mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-04 04:06:26 +00:00
391cceee6d
commitd7e7b9af10
upstream. The approach of fs/crypto/ internally managing the fscrypt_master_key structs as the payloads of "struct key" objects contained in a "struct key" keyring has outlived its usefulness. The original idea was to simplify the code by reusing code from the keyrings subsystem. However, several issues have arisen that can't easily be resolved: - When a master key struct is destroyed, blk_crypto_evict_key() must be called on any per-mode keys embedded in it. (This started being the case when inline encryption support was added.) Yet, the keyrings subsystem can arbitrarily delay the destruction of keys, even past the time the filesystem was unmounted. Therefore, currently there is no easy way to call blk_crypto_evict_key() when a master key is destroyed. Currently, this is worked around by holding an extra reference to the filesystem's request_queue(s). But it was overlooked that the request_queue reference is *not* guaranteed to pin the corresponding blk_crypto_profile too; for device-mapper devices that support inline crypto, it doesn't. This can cause a use-after-free. - When the last inode that was using an incompletely-removed master key is evicted, the master key removal is completed by removing the key struct from the keyring. Currently this is done via key_invalidate(). Yet, key_invalidate() takes the key semaphore. This can deadlock when called from the shrinker, since in fscrypt_ioctl_add_key(), memory is allocated with GFP_KERNEL under the same semaphore. - More generally, the fact that the keyrings subsystem can arbitrarily delay the destruction of keys (via garbage collection delay, or via random processes getting temporary key references) is undesirable, as it means we can't strictly guarantee that all secrets are ever wiped. - Doing the master key lookups via the keyrings subsystem results in the key_permission LSM hook being called. fscrypt doesn't want this, as all access control for encrypted files is designed to happen via the files themselves, like any other files. The workaround which SELinux users are using is to change their SELinux policy to grant key search access to all domains. This works, but it is an odd extra step that shouldn't really have to be done. The fix for all these issues is to change the implementation to what I should have done originally: don't use the keyrings subsystem to keep track of the filesystem's fscrypt_master_key structs. Instead, just store them in a regular kernel data structure, and rework the reference counting, locking, and lifetime accordingly. Retain support for RCU-mode key lookups by using a hash table. Replace fscrypt_sb_free() with fscrypt_sb_delete(), which releases the keys synchronously and runs a bit earlier during unmount, so that block devices are still available. A side effect of this patch is that neither the master keys themselves nor the filesystem keyrings will be listed in /proc/keys anymore. ("Master key users" and the master key users keyrings will still be listed.) However, this was mostly an implementation detail, and it was intended just for debugging purposes. I don't know of anyone using it. This patch does *not* change how "master key users" (->mk_users) works; that still uses the keyrings subsystem. That is still needed for key quotas, and changing that isn't necessary to solve the issues listed above. If we decide to change that too, it would be a separate patch. I've marked this as fixing the original commit that added the fscrypt keyring, but as noted above the most important issue that this patch fixes wasn't introduced until the addition of inline encryption support. Fixes:22d94f493b
("fscrypt: add FS_IOC_ADD_ENCRYPTION_KEY ioctl") Signed-off-by: Eric Biggers <ebiggers@google.com> Link: https://lore.kernel.org/r/20220901193208.138056-2-ebiggers@kernel.org Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
424 lines
13 KiB
C
424 lines
13 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* fs/crypto/hooks.c
|
|
*
|
|
* Encryption hooks for higher-level filesystem operations.
|
|
*/
|
|
|
|
#include "fscrypt_private.h"
|
|
|
|
/**
|
|
* fscrypt_file_open() - prepare to open a possibly-encrypted regular file
|
|
* @inode: the inode being opened
|
|
* @filp: the struct file being set up
|
|
*
|
|
* Currently, an encrypted regular file can only be opened if its encryption key
|
|
* is available; access to the raw encrypted contents is not supported.
|
|
* Therefore, we first set up the inode's encryption key (if not already done)
|
|
* and return an error if it's unavailable.
|
|
*
|
|
* We also verify that if the parent directory (from the path via which the file
|
|
* is being opened) is encrypted, then the inode being opened uses the same
|
|
* encryption policy. This is needed as part of the enforcement that all files
|
|
* in an encrypted directory tree use the same encryption policy, as a
|
|
* protection against certain types of offline attacks. Note that this check is
|
|
* needed even when opening an *unencrypted* file, since it's forbidden to have
|
|
* an unencrypted file in an encrypted directory.
|
|
*
|
|
* Return: 0 on success, -ENOKEY if the key is missing, or another -errno code
|
|
*/
|
|
int fscrypt_file_open(struct inode *inode, struct file *filp)
|
|
{
|
|
int err;
|
|
struct dentry *dir;
|
|
|
|
err = fscrypt_require_key(inode);
|
|
if (err)
|
|
return err;
|
|
|
|
dir = dget_parent(file_dentry(filp));
|
|
if (IS_ENCRYPTED(d_inode(dir)) &&
|
|
!fscrypt_has_permitted_context(d_inode(dir), inode)) {
|
|
fscrypt_warn(inode,
|
|
"Inconsistent encryption context (parent directory: %lu)",
|
|
d_inode(dir)->i_ino);
|
|
err = -EPERM;
|
|
}
|
|
dput(dir);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_file_open);
|
|
|
|
int __fscrypt_prepare_link(struct inode *inode, struct inode *dir,
|
|
struct dentry *dentry)
|
|
{
|
|
int err;
|
|
|
|
err = fscrypt_require_key(dir);
|
|
if (err)
|
|
return err;
|
|
|
|
/* ... in case we looked up no-key name before key was added */
|
|
if (fscrypt_is_nokey_name(dentry))
|
|
return -ENOKEY;
|
|
|
|
if (!fscrypt_has_permitted_context(dir, inode))
|
|
return -EXDEV;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__fscrypt_prepare_link);
|
|
|
|
int __fscrypt_prepare_rename(struct inode *old_dir, struct dentry *old_dentry,
|
|
struct inode *new_dir, struct dentry *new_dentry,
|
|
unsigned int flags)
|
|
{
|
|
int err;
|
|
|
|
err = fscrypt_require_key(old_dir);
|
|
if (err)
|
|
return err;
|
|
|
|
err = fscrypt_require_key(new_dir);
|
|
if (err)
|
|
return err;
|
|
|
|
/* ... in case we looked up no-key name(s) before key was added */
|
|
if (fscrypt_is_nokey_name(old_dentry) ||
|
|
fscrypt_is_nokey_name(new_dentry))
|
|
return -ENOKEY;
|
|
|
|
if (old_dir != new_dir) {
|
|
if (IS_ENCRYPTED(new_dir) &&
|
|
!fscrypt_has_permitted_context(new_dir,
|
|
d_inode(old_dentry)))
|
|
return -EXDEV;
|
|
|
|
if ((flags & RENAME_EXCHANGE) &&
|
|
IS_ENCRYPTED(old_dir) &&
|
|
!fscrypt_has_permitted_context(old_dir,
|
|
d_inode(new_dentry)))
|
|
return -EXDEV;
|
|
}
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__fscrypt_prepare_rename);
|
|
|
|
int __fscrypt_prepare_lookup(struct inode *dir, struct dentry *dentry,
|
|
struct fscrypt_name *fname)
|
|
{
|
|
int err = fscrypt_setup_filename(dir, &dentry->d_name, 1, fname);
|
|
|
|
if (err && err != -ENOENT)
|
|
return err;
|
|
|
|
if (fname->is_nokey_name) {
|
|
spin_lock(&dentry->d_lock);
|
|
dentry->d_flags |= DCACHE_NOKEY_NAME;
|
|
spin_unlock(&dentry->d_lock);
|
|
d_set_d_op(dentry, &fscrypt_d_ops);
|
|
}
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__fscrypt_prepare_lookup);
|
|
|
|
/**
|
|
* fscrypt_prepare_setflags() - prepare to change flags with FS_IOC_SETFLAGS
|
|
* @inode: the inode on which flags are being changed
|
|
* @oldflags: the old flags
|
|
* @flags: the new flags
|
|
*
|
|
* The caller should be holding i_rwsem for write.
|
|
*
|
|
* Return: 0 on success; -errno if the flags change isn't allowed or if
|
|
* another error occurs.
|
|
*/
|
|
int fscrypt_prepare_setflags(struct inode *inode,
|
|
unsigned int oldflags, unsigned int flags)
|
|
{
|
|
struct fscrypt_info *ci;
|
|
struct fscrypt_master_key *mk;
|
|
int err;
|
|
|
|
/*
|
|
* When the CASEFOLD flag is set on an encrypted directory, we must
|
|
* derive the secret key needed for the dirhash. This is only possible
|
|
* if the directory uses a v2 encryption policy.
|
|
*/
|
|
if (IS_ENCRYPTED(inode) && (flags & ~oldflags & FS_CASEFOLD_FL)) {
|
|
err = fscrypt_require_key(inode);
|
|
if (err)
|
|
return err;
|
|
ci = inode->i_crypt_info;
|
|
if (ci->ci_policy.version != FSCRYPT_POLICY_V2)
|
|
return -EINVAL;
|
|
mk = ci->ci_master_key;
|
|
down_read(&mk->mk_sem);
|
|
if (is_master_key_secret_present(&mk->mk_secret))
|
|
err = fscrypt_derive_dirhash_key(ci, mk);
|
|
else
|
|
err = -ENOKEY;
|
|
up_read(&mk->mk_sem);
|
|
return err;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* fscrypt_prepare_symlink() - prepare to create a possibly-encrypted symlink
|
|
* @dir: directory in which the symlink is being created
|
|
* @target: plaintext symlink target
|
|
* @len: length of @target excluding null terminator
|
|
* @max_len: space the filesystem has available to store the symlink target
|
|
* @disk_link: (out) the on-disk symlink target being prepared
|
|
*
|
|
* This function computes the size the symlink target will require on-disk,
|
|
* stores it in @disk_link->len, and validates it against @max_len. An
|
|
* encrypted symlink may be longer than the original.
|
|
*
|
|
* Additionally, @disk_link->name is set to @target if the symlink will be
|
|
* unencrypted, but left NULL if the symlink will be encrypted. For encrypted
|
|
* symlinks, the filesystem must call fscrypt_encrypt_symlink() to create the
|
|
* on-disk target later. (The reason for the two-step process is that some
|
|
* filesystems need to know the size of the symlink target before creating the
|
|
* inode, e.g. to determine whether it will be a "fast" or "slow" symlink.)
|
|
*
|
|
* Return: 0 on success, -ENAMETOOLONG if the symlink target is too long,
|
|
* -ENOKEY if the encryption key is missing, or another -errno code if a problem
|
|
* occurred while setting up the encryption key.
|
|
*/
|
|
int fscrypt_prepare_symlink(struct inode *dir, const char *target,
|
|
unsigned int len, unsigned int max_len,
|
|
struct fscrypt_str *disk_link)
|
|
{
|
|
const union fscrypt_policy *policy;
|
|
|
|
/*
|
|
* To calculate the size of the encrypted symlink target we need to know
|
|
* the amount of NUL padding, which is determined by the flags set in
|
|
* the encryption policy which will be inherited from the directory.
|
|
*/
|
|
policy = fscrypt_policy_to_inherit(dir);
|
|
if (policy == NULL) {
|
|
/* Not encrypted */
|
|
disk_link->name = (unsigned char *)target;
|
|
disk_link->len = len + 1;
|
|
if (disk_link->len > max_len)
|
|
return -ENAMETOOLONG;
|
|
return 0;
|
|
}
|
|
if (IS_ERR(policy))
|
|
return PTR_ERR(policy);
|
|
|
|
/*
|
|
* Calculate the size of the encrypted symlink and verify it won't
|
|
* exceed max_len. Note that for historical reasons, encrypted symlink
|
|
* targets are prefixed with the ciphertext length, despite this
|
|
* actually being redundant with i_size. This decreases by 2 bytes the
|
|
* longest symlink target we can accept.
|
|
*
|
|
* We could recover 1 byte by not counting a null terminator, but
|
|
* counting it (even though it is meaningless for ciphertext) is simpler
|
|
* for now since filesystems will assume it is there and subtract it.
|
|
*/
|
|
if (!fscrypt_fname_encrypted_size(policy, len,
|
|
max_len - sizeof(struct fscrypt_symlink_data),
|
|
&disk_link->len))
|
|
return -ENAMETOOLONG;
|
|
disk_link->len += sizeof(struct fscrypt_symlink_data);
|
|
|
|
disk_link->name = NULL;
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_prepare_symlink);
|
|
|
|
int __fscrypt_encrypt_symlink(struct inode *inode, const char *target,
|
|
unsigned int len, struct fscrypt_str *disk_link)
|
|
{
|
|
int err;
|
|
struct qstr iname = QSTR_INIT(target, len);
|
|
struct fscrypt_symlink_data *sd;
|
|
unsigned int ciphertext_len;
|
|
|
|
/*
|
|
* fscrypt_prepare_new_inode() should have already set up the new
|
|
* symlink inode's encryption key. We don't wait until now to do it,
|
|
* since we may be in a filesystem transaction now.
|
|
*/
|
|
if (WARN_ON_ONCE(!fscrypt_has_encryption_key(inode)))
|
|
return -ENOKEY;
|
|
|
|
if (disk_link->name) {
|
|
/* filesystem-provided buffer */
|
|
sd = (struct fscrypt_symlink_data *)disk_link->name;
|
|
} else {
|
|
sd = kmalloc(disk_link->len, GFP_NOFS);
|
|
if (!sd)
|
|
return -ENOMEM;
|
|
}
|
|
ciphertext_len = disk_link->len - sizeof(*sd);
|
|
sd->len = cpu_to_le16(ciphertext_len);
|
|
|
|
err = fscrypt_fname_encrypt(inode, &iname, sd->encrypted_path,
|
|
ciphertext_len);
|
|
if (err)
|
|
goto err_free_sd;
|
|
|
|
/*
|
|
* Null-terminating the ciphertext doesn't make sense, but we still
|
|
* count the null terminator in the length, so we might as well
|
|
* initialize it just in case the filesystem writes it out.
|
|
*/
|
|
sd->encrypted_path[ciphertext_len] = '\0';
|
|
|
|
/* Cache the plaintext symlink target for later use by get_link() */
|
|
err = -ENOMEM;
|
|
inode->i_link = kmemdup(target, len + 1, GFP_NOFS);
|
|
if (!inode->i_link)
|
|
goto err_free_sd;
|
|
|
|
if (!disk_link->name)
|
|
disk_link->name = (unsigned char *)sd;
|
|
return 0;
|
|
|
|
err_free_sd:
|
|
if (!disk_link->name)
|
|
kfree(sd);
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__fscrypt_encrypt_symlink);
|
|
|
|
/**
|
|
* fscrypt_get_symlink() - get the target of an encrypted symlink
|
|
* @inode: the symlink inode
|
|
* @caddr: the on-disk contents of the symlink
|
|
* @max_size: size of @caddr buffer
|
|
* @done: if successful, will be set up to free the returned target if needed
|
|
*
|
|
* If the symlink's encryption key is available, we decrypt its target.
|
|
* Otherwise, we encode its target for presentation.
|
|
*
|
|
* This may sleep, so the filesystem must have dropped out of RCU mode already.
|
|
*
|
|
* Return: the presentable symlink target or an ERR_PTR()
|
|
*/
|
|
const char *fscrypt_get_symlink(struct inode *inode, const void *caddr,
|
|
unsigned int max_size,
|
|
struct delayed_call *done)
|
|
{
|
|
const struct fscrypt_symlink_data *sd;
|
|
struct fscrypt_str cstr, pstr;
|
|
bool has_key;
|
|
int err;
|
|
|
|
/* This is for encrypted symlinks only */
|
|
if (WARN_ON(!IS_ENCRYPTED(inode)))
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
/* If the decrypted target is already cached, just return it. */
|
|
pstr.name = READ_ONCE(inode->i_link);
|
|
if (pstr.name)
|
|
return pstr.name;
|
|
|
|
/*
|
|
* Try to set up the symlink's encryption key, but we can continue
|
|
* regardless of whether the key is available or not.
|
|
*/
|
|
err = fscrypt_get_encryption_info(inode);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
has_key = fscrypt_has_encryption_key(inode);
|
|
|
|
/*
|
|
* For historical reasons, encrypted symlink targets are prefixed with
|
|
* the ciphertext length, even though this is redundant with i_size.
|
|
*/
|
|
|
|
if (max_size < sizeof(*sd))
|
|
return ERR_PTR(-EUCLEAN);
|
|
sd = caddr;
|
|
cstr.name = (unsigned char *)sd->encrypted_path;
|
|
cstr.len = le16_to_cpu(sd->len);
|
|
|
|
if (cstr.len == 0)
|
|
return ERR_PTR(-EUCLEAN);
|
|
|
|
if (cstr.len + sizeof(*sd) - 1 > max_size)
|
|
return ERR_PTR(-EUCLEAN);
|
|
|
|
err = fscrypt_fname_alloc_buffer(cstr.len, &pstr);
|
|
if (err)
|
|
return ERR_PTR(err);
|
|
|
|
err = fscrypt_fname_disk_to_usr(inode, 0, 0, &cstr, &pstr);
|
|
if (err)
|
|
goto err_kfree;
|
|
|
|
err = -EUCLEAN;
|
|
if (pstr.name[0] == '\0')
|
|
goto err_kfree;
|
|
|
|
pstr.name[pstr.len] = '\0';
|
|
|
|
/*
|
|
* Cache decrypted symlink targets in i_link for later use. Don't cache
|
|
* symlink targets encoded without the key, since those become outdated
|
|
* once the key is added. This pairs with the READ_ONCE() above and in
|
|
* the VFS path lookup code.
|
|
*/
|
|
if (!has_key ||
|
|
cmpxchg_release(&inode->i_link, NULL, pstr.name) != NULL)
|
|
set_delayed_call(done, kfree_link, pstr.name);
|
|
|
|
return pstr.name;
|
|
|
|
err_kfree:
|
|
kfree(pstr.name);
|
|
return ERR_PTR(err);
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_get_symlink);
|
|
|
|
/**
|
|
* fscrypt_symlink_getattr() - set the correct st_size for encrypted symlinks
|
|
* @path: the path for the encrypted symlink being queried
|
|
* @stat: the struct being filled with the symlink's attributes
|
|
*
|
|
* Override st_size of encrypted symlinks to be the length of the decrypted
|
|
* symlink target (or the no-key encoded symlink target, if the key is
|
|
* unavailable) rather than the length of the encrypted symlink target. This is
|
|
* necessary for st_size to match the symlink target that userspace actually
|
|
* sees. POSIX requires this, and some userspace programs depend on it.
|
|
*
|
|
* This requires reading the symlink target from disk if needed, setting up the
|
|
* inode's encryption key if possible, and then decrypting or encoding the
|
|
* symlink target. This makes lstat() more heavyweight than is normally the
|
|
* case. However, decrypted symlink targets will be cached in ->i_link, so
|
|
* usually the symlink won't have to be read and decrypted again later if/when
|
|
* it is actually followed, readlink() is called, or lstat() is called again.
|
|
*
|
|
* Return: 0 on success, -errno on failure
|
|
*/
|
|
int fscrypt_symlink_getattr(const struct path *path, struct kstat *stat)
|
|
{
|
|
struct dentry *dentry = path->dentry;
|
|
struct inode *inode = d_inode(dentry);
|
|
const char *link;
|
|
DEFINE_DELAYED_CALL(done);
|
|
|
|
/*
|
|
* To get the symlink target that userspace will see (whether it's the
|
|
* decrypted target or the no-key encoded target), we can just get it in
|
|
* the same way the VFS does during path resolution and readlink().
|
|
*/
|
|
link = READ_ONCE(inode->i_link);
|
|
if (!link) {
|
|
link = inode->i_op->get_link(dentry, inode, &done);
|
|
if (IS_ERR(link))
|
|
return PTR_ERR(link);
|
|
}
|
|
stat->size = strlen(link);
|
|
do_delayed_call(&done);
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(fscrypt_symlink_getattr);
|