CPu time is much
reduced.

writebackCPDevicevfat

                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.22 (    0.00%)   13.89 (-1040.72%)   46.40 (-3709.20%)    4.44 ( -264.37%)   47.37 (-3789.33%)
+/-                 0.06 (    0.00%)   22.82 (-37635.56%)    3.84 (-6249.44%)    6.48 (-10618.92%)    6.60
(-10818.53%)
User Time           0.06 (    0.00%)    0.06 (   -6.90%)    0.05 (   17.24%)    0.05 (   13.79%)    0.04 (   31.03%)
+/-                 0.01 (    0.00%)    0.01 (   33.33%)    0.01 (   33.33%)    0.01 (   39.14%)    0.01 (   25.46%)
Elapsed Time     10445.54 (    0.00%) 2249.92 (   78.46%)   70.06 (   99.33%)   16.59 (   99.84%)  472.43 (
95.48%)
+/-               643.98 (    0.00%)  811.62 (  -26.03%)   10.02 (   98.44%)    7.03 (   98.91%)   59.99 (   90.68%)
THP Active         15.60 (    0.00%)   35.20 (  225.64%)   65.00 (  416.67%)   70.80 (  453.85%)   62.20 (  398.72%)
+/-                18.48 (    0.00%)   51.29 (  277.59%)   15.99 (   86.52%)   37.91 (  205.18%)   22.02 (  119.18%)
Fault Alloc       121.80 (    0.00%)   76.60 (   62.89%)  155.40 (  127.59%)  181.20 (  148.77%)  286.60 (  235.30%)
+/-                73.51 (    0.00%)   61.11 (   83.12%)   34.89 (   47.46%)   31.88 (   43.36%)   68.13 (   92.68%)
Fault Fallback    881.20 (    0.00%)  926.60 (   -5.15%)  847.60 (    3.81%)  822.00 (    6.72%)  716.60 (   18.68%)
+/-                73.51 (    0.00%)   61.26 (   16.67%)   34.89 (   52.54%)   31.65 (   56.94%)   67.75 (    7.84%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds)       3540.88   1945.37    716.04     64.97   1937.03
Total Elapsed Time (seconds)              52417.33  11425.90    501.02    230.95   2520.28

The first thing to note is the "Elapsed Time" for the vanilla kernels
of 2249 seconds versus 56 with THP disabled which might explain the
reports of USB stalls with THP enabled. Applying the patches brings
performance in line with THP-disabled performance while isolating
pages for immediate reclaim from the LRU cuts down System CPU time.

The "Fault Alloc" success rate figures are also improved. The vanilla
kernel only managed to allocate 76.6 pages on average over the course
of 5 iterations where as applying the series allocated 181.20 on
average albeit it is well within variance. It's worth noting that
applies the series at least descreases the amount of variance which
implies an improvement.

Andrea's series had a higher success rate for THP allocations but
at a severe cost to elapsed time which is still better than vanilla
but still much worse than disabling THP altogether. One can bring my
series close to Andrea's by removing this check

        /*
         * If compaction is deferred for high-order allocations, it is because
         * sync compaction recently failed. In this is the case and the caller
         * has requested the system not be heavily disrupted, fail the
         * allocation now instead of entering direct reclaim
         */
        if (deferred_compaction && (gfp_mask & __GFP_NO_KSWAPD))
                goto nopage;

I didn't include a patch that removed the above check because hurting
overall performance to improve the THP figure is not what the average
user wants. It's something to consider though if someone really wants
to maximise THP usage no matter what it does to the workload initially.

This is summary of vmstat figures from the same test.

                                       3.1.0-vanilla rc5-vanilla freemore-v6r1 isolate-v6r1 andrea-v2r1
Page Ins                                  3257266139  1111844061    17263623    10901575   161423219
Page Outs                                   81054922    30364312     3626530     3657687     8753730
Swap Ins                                        3294        2851        6560        4964        4592
Swap Outs                                     390073      528094      620197      790912      698285
Direct pages scanned                      1077581700  3024951463  1764930052   115140570  5901188831
Kswapd pages scanned                        34826043     7112868     2131265     1686942     1893966
Kswapd pages reclaimed                      28950067     4911036     1246044      966475     1497726
Direct pages reclaimed                     805148398   280167837     3623473     2215044    40809360
Kswapd efficiency                                83%         69%         58%         57%         79%
Kswapd velocity                              664.399     622.521    4253.852    7304.360     751.490
Direct efficiency                                74%          9%          0%          1%          0%
Direct velocity                            20557.737  264745.137 3522673.849  498551.938 2341481.435
Percentage direct scans                          96%         99%         99%         98%         99%
Page writes by reclaim                        722646      529174      620319      791018      699198
Page writes file                              332573        1080         122         106         913
Page writes anon                              390073      528094      620197      790912      698285
Page reclaim immediate                             0  2552514720  1635858848   111281140  5478375032
Page rescued immediate                             0           0           0       87848           0
Slabs scanned                                  23552       23552        9216        8192        9216
Direct inode steals                              231           0           0           0           0
Kswapd inode steals                                0           0           0           0           0
Kswapd skipped wait                            28076         786           0          61           6
THP fault alloc                                  609         383         753         906        1433
THP collapse alloc                                12           6           0           0           6
THP splits                                       536         211         456         593        1136
THP fault fallback                              4406        4633        4263        4110        3583
THP collapse fail                                120         127           0           0           4
Compaction stalls                               1810         728         623         779        3200
Compaction success                               196          53          60          80         123
Compaction failures                             1614         675         563         699        3077
Compaction pages moved                        193158       53545      243185      333457      226688
Compaction move failure                         9952        9396       16424       23676       45070

The main things to look at are

1. Page In/out figures are much reduced by the series.

2. Direct page scanning is incredibly high (264745.137 pages scanned
   per second on the vanilla kernel) but isolating PageReclaim pages
   on their own list reduces the number of pages scanned significantly.

3. The fact that "Page rescued immediate" is a positive number implies
   that we sometimes race removing pages from the LRU_IMMEDIATE list
   that need to be put back on a normal LRU but it happens only for
   0.07% of the pages marked for immediate reclaim.

writebackCPDeviceext4
                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.51 (    0.00%)    1.77 (  -17.66%)    1.46 (    2.92%)    1.15 (   23.77%)    1.89 (  -25.63%)
+/-                 0.27 (    0.00%)    0.67 ( -148.52%)    0.33 (  -22.76%)    0.30 (  -11.15%)    0.19 (   30.16%)
User Time           0.03 (    0.00%)    0.04 (  -37.50%)    0.05 (  -62.50%)    0.07 ( -112.50%)    0.04 (  -18.75%)
+/-                 0.01 (    0.00%)    0.02 ( -146.64%)    0.02 (  -97.91%)    0.02 (  -75.59%)    0.02 (  -63.30%)
Elapsed Time      124.93 (    0.00%)  114.49 (    8.36%)   96.77 (   22.55%)   27.48 (   78.00%)  205.70 (  -64.65%)
+/-                20.20 (    0.00%)   74.39 ( -268.34%)   59.88 ( -196.48%)    7.72 (   61.79%)   25.03 (  -23.95%)
THP Active        161.80 (    0.00%)   83.60 (   51.67%)  141.20 (   87.27%)   84.60 (   52.29%)   82.60 (   51.05%)
+/-                71.95 (    0.00%)   43.80 (   60.88%)   26.91 (   37.40%)   59.02 (   82.03%)   52.13 (   72.45%)
Fault Alloc       471.40 (    0.00%)  228.60 (   48.49%)  282.20 (   59.86%)  225.20 (   47.77%)  388.40 (   82.39%)
+/-                88.07 (    0.00%)   87.42 (   99.26%)   73.79 (   83.78%)  109.62 (  124.47%)   82.62 (   93.81%)
Fault Fallback    531.60 (    0.00%)  774.60 (  -45.71%)  720.80 (  -35.59%)  777.80 (  -46.31%)  614.80 (  -15.65%)
+/-                88.07 (    0.00%)   87.26 (    0.92%)   73.79 (   16.22%)  109.62 (  -24.47%)   82.29 (    6.56%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds)         50.22     33.76     30.65     24.14    128.45
Total Elapsed Time (seconds)               1113.73   1132.19   1029.45    759.49   1707.26

Similar test but the USB stick is using ext4 instead of vfat. As
ext4 does not use writepage for migration, the large stalls due to
compaction when THP is enabled are not observed. Still, isolating
PageReclaim pages on their own list helped completion time largely
by reducing the number of pages scanned by direct reclaim although
time spend in congestion_wait could also be a factor.

Again, Andrea's series had far higher success rates for THP allocation
at the cost of elapsed time. I didn't look too closely but a quick
look at the vmstat figures tells me kswapd reclaimed 8 times more pages
than the patch series and direct reclaim reclaimed roughly three times
as many pages. It follows that if memory is aggressively reclaimed,
there will be more available for THP.

writebackCPFilevfat
                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.76 (    0.00%)   29.10 (-1555.52%)   46.01 (-2517.18%)    4.79 ( -172.35%)   54.89 (-3022.53%)
+/-                 0.14 (    0.00%)   25.61 (-18185.17%)    2.15 (-1434.83%)    6.60 (-4610.03%)    9.75
(-6863.76%)
User Time           0.05 (    0.00%)    0.07 (  -45.83%)    0.05 (   -4.17%)    0.06 (  -29.17%)    0.06 (  -16.67%)
+/-                 0.02 (    0.00%)    0.02 (   20.11%)    0.02 (   -3.14%)    0.01 (   31.58%)    0.01 (   47.41%)
Elapsed Time     22520.79 (    0.00%) 1082.85 (   95.19%)   73.30 (   99.67%)   32.43 (   99.86%)  291.84 (  98.70%)
+/-              7277.23 (    0.00%)  706.29 (   90.29%)   19.05 (   99.74%)   17.05 (   99.77%)  125.55 (   98.27%)
THP Active         83.80 (    0.00%)   12.80 (   15.27%)   15.60 (   18.62%)   13.00 (   15.51%)    0.80 (    0.95%)
+/-                66.81 (    0.00%)   20.19 (   30.22%)    5.92 (    8.86%)   15.06 (   22.54%)    1.17 (    1.75%)
Fault Alloc       171.00 (    0.00%)   67.80 (   39.65%)   97.40 (   56.96%)  125.60 (   73.45%)  133.00 (   77.78%)
+/-                82.91 (    0.00%)   30.69 (   37.02%)   53.91 (   65.02%)   55.05 (   66.40%)   21.19 (   25.56%)
Fault Fallback    832.00 (    0.00%)  935.20 (  -12.40%)  906.00 (   -8.89%)  877.40 (   -5.46%)  870.20 (   -4.59%)
+/-                82.91 (    0.00%)   30.69 (   62.98%)   54.01 (   34.86%)   55.05 (   33.60%)   20.91 (   74.78%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds)       7229.81    928.42    704.52     80.68   1330.76
Total Elapsed Time (seconds)             112849.04   5618.69    571.11    360.54   1664.28

In this case, the test is reading/writing only from filesystems but as
it's vfat, it's slow due to calling writepage during compaction. Little
to observe really - the time to complete the test goes way down
with the series applied and THP allocation success rates go up in
comparison to 3.2-rc5.  The success rates are lower than 3.1.0 but
the elapsed time for that kernel is abysmal so it is not really a
sensible comparison.

As before, Andrea's series allocates more THPs at the cost of overall
performance.

writebackCPFileext4
                   3.1.0-vanilla         rc5-vanilla       freemore-v6r1        isolate-v6r1         andrea-v2r1
System Time         1.51 (    0.00%)    1.77 (  -17.66%)    1.46 (    2.92%)    1.15 (   23.77%)    1.89 (  -25.63%)
+/-                 0.27 (    0.00%)    0.67 ( -148.52%)    0.33 (  -22.76%)    0.30 (  -11.15%)    0.19 (   30.16%)
User Time           0.03 (    0.00%)    0.04 (  -37.50%)    0.05 (  -62.50%)    0.07 ( -112.50%)    0.04 (  -18.75%)
+/-                 0.01 (    0.00%)    0.02 ( -146.64%)    0.02 (  -97.91%)    0.02 (  -75.59%)    0.02 (  -63.30%)
Elapsed Time      124.93 (    0.00%)  114.49 (    8.36%)   96.77 (   22.55%)   27.48 (   78.00%)  205.70 (  -64.65%)
+/-                20.20 (    0.00%)   74.39 ( -268.34%)   59.88 ( -196.48%)    7.72 (   61.79%)   25.03 (  -23.95%)
THP Active        161.80 (    0.00%)   83.60 (   51.67%)  141.20 (   87.27%)   84.60 (   52.29%)   82.60 (   51.05%)
+/-                71.95 (    0.00%)   43.80 (   60.88%)   26.91 (   37.40%)   59.02 (   82.03%)   52.13 (   72.45%)
Fault Alloc       471.40 (    0.00%)  228.60 (   48.49%)  282.20 (   59.86%)  225.20 (   47.77%)  388.40 (   82.39%)
+/-                88.07 (    0.00%)   87.42 (   99.26%)   73.79 (   83.78%)  109.62 (  124.47%)   82.62 (   93.81%)
Fault Fallback    531.60 (    0.00%)  774.60 (  -45.71%)  720.80 (  -35.59%)  777.80 (  -46.31%)  614.80 (  -15.65%)
+/-                88.07 (    0.00%)   87.26 (    0.92%)   73.79 (   16.22%)  109.62 (  -24.47%)   82.29 (    6.56%)
MMTests Statistics: duration
User/Sys Time Running Test (seconds)         50.22     33.76     30.65     24.14    128.45
Total Elapsed Time (seconds)               1113.73   1132.19   1029.45    759.49   1707.26

Same type of story - elapsed times go down. In this case, allocation
success rates are roughtly the same. As before, Andrea's has higher
success rates but takes a lot longer.

Overall the series does reduce latencies and while the tests are
inherency racy as alloc competes with the cp processes, the variability
was included. The THP allocation rates are not as high as they could
be but that is because we would have to be more aggressive about
reclaim and compaction impacting overall performance.

This patch:

Commit 39deaf85 ("mm: compaction: make isolate_lru_page() filter-aware")
noted that compaction does not migrate dirty or writeback pages and that
is was meaningless to pick the page and re-add it to the LRU list.

What was missed during review is that asynchronous migration moves dirty
pages if their ->migratepage callback is migrate_page() because these can
be moved without blocking.  This potentially impacted hugepage allocation
success rates by a factor depending on how many dirty pages are in the
system.

This patch partially reverts 39deaf85 to allow migration to isolate dirty
pages again.  This increases how much compaction disrupts the LRU but that
is addressed later in the series.

Signed-off-by: Mel Gorman <mgorman@suse.de>
Reviewed-by: Andrea Arcangeli <aarcange@redhat.com>
Reviewed-by: Rik van Riel <riel@redhat.com>
Reviewed-by: Minchan Kim <minchan.kim@gmail.com>
Cc: Dave Jones <davej@redhat.com>
Cc: Jan Kara <jack@suse.cz>
Cc: Andy Isaacson <adi@hexapodia.org>
Cc: Nai Xia <nai.xia@gmail.com>
Cc: Johannes Weiner <jweiner@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2012-01-12 20:13:08 -08:00

743 lines
20 KiB
C

/*
* linux/mm/compaction.c
*
* Memory compaction for the reduction of external fragmentation. Note that
* this heavily depends upon page migration to do all the real heavy
* lifting
*
* Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
*/
#include <linux/swap.h>
#include <linux/migrate.h>
#include <linux/compaction.h>
#include <linux/mm_inline.h>
#include <linux/backing-dev.h>
#include <linux/sysctl.h>
#include <linux/sysfs.h>
#include "internal.h"
#define CREATE_TRACE_POINTS
#include <trace/events/compaction.h>
/*
* compact_control is used to track pages being migrated and the free pages
* they are being migrated to during memory compaction. The free_pfn starts
* at the end of a zone and migrate_pfn begins at the start. Movable pages
* are moved to the end of a zone during a compaction run and the run
* completes when free_pfn <= migrate_pfn
*/
struct compact_control {
struct list_head freepages; /* List of free pages to migrate to */
struct list_head migratepages; /* List of pages being migrated */
unsigned long nr_freepages; /* Number of isolated free pages */
unsigned long nr_migratepages; /* Number of pages to migrate */
unsigned long free_pfn; /* isolate_freepages search base */
unsigned long migrate_pfn; /* isolate_migratepages search base */
bool sync; /* Synchronous migration */
unsigned int order; /* order a direct compactor needs */
int migratetype; /* MOVABLE, RECLAIMABLE etc */
struct zone *zone;
};
static unsigned long release_freepages(struct list_head *freelist)
{
struct page *page, *next;
unsigned long count = 0;
list_for_each_entry_safe(page, next, freelist, lru) {
list_del(&page->lru);
__free_page(page);
count++;
}
return count;
}
/* Isolate free pages onto a private freelist. Must hold zone->lock */
static unsigned long isolate_freepages_block(struct zone *zone,
unsigned long blockpfn,
struct list_head *freelist)
{
unsigned long zone_end_pfn, end_pfn;
int nr_scanned = 0, total_isolated = 0;
struct page *cursor;
/* Get the last PFN we should scan for free pages at */
zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
/* Find the first usable PFN in the block to initialse page cursor */
for (; blockpfn < end_pfn; blockpfn++) {
if (pfn_valid_within(blockpfn))
break;
}
cursor = pfn_to_page(blockpfn);
/* Isolate free pages. This assumes the block is valid */
for (; blockpfn < end_pfn; blockpfn++, cursor++) {
int isolated, i;
struct page *page = cursor;
if (!pfn_valid_within(blockpfn))
continue;
nr_scanned++;
if (!PageBuddy(page))
continue;
/* Found a free page, break it into order-0 pages */
isolated = split_free_page(page);
total_isolated += isolated;
for (i = 0; i < isolated; i++) {
list_add(&page->lru, freelist);
page++;
}
/* If a page was split, advance to the end of it */
if (isolated) {
blockpfn += isolated - 1;
cursor += isolated - 1;
}
}
trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
return total_isolated;
}
/* Returns true if the page is within a block suitable for migration to */
static bool suitable_migration_target(struct page *page)
{
int migratetype = get_pageblock_migratetype(page);
/* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
return false;
/* If the page is a large free page, then allow migration */
if (PageBuddy(page) && page_order(page) >= pageblock_order)
return true;
/* If the block is MIGRATE_MOVABLE, allow migration */
if (migratetype == MIGRATE_MOVABLE)
return true;
/* Otherwise skip the block */
return false;
}
/*
* Based on information in the current compact_control, find blocks
* suitable for isolating free pages from and then isolate them.
*/
static void isolate_freepages(struct zone *zone,
struct compact_control *cc)
{
struct page *page;
unsigned long high_pfn, low_pfn, pfn;
unsigned long flags;
int nr_freepages = cc->nr_freepages;
struct list_head *freelist = &cc->freepages;
/*
* Initialise the free scanner. The starting point is where we last
* scanned from (or the end of the zone if starting). The low point
* is the end of the pageblock the migration scanner is using.
*/
pfn = cc->free_pfn;
low_pfn = cc->migrate_pfn + pageblock_nr_pages;
/*
* Take care that if the migration scanner is at the end of the zone
* that the free scanner does not accidentally move to the next zone
* in the next isolation cycle.
*/
high_pfn = min(low_pfn, pfn);
/*
* Isolate free pages until enough are available to migrate the
* pages on cc->migratepages. We stop searching if the migrate
* and free page scanners meet or enough free pages are isolated.
*/
for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
pfn -= pageblock_nr_pages) {
unsigned long isolated;
if (!pfn_valid(pfn))
continue;
/*
* Check for overlapping nodes/zones. It's possible on some
* configurations to have a setup like
* node0 node1 node0
* i.e. it's possible that all pages within a zones range of
* pages do not belong to a single zone.
*/
page = pfn_to_page(pfn);
if (page_zone(page) != zone)
continue;
/* Check the block is suitable for migration */
if (!suitable_migration_target(page))
continue;
/*
* Found a block suitable for isolating free pages from. Now
* we disabled interrupts, double check things are ok and
* isolate the pages. This is to minimise the time IRQs
* are disabled
*/
isolated = 0;
spin_lock_irqsave(&zone->lock, flags);
if (suitable_migration_target(page)) {
isolated = isolate_freepages_block(zone, pfn, freelist);
nr_freepages += isolated;
}
spin_unlock_irqrestore(&zone->lock, flags);
/*
* Record the highest PFN we isolated pages from. When next
* looking for free pages, the search will restart here as
* page migration may have returned some pages to the allocator
*/
if (isolated)
high_pfn = max(high_pfn, pfn);
}
/* split_free_page does not map the pages */
list_for_each_entry(page, freelist, lru) {
arch_alloc_page(page, 0);
kernel_map_pages(page, 1, 1);
}
cc->free_pfn = high_pfn;
cc->nr_freepages = nr_freepages;
}
/* Update the number of anon and file isolated pages in the zone */
static void acct_isolated(struct zone *zone, struct compact_control *cc)
{
struct page *page;
unsigned int count[2] = { 0, };
list_for_each_entry(page, &cc->migratepages, lru)
count[!!page_is_file_cache(page)]++;
__mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
__mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
}
/* Similar to reclaim, but different enough that they don't share logic */
static bool too_many_isolated(struct zone *zone)
{
unsigned long active, inactive, isolated;
inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
zone_page_state(zone, NR_INACTIVE_ANON);
active = zone_page_state(zone, NR_ACTIVE_FILE) +
zone_page_state(zone, NR_ACTIVE_ANON);
isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
zone_page_state(zone, NR_ISOLATED_ANON);
return isolated > (inactive + active) / 2;
}
/* possible outcome of isolate_migratepages */
typedef enum {
ISOLATE_ABORT, /* Abort compaction now */
ISOLATE_NONE, /* No pages isolated, continue scanning */
ISOLATE_SUCCESS, /* Pages isolated, migrate */
} isolate_migrate_t;
/*
* Isolate all pages that can be migrated from the block pointed to by
* the migrate scanner within compact_control.
*/
static isolate_migrate_t isolate_migratepages(struct zone *zone,
struct compact_control *cc)
{
unsigned long low_pfn, end_pfn;
unsigned long last_pageblock_nr = 0, pageblock_nr;
unsigned long nr_scanned = 0, nr_isolated = 0;
struct list_head *migratelist = &cc->migratepages;
isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
/* Do not scan outside zone boundaries */
low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
/* Only scan within a pageblock boundary */
end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
/* Do not cross the free scanner or scan within a memory hole */
if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
cc->migrate_pfn = end_pfn;
return ISOLATE_NONE;
}
/*
* Ensure that there are not too many pages isolated from the LRU
* list by either parallel reclaimers or compaction. If there are,
* delay for some time until fewer pages are isolated
*/
while (unlikely(too_many_isolated(zone))) {
/* async migration should just abort */
if (!cc->sync)
return ISOLATE_ABORT;
congestion_wait(BLK_RW_ASYNC, HZ/10);
if (fatal_signal_pending(current))
return ISOLATE_ABORT;
}
/* Time to isolate some pages for migration */
cond_resched();
spin_lock_irq(&zone->lru_lock);
for (; low_pfn < end_pfn; low_pfn++) {
struct page *page;
bool locked = true;
/* give a chance to irqs before checking need_resched() */
if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
spin_unlock_irq(&zone->lru_lock);
locked = false;
}
if (need_resched() || spin_is_contended(&zone->lru_lock)) {
if (locked)
spin_unlock_irq(&zone->lru_lock);
cond_resched();
spin_lock_irq(&zone->lru_lock);
if (fatal_signal_pending(current))
break;
} else if (!locked)
spin_lock_irq(&zone->lru_lock);
if (!pfn_valid_within(low_pfn))
continue;
nr_scanned++;
/* Get the page and skip if free */
page = pfn_to_page(low_pfn);
if (PageBuddy(page))
continue;
/*
* For async migration, also only scan in MOVABLE blocks. Async
* migration is optimistic to see if the minimum amount of work
* satisfies the allocation
*/
pageblock_nr = low_pfn >> pageblock_order;
if (!cc->sync && last_pageblock_nr != pageblock_nr &&
get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
low_pfn += pageblock_nr_pages;
low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
last_pageblock_nr = pageblock_nr;
continue;
}
if (!PageLRU(page))
continue;
/*
* PageLRU is set, and lru_lock excludes isolation,
* splitting and collapsing (collapsing has already
* happened if PageLRU is set).
*/
if (PageTransHuge(page)) {
low_pfn += (1 << compound_order(page)) - 1;
continue;
}
/* Try isolate the page */
if (__isolate_lru_page(page, mode, 0) != 0)
continue;
VM_BUG_ON(PageTransCompound(page));
/* Successfully isolated */
del_page_from_lru_list(zone, page, page_lru(page));
list_add(&page->lru, migratelist);
cc->nr_migratepages++;
nr_isolated++;
/* Avoid isolating too much */
if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
++low_pfn;
break;
}
}
acct_isolated(zone, cc);
spin_unlock_irq(&zone->lru_lock);
cc->migrate_pfn = low_pfn;
trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
return ISOLATE_SUCCESS;
}
/*
* This is a migrate-callback that "allocates" freepages by taking pages
* from the isolated freelists in the block we are migrating to.
*/
static struct page *compaction_alloc(struct page *migratepage,
unsigned long data,
int **result)
{
struct compact_control *cc = (struct compact_control *)data;
struct page *freepage;
/* Isolate free pages if necessary */
if (list_empty(&cc->freepages)) {
isolate_freepages(cc->zone, cc);
if (list_empty(&cc->freepages))
return NULL;
}
freepage = list_entry(cc->freepages.next, struct page, lru);
list_del(&freepage->lru);
cc->nr_freepages--;
return freepage;
}
/*
* We cannot control nr_migratepages and nr_freepages fully when migration is
* running as migrate_pages() has no knowledge of compact_control. When
* migration is complete, we count the number of pages on the lists by hand.
*/
static void update_nr_listpages(struct compact_control *cc)
{
int nr_migratepages = 0;
int nr_freepages = 0;
struct page *page;
list_for_each_entry(page, &cc->migratepages, lru)
nr_migratepages++;
list_for_each_entry(page, &cc->freepages, lru)
nr_freepages++;
cc->nr_migratepages = nr_migratepages;
cc->nr_freepages = nr_freepages;
}
static int compact_finished(struct zone *zone,
struct compact_control *cc)
{
unsigned int order;
unsigned long watermark;
if (fatal_signal_pending(current))
return COMPACT_PARTIAL;
/* Compaction run completes if the migrate and free scanner meet */
if (cc->free_pfn <= cc->migrate_pfn)
return COMPACT_COMPLETE;
/*
* order == -1 is expected when compacting via
* /proc/sys/vm/compact_memory
*/
if (cc->order == -1)
return COMPACT_CONTINUE;
/* Compaction run is not finished if the watermark is not met */
watermark = low_wmark_pages(zone);
watermark += (1 << cc->order);
if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
return COMPACT_CONTINUE;
/* Direct compactor: Is a suitable page free? */
for (order = cc->order; order < MAX_ORDER; order++) {
/* Job done if page is free of the right migratetype */
if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
return COMPACT_PARTIAL;
/* Job done if allocation would set block type */
if (order >= pageblock_order && zone->free_area[order].nr_free)
return COMPACT_PARTIAL;
}
return COMPACT_CONTINUE;
}
/*
* compaction_suitable: Is this suitable to run compaction on this zone now?
* Returns
* COMPACT_SKIPPED - If there are too few free pages for compaction
* COMPACT_PARTIAL - If the allocation would succeed without compaction
* COMPACT_CONTINUE - If compaction should run now
*/
unsigned long compaction_suitable(struct zone *zone, int order)
{
int fragindex;
unsigned long watermark;
/*
* order == -1 is expected when compacting via
* /proc/sys/vm/compact_memory
*/
if (order == -1)
return COMPACT_CONTINUE;
/*
* Watermarks for order-0 must be met for compaction. Note the 2UL.
* This is because during migration, copies of pages need to be
* allocated and for a short time, the footprint is higher
*/
watermark = low_wmark_pages(zone) + (2UL << order);
if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
return COMPACT_SKIPPED;
/*
* fragmentation index determines if allocation failures are due to
* low memory or external fragmentation
*
* index of -1000 implies allocations might succeed depending on
* watermarks
* index towards 0 implies failure is due to lack of memory
* index towards 1000 implies failure is due to fragmentation
*
* Only compact if a failure would be due to fragmentation.
*/
fragindex = fragmentation_index(zone, order);
if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
return COMPACT_SKIPPED;
if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
0, 0))
return COMPACT_PARTIAL;
return COMPACT_CONTINUE;
}
static int compact_zone(struct zone *zone, struct compact_control *cc)
{
int ret;
ret = compaction_suitable(zone, cc->order);
switch (ret) {
case COMPACT_PARTIAL:
case COMPACT_SKIPPED:
/* Compaction is likely to fail */
return ret;
case COMPACT_CONTINUE:
/* Fall through to compaction */
;
}
/* Setup to move all movable pages to the end of the zone */
cc->migrate_pfn = zone->zone_start_pfn;
cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
cc->free_pfn &= ~(pageblock_nr_pages-1);
migrate_prep_local();
while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
unsigned long nr_migrate, nr_remaining;
int err;
switch (isolate_migratepages(zone, cc)) {
case ISOLATE_ABORT:
ret = COMPACT_PARTIAL;
goto out;
case ISOLATE_NONE:
continue;
case ISOLATE_SUCCESS:
;
}
nr_migrate = cc->nr_migratepages;
err = migrate_pages(&cc->migratepages, compaction_alloc,
(unsigned long)cc, false,
cc->sync);
update_nr_listpages(cc);
nr_remaining = cc->nr_migratepages;
count_vm_event(COMPACTBLOCKS);
count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
if (nr_remaining)
count_vm_events(COMPACTPAGEFAILED, nr_remaining);
trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
nr_remaining);
/* Release LRU pages not migrated */
if (err) {
putback_lru_pages(&cc->migratepages);
cc->nr_migratepages = 0;
}
}
out:
/* Release free pages and check accounting */
cc->nr_freepages -= release_freepages(&cc->freepages);
VM_BUG_ON(cc->nr_freepages != 0);
return ret;
}
static unsigned long compact_zone_order(struct zone *zone,
int order, gfp_t gfp_mask,
bool sync)
{
struct compact_control cc = {
.nr_freepages = 0,
.nr_migratepages = 0,
.order = order,
.migratetype = allocflags_to_migratetype(gfp_mask),
.zone = zone,
.sync = sync,
};
INIT_LIST_HEAD(&cc.freepages);
INIT_LIST_HEAD(&cc.migratepages);
return compact_zone(zone, &cc);
}
int sysctl_extfrag_threshold = 500;
/**
* try_to_compact_pages - Direct compact to satisfy a high-order allocation
* @zonelist: The zonelist used for the current allocation
* @order: The order of the current allocation
* @gfp_mask: The GFP mask of the current allocation
* @nodemask: The allowed nodes to allocate from
* @sync: Whether migration is synchronous or not
*
* This is the main entry point for direct page compaction.
*/
unsigned long try_to_compact_pages(struct zonelist *zonelist,
int order, gfp_t gfp_mask, nodemask_t *nodemask,
bool sync)
{
enum zone_type high_zoneidx = gfp_zone(gfp_mask);
int may_enter_fs = gfp_mask & __GFP_FS;
int may_perform_io = gfp_mask & __GFP_IO;
struct zoneref *z;
struct zone *zone;
int rc = COMPACT_SKIPPED;
/*
* Check whether it is worth even starting compaction. The order check is
* made because an assumption is made that the page allocator can satisfy
* the "cheaper" orders without taking special steps
*/
if (!order || !may_enter_fs || !may_perform_io)
return rc;
count_vm_event(COMPACTSTALL);
/* Compact each zone in the list */
for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
nodemask) {
int status;
status = compact_zone_order(zone, order, gfp_mask, sync);
rc = max(status, rc);
/* If a normal allocation would succeed, stop compacting */
if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
break;
}
return rc;
}
/* Compact all zones within a node */
static int compact_node(int nid)
{
int zoneid;
pg_data_t *pgdat;
struct zone *zone;
if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
return -EINVAL;
pgdat = NODE_DATA(nid);
/* Flush pending updates to the LRU lists */
lru_add_drain_all();
for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
struct compact_control cc = {
.nr_freepages = 0,
.nr_migratepages = 0,
.order = -1,
};
zone = &pgdat->node_zones[zoneid];
if (!populated_zone(zone))
continue;
cc.zone = zone;
INIT_LIST_HEAD(&cc.freepages);
INIT_LIST_HEAD(&cc.migratepages);
compact_zone(zone, &cc);
VM_BUG_ON(!list_empty(&cc.freepages));
VM_BUG_ON(!list_empty(&cc.migratepages));
}
return 0;
}
/* Compact all nodes in the system */
static int compact_nodes(void)
{
int nid;
for_each_online_node(nid)
compact_node(nid);
return COMPACT_COMPLETE;
}
/* The written value is actually unused, all memory is compacted */
int sysctl_compact_memory;
/* This is the entry point for compacting all nodes via /proc/sys/vm */
int sysctl_compaction_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
if (write)
return compact_nodes();
return 0;
}
int sysctl_extfrag_handler(struct ctl_table *table, int write,
void __user *buffer, size_t *length, loff_t *ppos)
{
proc_dointvec_minmax(table, write, buffer, length, ppos);
return 0;
}
#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
ssize_t sysfs_compact_node(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
compact_node(dev->id);
return count;
}
static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
int compaction_register_node(struct node *node)
{
return device_create_file(&node->dev, &dev_attr_compact);
}
void compaction_unregister_node(struct node *node)
{
return device_remove_file(&node->dev, &dev_attr_compact);
}
#endif /* CONFIG_SYSFS && CONFIG_NUMA */