linux-stable/include/keys/asymmetric-type.h
David Howells 60050ffe3d certs: Move load_certificate_list() to be with the asymmetric keys code
Move load_certificate_list(), which loads a series of binary X.509
certificates from a blob and inserts them as keys into a keyring, to be
with the asymmetric keys code that it drives.

This makes it easier to add FIPS selftest code in which we need to load up
a private keyring for the tests to use.

Signed-off-by: David Howells <dhowells@redhat.com>
Reviewed-by: Simo Sorce <simo@redhat.com>
Reviewed-by: Herbert Xu <herbert@gondor.apana.org.au>
cc: keyrings@vger.kernel.org
cc: linux-crypto@vger.kernel.org
Link: https://lore.kernel.org/r/165515742145.1554877.13488098107542537203.stgit@warthog.procyon.org.uk/
2022-06-21 16:05:06 +01:00

95 lines
3.0 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/* Asymmetric Public-key cryptography key type interface
*
* See Documentation/crypto/asymmetric-keys.rst
*
* Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
*/
#ifndef _KEYS_ASYMMETRIC_TYPE_H
#define _KEYS_ASYMMETRIC_TYPE_H
#include <linux/key-type.h>
#include <linux/verification.h>
extern struct key_type key_type_asymmetric;
/*
* The key payload is four words. The asymmetric-type key uses them as
* follows:
*/
enum asymmetric_payload_bits {
asym_crypto, /* The data representing the key */
asym_subtype, /* Pointer to an asymmetric_key_subtype struct */
asym_key_ids, /* Pointer to an asymmetric_key_ids struct */
asym_auth /* The key's authorisation (signature, parent key ID) */
};
/*
* Identifiers for an asymmetric key ID. We have three ways of looking up a
* key derived from an X.509 certificate:
*
* (1) Serial Number & Issuer. Non-optional. This is the only valid way to
* map a PKCS#7 signature to an X.509 certificate.
*
* (2) Issuer & Subject Unique IDs. Optional. These were the original way to
* match X.509 certificates, but have fallen into disuse in favour of (3).
*
* (3) Auth & Subject Key Identifiers. Optional. SKIDs are only provided on
* CA keys that are intended to sign other keys, so don't appear in end
* user certificates unless forced.
*
* We could also support an PGP key identifier, which is just a SHA1 sum of the
* public key and certain parameters, but since we don't support PGP keys at
* the moment, we shall ignore those.
*
* What we actually do is provide a place where binary identifiers can be
* stashed and then compare against them when checking for an id match.
*/
struct asymmetric_key_id {
unsigned short len;
unsigned char data[];
};
struct asymmetric_key_ids {
void *id[3];
};
extern bool asymmetric_key_id_same(const struct asymmetric_key_id *kid1,
const struct asymmetric_key_id *kid2);
extern bool asymmetric_key_id_partial(const struct asymmetric_key_id *kid1,
const struct asymmetric_key_id *kid2);
extern struct asymmetric_key_id *asymmetric_key_generate_id(const void *val_1,
size_t len_1,
const void *val_2,
size_t len_2);
static inline
const struct asymmetric_key_ids *asymmetric_key_ids(const struct key *key)
{
return key->payload.data[asym_key_ids];
}
static inline
const struct public_key *asymmetric_key_public_key(const struct key *key)
{
return key->payload.data[asym_crypto];
}
extern struct key *find_asymmetric_key(struct key *keyring,
const struct asymmetric_key_id *id_0,
const struct asymmetric_key_id *id_1,
const struct asymmetric_key_id *id_2,
bool partial);
int x509_load_certificate_list(const u8 cert_list[], const unsigned long list_size,
const struct key *keyring);
/*
* The payload is at the discretion of the subtype.
*/
#endif /* _KEYS_ASYMMETRIC_TYPE_H */