linux-stable/fs/f2fs/crypto_key.c
Jaegeuk Kim 26bf3dc7e2 f2fs crypto: use per-inode tfm structure
This patch applies the following ext4 patch:

  ext4 crypto: use per-inode tfm structure

As suggested by Herbert Xu, we shouldn't allocate a new tfm each time
we read or write a page.  Instead we can use a single tfm hanging off
the inode's crypt_info structure for all of our encryption needs for
that inode, since the tfm can be used by multiple crypto requests in
parallel.

Also use cmpxchg() to avoid races that could result in crypt_info
structure getting doubly allocated or doubly freed.

Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
2015-06-01 16:21:04 -07:00

256 lines
6.7 KiB
C

/*
* linux/fs/f2fs/crypto_key.c
*
* Copied from linux/fs/f2fs/crypto_key.c
*
* Copyright (C) 2015, Google, Inc.
*
* This contains encryption key functions for f2fs
*
* Written by Michael Halcrow, Ildar Muslukhov, and Uday Savagaonkar, 2015.
*/
#include <keys/encrypted-type.h>
#include <keys/user-type.h>
#include <linux/random.h>
#include <linux/scatterlist.h>
#include <uapi/linux/keyctl.h>
#include <crypto/hash.h>
#include <linux/f2fs_fs.h>
#include "f2fs.h"
#include "xattr.h"
static void derive_crypt_complete(struct crypto_async_request *req, int rc)
{
struct f2fs_completion_result *ecr = req->data;
if (rc == -EINPROGRESS)
return;
ecr->res = rc;
complete(&ecr->completion);
}
/**
* f2fs_derive_key_aes() - Derive a key using AES-128-ECB
* @deriving_key: Encryption key used for derivatio.
* @source_key: Source key to which to apply derivation.
* @derived_key: Derived key.
*
* Return: Zero on success; non-zero otherwise.
*/
static int f2fs_derive_key_aes(char deriving_key[F2FS_AES_128_ECB_KEY_SIZE],
char source_key[F2FS_AES_256_XTS_KEY_SIZE],
char derived_key[F2FS_AES_256_XTS_KEY_SIZE])
{
int res = 0;
struct ablkcipher_request *req = NULL;
DECLARE_F2FS_COMPLETION_RESULT(ecr);
struct scatterlist src_sg, dst_sg;
struct crypto_ablkcipher *tfm = crypto_alloc_ablkcipher("ecb(aes)", 0,
0);
if (IS_ERR(tfm)) {
res = PTR_ERR(tfm);
tfm = NULL;
goto out;
}
crypto_ablkcipher_set_flags(tfm, CRYPTO_TFM_REQ_WEAK_KEY);
req = ablkcipher_request_alloc(tfm, GFP_NOFS);
if (!req) {
res = -ENOMEM;
goto out;
}
ablkcipher_request_set_callback(req,
CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
derive_crypt_complete, &ecr);
res = crypto_ablkcipher_setkey(tfm, deriving_key,
F2FS_AES_128_ECB_KEY_SIZE);
if (res < 0)
goto out;
sg_init_one(&src_sg, source_key, F2FS_AES_256_XTS_KEY_SIZE);
sg_init_one(&dst_sg, derived_key, F2FS_AES_256_XTS_KEY_SIZE);
ablkcipher_request_set_crypt(req, &src_sg, &dst_sg,
F2FS_AES_256_XTS_KEY_SIZE, NULL);
res = crypto_ablkcipher_encrypt(req);
if (res == -EINPROGRESS || res == -EBUSY) {
BUG_ON(req->base.data != &ecr);
wait_for_completion(&ecr.completion);
res = ecr.res;
}
out:
if (req)
ablkcipher_request_free(req);
if (tfm)
crypto_free_ablkcipher(tfm);
return res;
}
static void f2fs_free_crypt_info(struct f2fs_crypt_info *ci)
{
if (!ci)
return;
if (ci->ci_keyring_key)
key_put(ci->ci_keyring_key);
crypto_free_ablkcipher(ci->ci_ctfm);
kmem_cache_free(f2fs_crypt_info_cachep, ci);
}
void f2fs_free_encryption_info(struct inode *inode, struct f2fs_crypt_info *ci)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_crypt_info *prev;
if (ci == NULL)
ci = ACCESS_ONCE(fi->i_crypt_info);
if (ci == NULL)
return;
prev = cmpxchg(&fi->i_crypt_info, ci, NULL);
if (prev != ci)
return;
f2fs_free_crypt_info(ci);
}
int _f2fs_get_encryption_info(struct inode *inode)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_crypt_info *crypt_info;
char full_key_descriptor[F2FS_KEY_DESC_PREFIX_SIZE +
(F2FS_KEY_DESCRIPTOR_SIZE * 2) + 1];
struct key *keyring_key = NULL;
struct f2fs_encryption_key *master_key;
struct f2fs_encryption_context ctx;
struct user_key_payload *ukp;
struct crypto_ablkcipher *ctfm;
const char *cipher_str;
char raw_key[F2FS_MAX_KEY_SIZE];
char mode;
int res;
res = f2fs_crypto_initialize();
if (res)
return res;
retry:
crypt_info = ACCESS_ONCE(fi->i_crypt_info);
if (crypt_info) {
if (!crypt_info->ci_keyring_key ||
key_validate(crypt_info->ci_keyring_key) == 0)
return 0;
f2fs_free_encryption_info(inode, crypt_info);
goto retry;
}
res = f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
&ctx, sizeof(ctx), NULL);
if (res < 0)
return res;
else if (res != sizeof(ctx))
return -EINVAL;
res = 0;
crypt_info = kmem_cache_alloc(f2fs_crypt_info_cachep, GFP_NOFS);
if (!crypt_info)
return -ENOMEM;
crypt_info->ci_flags = ctx.flags;
crypt_info->ci_data_mode = ctx.contents_encryption_mode;
crypt_info->ci_filename_mode = ctx.filenames_encryption_mode;
crypt_info->ci_ctfm = NULL;
crypt_info->ci_keyring_key = NULL;
memcpy(crypt_info->ci_master_key, ctx.master_key_descriptor,
sizeof(crypt_info->ci_master_key));
if (S_ISREG(inode->i_mode))
mode = crypt_info->ci_data_mode;
else if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
mode = crypt_info->ci_filename_mode;
else
BUG();
switch (mode) {
case F2FS_ENCRYPTION_MODE_AES_256_XTS:
cipher_str = "xts(aes)";
break;
case F2FS_ENCRYPTION_MODE_AES_256_CTS:
cipher_str = "cts(cbc(aes))";
break;
default:
printk_once(KERN_WARNING
"f2fs: unsupported key mode %d (ino %u)\n",
mode, (unsigned) inode->i_ino);
res = -ENOKEY;
goto out;
}
memcpy(full_key_descriptor, F2FS_KEY_DESC_PREFIX,
F2FS_KEY_DESC_PREFIX_SIZE);
sprintf(full_key_descriptor + F2FS_KEY_DESC_PREFIX_SIZE,
"%*phN", F2FS_KEY_DESCRIPTOR_SIZE,
ctx.master_key_descriptor);
full_key_descriptor[F2FS_KEY_DESC_PREFIX_SIZE +
(2 * F2FS_KEY_DESCRIPTOR_SIZE)] = '\0';
keyring_key = request_key(&key_type_logon, full_key_descriptor, NULL);
if (IS_ERR(keyring_key)) {
res = PTR_ERR(keyring_key);
keyring_key = NULL;
goto out;
}
crypt_info->ci_keyring_key = keyring_key;
BUG_ON(keyring_key->type != &key_type_logon);
ukp = ((struct user_key_payload *)keyring_key->payload.data);
if (ukp->datalen != sizeof(struct f2fs_encryption_key)) {
res = -EINVAL;
goto out;
}
master_key = (struct f2fs_encryption_key *)ukp->data;
BUILD_BUG_ON(F2FS_AES_128_ECB_KEY_SIZE !=
F2FS_KEY_DERIVATION_NONCE_SIZE);
BUG_ON(master_key->size != F2FS_AES_256_XTS_KEY_SIZE);
res = f2fs_derive_key_aes(ctx.nonce, master_key->raw,
raw_key);
if (res)
goto out;
ctfm = crypto_alloc_ablkcipher(cipher_str, 0, 0);
if (!ctfm || IS_ERR(ctfm)) {
res = ctfm ? PTR_ERR(ctfm) : -ENOMEM;
printk(KERN_DEBUG
"%s: error %d (inode %u) allocating crypto tfm\n",
__func__, res, (unsigned) inode->i_ino);
goto out;
}
crypt_info->ci_ctfm = ctfm;
crypto_ablkcipher_clear_flags(ctfm, ~0);
crypto_tfm_set_flags(crypto_ablkcipher_tfm(ctfm),
CRYPTO_TFM_REQ_WEAK_KEY);
res = crypto_ablkcipher_setkey(ctfm, raw_key,
f2fs_encryption_key_size(mode));
if (res)
goto out;
memzero_explicit(raw_key, sizeof(raw_key));
if (cmpxchg(&fi->i_crypt_info, NULL, crypt_info) != NULL) {
f2fs_free_crypt_info(crypt_info);
goto retry;
}
return 0;
out:
if (res == -ENOKEY && !S_ISREG(inode->i_mode))
res = 0;
f2fs_free_crypt_info(crypt_info);
memzero_explicit(raw_key, sizeof(raw_key));
return res;
}
int f2fs_has_encryption_key(struct inode *inode)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
return (fi->i_crypt_info != NULL);
}