linux-stable/drivers/platform/mellanox/mlxbf-bootctl.c
Linus Torvalds e70140ba0d Get rid of 'remove_new' relic from platform driver struct
The continual trickle of small conversion patches is grating on me, and
is really not helping.  Just get rid of the 'remove_new' member
function, which is just an alias for the plain 'remove', and had a
comment to that effect:

  /*
   * .remove_new() is a relic from a prototype conversion of .remove().
   * New drivers are supposed to implement .remove(). Once all drivers are
   * converted to not use .remove_new any more, it will be dropped.
   */

This was just a tree-wide 'sed' script that replaced '.remove_new' with
'.remove', with some care taken to turn a subsequent tab into two tabs
to make things line up.

I did do some minimal manual whitespace adjustment for places that used
spaces to line things up.

Then I just removed the old (sic) .remove_new member function, and this
is the end result.  No more unnecessary conversion noise.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-12-01 15:12:43 -08:00

1065 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0+
/*
* Mellanox boot control driver
*
* This driver provides a sysfs interface for systems management
* software to manage reset-time actions.
*
* Copyright (C) 2019 Mellanox Technologies
*/
#include <linux/acpi.h>
#include <linux/arm-smccc.h>
#include <linux/delay.h>
#include <linux/if_ether.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "mlxbf-bootctl.h"
#define MLXBF_BOOTCTL_SB_SECURE_MASK 0x03
#define MLXBF_BOOTCTL_SB_TEST_MASK 0x0c
#define MLXBF_BOOTCTL_SB_DEV_MASK BIT(4)
#define MLXBF_SB_KEY_NUM 4
/* UUID used to probe ATF service. */
static const char *mlxbf_bootctl_svc_uuid_str =
"89c036b4-e7d7-11e6-8797-001aca00bfc4";
struct mlxbf_bootctl_name {
u32 value;
const char *name;
};
static struct mlxbf_bootctl_name boot_names[] = {
{ MLXBF_BOOTCTL_EXTERNAL, "external" },
{ MLXBF_BOOTCTL_EMMC, "emmc" },
{ MLNX_BOOTCTL_SWAP_EMMC, "swap_emmc" },
{ MLXBF_BOOTCTL_EMMC_LEGACY, "emmc_legacy" },
{ MLXBF_BOOTCTL_NONE, "none" },
};
enum {
MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION = 0,
MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE = 1,
MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE = 2,
MLXBF_BOOTCTL_SB_LIFECYCLE_RMA = 3
};
static const char * const mlxbf_bootctl_lifecycle_states[] = {
[MLXBF_BOOTCTL_SB_LIFECYCLE_PRODUCTION] = "Production",
[MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE] = "GA Secured",
[MLXBF_BOOTCTL_SB_LIFECYCLE_GA_NON_SECURE] = "GA Non-Secured",
[MLXBF_BOOTCTL_SB_LIFECYCLE_RMA] = "RMA",
};
/* Log header format. */
#define MLXBF_RSH_LOG_TYPE_MASK GENMASK_ULL(59, 56)
#define MLXBF_RSH_LOG_LEN_MASK GENMASK_ULL(54, 48)
#define MLXBF_RSH_LOG_LEVEL_MASK GENMASK_ULL(7, 0)
/* Log module ID and type (only MSG type in Linux driver for now). */
#define MLXBF_RSH_LOG_TYPE_MSG 0x04ULL
/* Log ctl/data register offset. */
#define MLXBF_RSH_SCRATCH_BUF_CTL_OFF 0
#define MLXBF_RSH_SCRATCH_BUF_DATA_OFF 0x10
/* Log message levels. */
enum {
MLXBF_RSH_LOG_INFO,
MLXBF_RSH_LOG_WARN,
MLXBF_RSH_LOG_ERR,
MLXBF_RSH_LOG_ASSERT
};
/* Mapped pointer for RSH_BOOT_FIFO_DATA and RSH_BOOT_FIFO_COUNT register. */
static void __iomem *mlxbf_rsh_boot_data;
static void __iomem *mlxbf_rsh_boot_cnt;
/* Mapped pointer for rsh log semaphore/ctrl/data register. */
static void __iomem *mlxbf_rsh_semaphore;
static void __iomem *mlxbf_rsh_scratch_buf_ctl;
static void __iomem *mlxbf_rsh_scratch_buf_data;
/* Rsh log levels. */
static const char * const mlxbf_rsh_log_level[] = {
"INFO", "WARN", "ERR", "ASSERT"};
static DEFINE_MUTEX(icm_ops_lock);
static DEFINE_MUTEX(os_up_lock);
static DEFINE_MUTEX(mfg_ops_lock);
/*
* Objects are stored within the MFG partition per type.
* Type 0 is not supported.
*/
enum {
MLNX_MFG_TYPE_OOB_MAC = 1,
MLNX_MFG_TYPE_OPN_0,
MLNX_MFG_TYPE_OPN_1,
MLNX_MFG_TYPE_OPN_2,
MLNX_MFG_TYPE_SKU_0,
MLNX_MFG_TYPE_SKU_1,
MLNX_MFG_TYPE_SKU_2,
MLNX_MFG_TYPE_MODL_0,
MLNX_MFG_TYPE_MODL_1,
MLNX_MFG_TYPE_MODL_2,
MLNX_MFG_TYPE_SN_0,
MLNX_MFG_TYPE_SN_1,
MLNX_MFG_TYPE_SN_2,
MLNX_MFG_TYPE_UUID_0,
MLNX_MFG_TYPE_UUID_1,
MLNX_MFG_TYPE_UUID_2,
MLNX_MFG_TYPE_UUID_3,
MLNX_MFG_TYPE_UUID_4,
MLNX_MFG_TYPE_REV,
};
#define MLNX_MFG_OPN_VAL_LEN 24
#define MLNX_MFG_SKU_VAL_LEN 24
#define MLNX_MFG_MODL_VAL_LEN 24
#define MLNX_MFG_SN_VAL_LEN 24
#define MLNX_MFG_UUID_VAL_LEN 40
#define MLNX_MFG_REV_VAL_LEN 8
#define MLNX_MFG_VAL_QWORD_CNT(type) \
(MLNX_MFG_##type##_VAL_LEN / sizeof(u64))
/*
* The MAC address consists of 6 bytes (2 digits each) separated by ':'.
* The expected format is: "XX:XX:XX:XX:XX:XX"
*/
#define MLNX_MFG_OOB_MAC_FORMAT_LEN \
((ETH_ALEN * 2) + (ETH_ALEN - 1))
/* ARM SMC call which is atomic and no need for lock. */
static int mlxbf_bootctl_smc(unsigned int smc_op, int smc_arg)
{
struct arm_smccc_res res;
arm_smccc_smc(smc_op, smc_arg, 0, 0, 0, 0, 0, 0, &res);
return res.a0;
}
/* Return the action in integer or an error code. */
static int mlxbf_bootctl_reset_action_to_val(const char *action)
{
int i;
for (i = 0; i < ARRAY_SIZE(boot_names); i++)
if (sysfs_streq(boot_names[i].name, action))
return boot_names[i].value;
return -EINVAL;
}
/* Return the action in string. */
static const char *mlxbf_bootctl_action_to_string(int action)
{
int i;
for (i = 0; i < ARRAY_SIZE(boot_names); i++)
if (boot_names[i].value == action)
return boot_names[i].name;
return "invalid action";
}
static ssize_t post_reset_wdog_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int ret;
ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_POST_RESET_WDOG, 0);
if (ret < 0)
return ret;
return sprintf(buf, "%d\n", ret);
}
static ssize_t post_reset_wdog_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long value;
int ret;
ret = kstrtoul(buf, 10, &value);
if (ret)
return ret;
ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_POST_RESET_WDOG, value);
if (ret < 0)
return ret;
return count;
}
static ssize_t mlxbf_bootctl_show(int smc_op, char *buf)
{
int action;
action = mlxbf_bootctl_smc(smc_op, 0);
if (action < 0)
return action;
return sprintf(buf, "%s\n", mlxbf_bootctl_action_to_string(action));
}
static int mlxbf_bootctl_store(int smc_op, const char *buf, size_t count)
{
int ret, action;
action = mlxbf_bootctl_reset_action_to_val(buf);
if (action < 0)
return action;
ret = mlxbf_bootctl_smc(smc_op, action);
if (ret < 0)
return ret;
return count;
}
static ssize_t reset_action_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_RESET_ACTION, buf);
}
static ssize_t reset_action_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_RESET_ACTION, buf, count);
}
static ssize_t second_reset_action_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return mlxbf_bootctl_show(MLXBF_BOOTCTL_GET_SECOND_RESET_ACTION, buf);
}
static ssize_t second_reset_action_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
return mlxbf_bootctl_store(MLXBF_BOOTCTL_SET_SECOND_RESET_ACTION, buf,
count);
}
static ssize_t lifecycle_state_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
int status_bits;
int use_dev_key;
int test_state;
int lc_state;
status_bits = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
MLXBF_BOOTCTL_FUSE_STATUS_LIFECYCLE);
if (status_bits < 0)
return status_bits;
use_dev_key = status_bits & MLXBF_BOOTCTL_SB_DEV_MASK;
test_state = status_bits & MLXBF_BOOTCTL_SB_TEST_MASK;
lc_state = status_bits & MLXBF_BOOTCTL_SB_SECURE_MASK;
/*
* If the test bits are set, we specify that the current state may be
* due to using the test bits.
*/
if (test_state) {
return sprintf(buf, "%s(test)\n",
mlxbf_bootctl_lifecycle_states[lc_state]);
} else if (use_dev_key &&
(lc_state == MLXBF_BOOTCTL_SB_LIFECYCLE_GA_SECURE)) {
return sprintf(buf, "Secured (development)\n");
}
return sprintf(buf, "%s\n", mlxbf_bootctl_lifecycle_states[lc_state]);
}
static ssize_t secure_boot_fuse_state_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int burnt, valid, key, key_state, buf_len = 0, upper_key_used = 0;
const char *status;
key_state = mlxbf_bootctl_smc(MLXBF_BOOTCTL_GET_TBB_FUSE_STATUS,
MLXBF_BOOTCTL_FUSE_STATUS_KEYS);
if (key_state < 0)
return key_state;
/*
* key_state contains the bits for 4 Key versions, loaded from eFuses
* after a hard reset. Lower 4 bits are a thermometer code indicating
* key programming has started for key n (0000 = none, 0001 = version 0,
* 0011 = version 1, 0111 = version 2, 1111 = version 3). Upper 4 bits
* are a thermometer code indicating key programming has completed for
* key n (same encodings as the start bits). This allows for detection
* of an interruption in the programming process which has left the key
* partially programmed (and thus invalid). The process is to burn the
* eFuse for the new key start bit, burn the key eFuses, then burn the
* eFuse for the new key complete bit.
*
* For example 0000_0000: no key valid, 0001_0001: key version 0 valid,
* 0011_0011: key 1 version valid, 0011_0111: key version 2 started
* programming but did not complete, etc. The most recent key for which
* both start and complete bit is set is loaded. On soft reset, this
* register is not modified.
*/
for (key = MLXBF_SB_KEY_NUM - 1; key >= 0; key--) {
burnt = key_state & BIT(key);
valid = key_state & BIT(key + MLXBF_SB_KEY_NUM);
if (burnt && valid)
upper_key_used = 1;
if (upper_key_used) {
if (burnt)
status = valid ? "Used" : "Wasted";
else
status = valid ? "Invalid" : "Skipped";
} else {
if (burnt)
status = valid ? "InUse" : "Incomplete";
else
status = valid ? "Invalid" : "Free";
}
buf_len += sprintf(buf + buf_len, "%d:%s ", key, status);
}
buf_len += sprintf(buf + buf_len, "\n");
return buf_len;
}
static ssize_t fw_reset_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned long key;
int err;
err = kstrtoul(buf, 16, &key);
if (err)
return err;
if (mlxbf_bootctl_smc(MLXBF_BOOTCTL_FW_RESET, key) < 0)
return -EINVAL;
return count;
}
/* Size(8-byte words) of the log buffer. */
#define RSH_SCRATCH_BUF_CTL_IDX_MASK 0x7f
/* 100ms timeout */
#define RSH_SCRATCH_BUF_POLL_TIMEOUT 100000
static int mlxbf_rsh_log_sem_lock(void)
{
unsigned long reg;
return readq_poll_timeout(mlxbf_rsh_semaphore, reg, !reg, 0,
RSH_SCRATCH_BUF_POLL_TIMEOUT);
}
static void mlxbf_rsh_log_sem_unlock(void)
{
writeq(0, mlxbf_rsh_semaphore);
}
static ssize_t rsh_log_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int rc, idx, num, len, level = MLXBF_RSH_LOG_INFO;
size_t size = count;
u64 data;
if (!size)
return -EINVAL;
if (!mlxbf_rsh_semaphore || !mlxbf_rsh_scratch_buf_ctl)
return -EOPNOTSUPP;
/* Ignore line break at the end. */
if (buf[size - 1] == '\n')
size--;
/* Check the message prefix. */
for (idx = 0; idx < ARRAY_SIZE(mlxbf_rsh_log_level); idx++) {
len = strlen(mlxbf_rsh_log_level[idx]);
if (len + 1 < size &&
!strncmp(buf, mlxbf_rsh_log_level[idx], len)) {
buf += len;
size -= len;
level = idx;
break;
}
}
/* Ignore leading spaces. */
while (size > 0 && buf[0] == ' ') {
size--;
buf++;
}
/* Take the semaphore. */
rc = mlxbf_rsh_log_sem_lock();
if (rc)
return rc;
/* Calculate how many words are available. */
idx = readq(mlxbf_rsh_scratch_buf_ctl);
num = min((int)DIV_ROUND_UP(size, sizeof(u64)),
RSH_SCRATCH_BUF_CTL_IDX_MASK - idx - 1);
if (num <= 0)
goto done;
/* Write Header. */
data = FIELD_PREP(MLXBF_RSH_LOG_TYPE_MASK, MLXBF_RSH_LOG_TYPE_MSG);
data |= FIELD_PREP(MLXBF_RSH_LOG_LEN_MASK, num);
data |= FIELD_PREP(MLXBF_RSH_LOG_LEVEL_MASK, level);
writeq(data, mlxbf_rsh_scratch_buf_data);
/* Write message. */
for (idx = 0; idx < num && size > 0; idx++) {
if (size < sizeof(u64)) {
data = 0;
memcpy(&data, buf, size);
size = 0;
} else {
memcpy(&data, buf, sizeof(u64));
size -= sizeof(u64);
buf += sizeof(u64);
}
writeq(data, mlxbf_rsh_scratch_buf_data);
}
done:
/* Release the semaphore. */
mlxbf_rsh_log_sem_unlock();
/* Ignore the rest if no more space. */
return count;
}
static ssize_t large_icm_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct arm_smccc_res res;
mutex_lock(&icm_ops_lock);
arm_smccc_smc(MLNX_HANDLE_GET_ICM_INFO, 0, 0, 0, 0,
0, 0, 0, &res);
mutex_unlock(&icm_ops_lock);
if (res.a0)
return -EPERM;
return sysfs_emit(buf, "0x%lx", res.a1);
}
static ssize_t large_icm_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct arm_smccc_res res;
unsigned long icm_data;
int err;
err = kstrtoul(buf, MLXBF_LARGE_ICMC_MAX_STRING_SIZE, &icm_data);
if (err)
return err;
if ((icm_data != 0 && icm_data < MLXBF_LARGE_ICMC_SIZE_MIN) ||
icm_data > MLXBF_LARGE_ICMC_SIZE_MAX || icm_data % MLXBF_LARGE_ICMC_GRANULARITY)
return -EPERM;
mutex_lock(&icm_ops_lock);
arm_smccc_smc(MLNX_HANDLE_SET_ICM_INFO, icm_data, 0, 0, 0, 0, 0, 0, &res);
mutex_unlock(&icm_ops_lock);
return res.a0 ? -EPERM : count;
}
static ssize_t os_up_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct arm_smccc_res res;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val != 1)
return -EINVAL;
mutex_lock(&os_up_lock);
arm_smccc_smc(MLNX_HANDLE_OS_UP, 0, 0, 0, 0, 0, 0, 0, &res);
mutex_unlock(&os_up_lock);
return count;
}
static ssize_t oob_mac_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct arm_smccc_res res;
u8 *mac_byte_ptr;
mutex_lock(&mfg_ops_lock);
arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO, MLNX_MFG_TYPE_OOB_MAC, 0, 0, 0,
0, 0, 0, &res);
mutex_unlock(&mfg_ops_lock);
if (res.a0)
return -EPERM;
mac_byte_ptr = (u8 *)&res.a1;
return sysfs_format_mac(buf, mac_byte_ptr, ETH_ALEN);
}
static ssize_t oob_mac_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
unsigned int byte[MLNX_MFG_OOB_MAC_FORMAT_LEN] = { 0 };
struct arm_smccc_res res;
int byte_idx, len;
u64 mac_addr = 0;
u8 *mac_byte_ptr;
if ((count - 1) != MLNX_MFG_OOB_MAC_FORMAT_LEN)
return -EINVAL;
len = sscanf(buf, "%02x:%02x:%02x:%02x:%02x:%02x",
&byte[0], &byte[1], &byte[2],
&byte[3], &byte[4], &byte[5]);
if (len != ETH_ALEN)
return -EINVAL;
mac_byte_ptr = (u8 *)&mac_addr;
for (byte_idx = 0; byte_idx < ETH_ALEN; byte_idx++)
mac_byte_ptr[byte_idx] = (u8)byte[byte_idx];
mutex_lock(&mfg_ops_lock);
arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO, MLNX_MFG_TYPE_OOB_MAC,
ETH_ALEN, mac_addr, 0, 0, 0, 0, &res);
mutex_unlock(&mfg_ops_lock);
return res.a0 ? -EPERM : count;
}
static ssize_t opn_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 opn_data[MLNX_MFG_VAL_QWORD_CNT(OPN) + 1] = { 0 };
struct arm_smccc_res res;
int word;
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(OPN); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
MLNX_MFG_TYPE_OPN_0 + word,
0, 0, 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
opn_data[word] = res.a1;
}
mutex_unlock(&mfg_ops_lock);
return sysfs_emit(buf, "%s", (char *)opn_data);
}
static ssize_t opn_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u64 opn[MLNX_MFG_VAL_QWORD_CNT(OPN)] = { 0 };
struct arm_smccc_res res;
int word;
if (count > MLNX_MFG_OPN_VAL_LEN)
return -EINVAL;
memcpy(opn, buf, count);
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(OPN); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
MLNX_MFG_TYPE_OPN_0 + word,
sizeof(u64), opn[word], 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
}
mutex_unlock(&mfg_ops_lock);
return count;
}
static ssize_t sku_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 sku_data[MLNX_MFG_VAL_QWORD_CNT(SKU) + 1] = { 0 };
struct arm_smccc_res res;
int word;
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SKU); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
MLNX_MFG_TYPE_SKU_0 + word,
0, 0, 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
sku_data[word] = res.a1;
}
mutex_unlock(&mfg_ops_lock);
return sysfs_emit(buf, "%s", (char *)sku_data);
}
static ssize_t sku_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u64 sku[MLNX_MFG_VAL_QWORD_CNT(SKU)] = { 0 };
struct arm_smccc_res res;
int word;
if (count > MLNX_MFG_SKU_VAL_LEN)
return -EINVAL;
memcpy(sku, buf, count);
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SKU); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
MLNX_MFG_TYPE_SKU_0 + word,
sizeof(u64), sku[word], 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
}
mutex_unlock(&mfg_ops_lock);
return count;
}
static ssize_t modl_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 modl_data[MLNX_MFG_VAL_QWORD_CNT(MODL) + 1] = { 0 };
struct arm_smccc_res res;
int word;
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(MODL); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
MLNX_MFG_TYPE_MODL_0 + word,
0, 0, 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
modl_data[word] = res.a1;
}
mutex_unlock(&mfg_ops_lock);
return sysfs_emit(buf, "%s", (char *)modl_data);
}
static ssize_t modl_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u64 modl[MLNX_MFG_VAL_QWORD_CNT(MODL)] = { 0 };
struct arm_smccc_res res;
int word;
if (count > MLNX_MFG_MODL_VAL_LEN)
return -EINVAL;
memcpy(modl, buf, count);
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(MODL); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
MLNX_MFG_TYPE_MODL_0 + word,
sizeof(u64), modl[word], 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
}
mutex_unlock(&mfg_ops_lock);
return count;
}
static ssize_t sn_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 sn_data[MLNX_MFG_VAL_QWORD_CNT(SN) + 1] = { 0 };
struct arm_smccc_res res;
int word;
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SN); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
MLNX_MFG_TYPE_SN_0 + word,
0, 0, 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
sn_data[word] = res.a1;
}
mutex_unlock(&mfg_ops_lock);
return sysfs_emit(buf, "%s", (char *)sn_data);
}
static ssize_t sn_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u64 sn[MLNX_MFG_VAL_QWORD_CNT(SN)] = { 0 };
struct arm_smccc_res res;
int word;
if (count > MLNX_MFG_SN_VAL_LEN)
return -EINVAL;
memcpy(sn, buf, count);
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(SN); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
MLNX_MFG_TYPE_SN_0 + word,
sizeof(u64), sn[word], 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
}
mutex_unlock(&mfg_ops_lock);
return count;
}
static ssize_t uuid_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 uuid_data[MLNX_MFG_VAL_QWORD_CNT(UUID) + 1] = { 0 };
struct arm_smccc_res res;
int word;
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(UUID); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
MLNX_MFG_TYPE_UUID_0 + word,
0, 0, 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
uuid_data[word] = res.a1;
}
mutex_unlock(&mfg_ops_lock);
return sysfs_emit(buf, "%s", (char *)uuid_data);
}
static ssize_t uuid_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u64 uuid[MLNX_MFG_VAL_QWORD_CNT(UUID)] = { 0 };
struct arm_smccc_res res;
int word;
if (count > MLNX_MFG_UUID_VAL_LEN)
return -EINVAL;
memcpy(uuid, buf, count);
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(UUID); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
MLNX_MFG_TYPE_UUID_0 + word,
sizeof(u64), uuid[word], 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
}
mutex_unlock(&mfg_ops_lock);
return count;
}
static ssize_t rev_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
u64 rev_data[MLNX_MFG_VAL_QWORD_CNT(REV) + 1] = { 0 };
struct arm_smccc_res res;
int word;
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(REV); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_GET_MFG_INFO,
MLNX_MFG_TYPE_REV + word,
0, 0, 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
rev_data[word] = res.a1;
}
mutex_unlock(&mfg_ops_lock);
return sysfs_emit(buf, "%s", (char *)rev_data);
}
static ssize_t rev_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
u64 rev[MLNX_MFG_VAL_QWORD_CNT(REV)] = { 0 };
struct arm_smccc_res res;
int word;
if (count > MLNX_MFG_REV_VAL_LEN)
return -EINVAL;
memcpy(rev, buf, count);
mutex_lock(&mfg_ops_lock);
for (word = 0; word < MLNX_MFG_VAL_QWORD_CNT(REV); word++) {
arm_smccc_smc(MLXBF_BOOTCTL_SET_MFG_INFO,
MLNX_MFG_TYPE_REV + word,
sizeof(u64), rev[word], 0, 0, 0, 0, &res);
if (res.a0) {
mutex_unlock(&mfg_ops_lock);
return -EPERM;
}
}
mutex_unlock(&mfg_ops_lock);
return count;
}
static ssize_t mfg_lock_store(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct arm_smccc_res res;
unsigned long val;
int err;
err = kstrtoul(buf, 10, &val);
if (err)
return err;
if (val != 1)
return -EINVAL;
mutex_lock(&mfg_ops_lock);
arm_smccc_smc(MLXBF_BOOTCTL_LOCK_MFG_INFO, 0, 0, 0, 0, 0, 0, 0, &res);
mutex_unlock(&mfg_ops_lock);
return count;
}
static DEVICE_ATTR_RW(post_reset_wdog);
static DEVICE_ATTR_RW(reset_action);
static DEVICE_ATTR_RW(second_reset_action);
static DEVICE_ATTR_RO(lifecycle_state);
static DEVICE_ATTR_RO(secure_boot_fuse_state);
static DEVICE_ATTR_WO(fw_reset);
static DEVICE_ATTR_WO(rsh_log);
static DEVICE_ATTR_RW(large_icm);
static DEVICE_ATTR_WO(os_up);
static DEVICE_ATTR_RW(oob_mac);
static DEVICE_ATTR_RW(opn);
static DEVICE_ATTR_RW(sku);
static DEVICE_ATTR_RW(modl);
static DEVICE_ATTR_RW(sn);
static DEVICE_ATTR_RW(uuid);
static DEVICE_ATTR_RW(rev);
static DEVICE_ATTR_WO(mfg_lock);
static struct attribute *mlxbf_bootctl_attrs[] = {
&dev_attr_post_reset_wdog.attr,
&dev_attr_reset_action.attr,
&dev_attr_second_reset_action.attr,
&dev_attr_lifecycle_state.attr,
&dev_attr_secure_boot_fuse_state.attr,
&dev_attr_fw_reset.attr,
&dev_attr_rsh_log.attr,
&dev_attr_large_icm.attr,
&dev_attr_os_up.attr,
&dev_attr_oob_mac.attr,
&dev_attr_opn.attr,
&dev_attr_sku.attr,
&dev_attr_modl.attr,
&dev_attr_sn.attr,
&dev_attr_uuid.attr,
&dev_attr_rev.attr,
&dev_attr_mfg_lock.attr,
NULL
};
ATTRIBUTE_GROUPS(mlxbf_bootctl);
static const struct acpi_device_id mlxbf_bootctl_acpi_ids[] = {
{"MLNXBF04", 0},
{}
};
MODULE_DEVICE_TABLE(acpi, mlxbf_bootctl_acpi_ids);
static ssize_t mlxbf_bootctl_bootfifo_read(struct file *filp,
struct kobject *kobj,
struct bin_attribute *bin_attr,
char *buf, loff_t pos,
size_t count)
{
unsigned long timeout = msecs_to_jiffies(500);
unsigned long expire = jiffies + timeout;
u64 data, cnt = 0;
char *p = buf;
while (count >= sizeof(data)) {
/* Give up reading if no more data within 500ms. */
if (!cnt) {
cnt = readq(mlxbf_rsh_boot_cnt);
if (!cnt) {
if (time_after(jiffies, expire))
break;
usleep_range(10, 50);
continue;
}
}
data = readq(mlxbf_rsh_boot_data);
memcpy(p, &data, sizeof(data));
count -= sizeof(data);
p += sizeof(data);
cnt--;
expire = jiffies + timeout;
}
return p - buf;
}
static struct bin_attribute mlxbf_bootctl_bootfifo_sysfs_attr = {
.attr = { .name = "bootfifo", .mode = 0400 },
.read = mlxbf_bootctl_bootfifo_read,
};
static bool mlxbf_bootctl_guid_match(const guid_t *guid,
const struct arm_smccc_res *res)
{
guid_t id = GUID_INIT(res->a0, res->a1, res->a1 >> 16,
res->a2, res->a2 >> 8, res->a2 >> 16,
res->a2 >> 24, res->a3, res->a3 >> 8,
res->a3 >> 16, res->a3 >> 24);
return guid_equal(guid, &id);
}
static int mlxbf_bootctl_probe(struct platform_device *pdev)
{
struct arm_smccc_res res = { 0 };
void __iomem *reg;
guid_t guid;
int ret;
/* Map the resource of the bootfifo data register. */
mlxbf_rsh_boot_data = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(mlxbf_rsh_boot_data))
return PTR_ERR(mlxbf_rsh_boot_data);
/* Map the resource of the bootfifo counter register. */
mlxbf_rsh_boot_cnt = devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(mlxbf_rsh_boot_cnt))
return PTR_ERR(mlxbf_rsh_boot_cnt);
/* Map the resource of the rshim semaphore register. */
mlxbf_rsh_semaphore = devm_platform_ioremap_resource(pdev, 2);
if (IS_ERR(mlxbf_rsh_semaphore))
return PTR_ERR(mlxbf_rsh_semaphore);
/* Map the resource of the scratch buffer (log) registers. */
reg = devm_platform_ioremap_resource(pdev, 3);
if (IS_ERR(reg))
return PTR_ERR(reg);
mlxbf_rsh_scratch_buf_ctl = reg + MLXBF_RSH_SCRATCH_BUF_CTL_OFF;
mlxbf_rsh_scratch_buf_data = reg + MLXBF_RSH_SCRATCH_BUF_DATA_OFF;
/* Ensure we have the UUID we expect for this service. */
arm_smccc_smc(MLXBF_BOOTCTL_SIP_SVC_UID, 0, 0, 0, 0, 0, 0, 0, &res);
guid_parse(mlxbf_bootctl_svc_uuid_str, &guid);
if (!mlxbf_bootctl_guid_match(&guid, &res))
return -ENODEV;
/*
* When watchdog is used, it sets boot mode to MLXBF_BOOTCTL_SWAP_EMMC
* in case of boot failures. However it doesn't clear the state if there
* is no failure. Restore the default boot mode here to avoid any
* unnecessary boot partition swapping.
*/
ret = mlxbf_bootctl_smc(MLXBF_BOOTCTL_SET_RESET_ACTION,
MLXBF_BOOTCTL_EMMC);
if (ret < 0)
dev_warn(&pdev->dev, "Unable to reset the EMMC boot mode\n");
ret = sysfs_create_bin_file(&pdev->dev.kobj,
&mlxbf_bootctl_bootfifo_sysfs_attr);
if (ret)
pr_err("Unable to create bootfifo sysfs file, error %d\n", ret);
return ret;
}
static void mlxbf_bootctl_remove(struct platform_device *pdev)
{
sysfs_remove_bin_file(&pdev->dev.kobj,
&mlxbf_bootctl_bootfifo_sysfs_attr);
}
static struct platform_driver mlxbf_bootctl_driver = {
.probe = mlxbf_bootctl_probe,
.remove = mlxbf_bootctl_remove,
.driver = {
.name = "mlxbf-bootctl",
.dev_groups = mlxbf_bootctl_groups,
.acpi_match_table = mlxbf_bootctl_acpi_ids,
}
};
module_platform_driver(mlxbf_bootctl_driver);
MODULE_DESCRIPTION("Mellanox boot control driver");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Mellanox Technologies");