mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
4ff04abf9d
When running bpf selftest (./test_progs -j), the following warnings
showed up:
$ ./test_progs -t arena_atomics
...
BUG: using smp_processor_id() in preemptible [00000000] code: kworker/u19:0/12501
caller is bpf_mem_free+0x128/0x330
...
Call Trace:
<TASK>
dump_stack_lvl
check_preemption_disabled
bpf_mem_free
range_tree_destroy
arena_map_free
bpf_map_free_deferred
process_scheduled_works
...
For selftests arena_htab and arena_list, similar smp_process_id() BUGs are
dumped, and the following are two stack trace:
<TASK>
dump_stack_lvl
check_preemption_disabled
bpf_mem_alloc
range_tree_set
arena_map_alloc
map_create
...
<TASK>
dump_stack_lvl
check_preemption_disabled
bpf_mem_alloc
range_tree_clear
arena_vm_fault
do_pte_missing
handle_mm_fault
do_user_addr_fault
...
Add migrate_{disable,enable}() around related bpf_mem_{alloc,free}()
calls to fix the issue.
Fixes: b795379757
("bpf: Introduce range_tree data structure and use it in bpf arena")
Signed-off-by: Yonghong Song <yonghong.song@linux.dev>
Link: https://lore.kernel.org/r/20241115060354.2832495-1-yonghong.song@linux.dev
Signed-off-by: Alexei Starovoitov <ast@kernel.org>
273 lines
7.2 KiB
C
273 lines
7.2 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/* Copyright (c) 2024 Meta Platforms, Inc. and affiliates. */
|
|
#include <linux/interval_tree_generic.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bpf_mem_alloc.h>
|
|
#include <linux/bpf.h>
|
|
#include "range_tree.h"
|
|
|
|
/*
|
|
* struct range_tree is a data structure used to allocate contiguous memory
|
|
* ranges in bpf arena. It's a large bitmap. The contiguous sequence of bits is
|
|
* represented by struct range_node or 'rn' for short.
|
|
* rn->rn_rbnode links it into an interval tree while
|
|
* rn->rb_range_size links it into a second rbtree sorted by size of the range.
|
|
* __find_range() performs binary search and best fit algorithm to find the
|
|
* range less or equal requested size.
|
|
* range_tree_clear/set() clears or sets a range of bits in this bitmap. The
|
|
* adjacent ranges are merged or split at the same time.
|
|
*
|
|
* The split/merge logic is based/borrowed from XFS's xbitmap32 added
|
|
* in commit 6772fcc8890a ("xfs: convert xbitmap to interval tree").
|
|
*
|
|
* The implementation relies on external lock to protect rbtree-s.
|
|
* The alloc/free of range_node-s is done via bpf_mem_alloc.
|
|
*
|
|
* bpf arena is using range_tree to represent unallocated slots.
|
|
* At init time:
|
|
* range_tree_set(rt, 0, max);
|
|
* Then:
|
|
* start = range_tree_find(rt, len);
|
|
* if (start >= 0)
|
|
* range_tree_clear(rt, start, len);
|
|
* to find free range and mark slots as allocated and later:
|
|
* range_tree_set(rt, start, len);
|
|
* to mark as unallocated after use.
|
|
*/
|
|
struct range_node {
|
|
struct rb_node rn_rbnode;
|
|
struct rb_node rb_range_size;
|
|
u32 rn_start;
|
|
u32 rn_last; /* inclusive */
|
|
u32 __rn_subtree_last;
|
|
};
|
|
|
|
static struct range_node *rb_to_range_node(struct rb_node *rb)
|
|
{
|
|
return rb_entry(rb, struct range_node, rb_range_size);
|
|
}
|
|
|
|
static u32 rn_size(struct range_node *rn)
|
|
{
|
|
return rn->rn_last - rn->rn_start + 1;
|
|
}
|
|
|
|
/* Find range that fits best to requested size */
|
|
static inline struct range_node *__find_range(struct range_tree *rt, u32 len)
|
|
{
|
|
struct rb_node *rb = rt->range_size_root.rb_root.rb_node;
|
|
struct range_node *best = NULL;
|
|
|
|
while (rb) {
|
|
struct range_node *rn = rb_to_range_node(rb);
|
|
|
|
if (len <= rn_size(rn)) {
|
|
best = rn;
|
|
rb = rb->rb_right;
|
|
} else {
|
|
rb = rb->rb_left;
|
|
}
|
|
}
|
|
|
|
return best;
|
|
}
|
|
|
|
s64 range_tree_find(struct range_tree *rt, u32 len)
|
|
{
|
|
struct range_node *rn;
|
|
|
|
rn = __find_range(rt, len);
|
|
if (!rn)
|
|
return -ENOENT;
|
|
return rn->rn_start;
|
|
}
|
|
|
|
/* Insert the range into rbtree sorted by the range size */
|
|
static inline void __range_size_insert(struct range_node *rn,
|
|
struct rb_root_cached *root)
|
|
{
|
|
struct rb_node **link = &root->rb_root.rb_node, *rb = NULL;
|
|
u64 size = rn_size(rn);
|
|
bool leftmost = true;
|
|
|
|
while (*link) {
|
|
rb = *link;
|
|
if (size > rn_size(rb_to_range_node(rb))) {
|
|
link = &rb->rb_left;
|
|
} else {
|
|
link = &rb->rb_right;
|
|
leftmost = false;
|
|
}
|
|
}
|
|
|
|
rb_link_node(&rn->rb_range_size, rb, link);
|
|
rb_insert_color_cached(&rn->rb_range_size, root, leftmost);
|
|
}
|
|
|
|
#define START(node) ((node)->rn_start)
|
|
#define LAST(node) ((node)->rn_last)
|
|
|
|
INTERVAL_TREE_DEFINE(struct range_node, rn_rbnode, u32,
|
|
__rn_subtree_last, START, LAST,
|
|
static inline __maybe_unused,
|
|
__range_it)
|
|
|
|
static inline __maybe_unused void
|
|
range_it_insert(struct range_node *rn, struct range_tree *rt)
|
|
{
|
|
__range_size_insert(rn, &rt->range_size_root);
|
|
__range_it_insert(rn, &rt->it_root);
|
|
}
|
|
|
|
static inline __maybe_unused void
|
|
range_it_remove(struct range_node *rn, struct range_tree *rt)
|
|
{
|
|
rb_erase_cached(&rn->rb_range_size, &rt->range_size_root);
|
|
RB_CLEAR_NODE(&rn->rb_range_size);
|
|
__range_it_remove(rn, &rt->it_root);
|
|
}
|
|
|
|
static inline __maybe_unused struct range_node *
|
|
range_it_iter_first(struct range_tree *rt, u32 start, u32 last)
|
|
{
|
|
return __range_it_iter_first(&rt->it_root, start, last);
|
|
}
|
|
|
|
/* Clear the range in this range tree */
|
|
int range_tree_clear(struct range_tree *rt, u32 start, u32 len)
|
|
{
|
|
u32 last = start + len - 1;
|
|
struct range_node *new_rn;
|
|
struct range_node *rn;
|
|
|
|
while ((rn = range_it_iter_first(rt, start, last))) {
|
|
if (rn->rn_start < start && rn->rn_last > last) {
|
|
u32 old_last = rn->rn_last;
|
|
|
|
/* Overlaps with the entire clearing range */
|
|
range_it_remove(rn, rt);
|
|
rn->rn_last = start - 1;
|
|
range_it_insert(rn, rt);
|
|
|
|
/* Add a range */
|
|
migrate_disable();
|
|
new_rn = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
|
|
migrate_enable();
|
|
if (!new_rn)
|
|
return -ENOMEM;
|
|
new_rn->rn_start = last + 1;
|
|
new_rn->rn_last = old_last;
|
|
range_it_insert(new_rn, rt);
|
|
} else if (rn->rn_start < start) {
|
|
/* Overlaps with the left side of the clearing range */
|
|
range_it_remove(rn, rt);
|
|
rn->rn_last = start - 1;
|
|
range_it_insert(rn, rt);
|
|
} else if (rn->rn_last > last) {
|
|
/* Overlaps with the right side of the clearing range */
|
|
range_it_remove(rn, rt);
|
|
rn->rn_start = last + 1;
|
|
range_it_insert(rn, rt);
|
|
break;
|
|
} else {
|
|
/* in the middle of the clearing range */
|
|
range_it_remove(rn, rt);
|
|
migrate_disable();
|
|
bpf_mem_free(&bpf_global_ma, rn);
|
|
migrate_enable();
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Is the whole range set ? */
|
|
int is_range_tree_set(struct range_tree *rt, u32 start, u32 len)
|
|
{
|
|
u32 last = start + len - 1;
|
|
struct range_node *left;
|
|
|
|
/* Is this whole range set ? */
|
|
left = range_it_iter_first(rt, start, last);
|
|
if (left && left->rn_start <= start && left->rn_last >= last)
|
|
return 0;
|
|
return -ESRCH;
|
|
}
|
|
|
|
/* Set the range in this range tree */
|
|
int range_tree_set(struct range_tree *rt, u32 start, u32 len)
|
|
{
|
|
u32 last = start + len - 1;
|
|
struct range_node *right;
|
|
struct range_node *left;
|
|
int err;
|
|
|
|
/* Is this whole range already set ? */
|
|
left = range_it_iter_first(rt, start, last);
|
|
if (left && left->rn_start <= start && left->rn_last >= last)
|
|
return 0;
|
|
|
|
/* Clear out everything in the range we want to set. */
|
|
err = range_tree_clear(rt, start, len);
|
|
if (err)
|
|
return err;
|
|
|
|
/* Do we have a left-adjacent range ? */
|
|
left = range_it_iter_first(rt, start - 1, start - 1);
|
|
if (left && left->rn_last + 1 != start)
|
|
return -EFAULT;
|
|
|
|
/* Do we have a right-adjacent range ? */
|
|
right = range_it_iter_first(rt, last + 1, last + 1);
|
|
if (right && right->rn_start != last + 1)
|
|
return -EFAULT;
|
|
|
|
if (left && right) {
|
|
/* Combine left and right adjacent ranges */
|
|
range_it_remove(left, rt);
|
|
range_it_remove(right, rt);
|
|
left->rn_last = right->rn_last;
|
|
range_it_insert(left, rt);
|
|
migrate_disable();
|
|
bpf_mem_free(&bpf_global_ma, right);
|
|
migrate_enable();
|
|
} else if (left) {
|
|
/* Combine with the left range */
|
|
range_it_remove(left, rt);
|
|
left->rn_last = last;
|
|
range_it_insert(left, rt);
|
|
} else if (right) {
|
|
/* Combine with the right range */
|
|
range_it_remove(right, rt);
|
|
right->rn_start = start;
|
|
range_it_insert(right, rt);
|
|
} else {
|
|
migrate_disable();
|
|
left = bpf_mem_alloc(&bpf_global_ma, sizeof(struct range_node));
|
|
migrate_enable();
|
|
if (!left)
|
|
return -ENOMEM;
|
|
left->rn_start = start;
|
|
left->rn_last = last;
|
|
range_it_insert(left, rt);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void range_tree_destroy(struct range_tree *rt)
|
|
{
|
|
struct range_node *rn;
|
|
|
|
while ((rn = range_it_iter_first(rt, 0, -1U))) {
|
|
range_it_remove(rn, rt);
|
|
migrate_disable();
|
|
bpf_mem_free(&bpf_global_ma, rn);
|
|
migrate_enable();
|
|
}
|
|
}
|
|
|
|
void range_tree_init(struct range_tree *rt)
|
|
{
|
|
rt->it_root = RB_ROOT_CACHED;
|
|
rt->range_size_root = RB_ROOT_CACHED;
|
|
}
|