linux-stable/drivers/sh/intc/core.c
Kees Cook 6396bb2215 treewide: kzalloc() -> kcalloc()
The kzalloc() function has a 2-factor argument form, kcalloc(). This
patch replaces cases of:

        kzalloc(a * b, gfp)

with:
        kcalloc(a * b, gfp)

as well as handling cases of:

        kzalloc(a * b * c, gfp)

with:

        kzalloc(array3_size(a, b, c), gfp)

as it's slightly less ugly than:

        kzalloc_array(array_size(a, b), c, gfp)

This does, however, attempt to ignore constant size factors like:

        kzalloc(4 * 1024, gfp)

though any constants defined via macros get caught up in the conversion.

Any factors with a sizeof() of "unsigned char", "char", and "u8" were
dropped, since they're redundant.

The Coccinelle script used for this was:

// Fix redundant parens around sizeof().
@@
type TYPE;
expression THING, E;
@@

(
  kzalloc(
-	(sizeof(TYPE)) * E
+	sizeof(TYPE) * E
  , ...)
|
  kzalloc(
-	(sizeof(THING)) * E
+	sizeof(THING) * E
  , ...)
)

// Drop single-byte sizes and redundant parens.
@@
expression COUNT;
typedef u8;
typedef __u8;
@@

(
  kzalloc(
-	sizeof(u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * (COUNT)
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(__u8) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(char) * COUNT
+	COUNT
  , ...)
|
  kzalloc(
-	sizeof(unsigned char) * COUNT
+	COUNT
  , ...)
)

// 2-factor product with sizeof(type/expression) and identifier or constant.
@@
type TYPE;
expression THING;
identifier COUNT_ID;
constant COUNT_CONST;
@@

(
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_ID)
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_ID
+	COUNT_ID, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (COUNT_CONST)
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * COUNT_CONST
+	COUNT_CONST, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_ID)
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_ID
+	COUNT_ID, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (COUNT_CONST)
+	COUNT_CONST, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * COUNT_CONST
+	COUNT_CONST, sizeof(THING)
  , ...)
)

// 2-factor product, only identifiers.
@@
identifier SIZE, COUNT;
@@

- kzalloc
+ kcalloc
  (
-	SIZE * COUNT
+	COUNT, SIZE
  , ...)

// 3-factor product with 1 sizeof(type) or sizeof(expression), with
// redundant parens removed.
@@
expression THING;
identifier STRIDE, COUNT;
type TYPE;
@@

(
  kzalloc(
-	sizeof(TYPE) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(TYPE) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(TYPE))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * (COUNT) * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * (STRIDE)
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
|
  kzalloc(
-	sizeof(THING) * COUNT * STRIDE
+	array3_size(COUNT, STRIDE, sizeof(THING))
  , ...)
)

// 3-factor product with 2 sizeof(variable), with redundant parens removed.
@@
expression THING1, THING2;
identifier COUNT;
type TYPE1, TYPE2;
@@

(
  kzalloc(
-	sizeof(TYPE1) * sizeof(TYPE2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(THING1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(THING1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * COUNT
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
|
  kzalloc(
-	sizeof(TYPE1) * sizeof(THING2) * (COUNT)
+	array3_size(COUNT, sizeof(TYPE1), sizeof(THING2))
  , ...)
)

// 3-factor product, only identifiers, with redundant parens removed.
@@
identifier STRIDE, SIZE, COUNT;
@@

(
  kzalloc(
-	(COUNT) * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * STRIDE * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	(COUNT) * (STRIDE) * (SIZE)
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
|
  kzalloc(
-	COUNT * STRIDE * SIZE
+	array3_size(COUNT, STRIDE, SIZE)
  , ...)
)

// Any remaining multi-factor products, first at least 3-factor products,
// when they're not all constants...
@@
expression E1, E2, E3;
constant C1, C2, C3;
@@

(
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(
-	(E1) * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * E3
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	(E1) * (E2) * (E3)
+	array3_size(E1, E2, E3)
  , ...)
|
  kzalloc(
-	E1 * E2 * E3
+	array3_size(E1, E2, E3)
  , ...)
)

// And then all remaining 2 factors products when they're not all constants,
// keeping sizeof() as the second factor argument.
@@
expression THING, E1, E2;
type TYPE;
constant C1, C2, C3;
@@

(
  kzalloc(sizeof(THING) * C2, ...)
|
  kzalloc(sizeof(TYPE) * C2, ...)
|
  kzalloc(C1 * C2 * C3, ...)
|
  kzalloc(C1 * C2, ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * (E2)
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(TYPE) * E2
+	E2, sizeof(TYPE)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * (E2)
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	sizeof(THING) * E2
+	E2, sizeof(THING)
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * E2
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	(E1) * (E2)
+	E1, E2
  , ...)
|
- kzalloc
+ kcalloc
  (
-	E1 * E2
+	E1, E2
  , ...)
)

Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-12 16:19:22 -07:00

513 lines
12 KiB
C

/*
* Shared interrupt handling code for IPR and INTC2 types of IRQs.
*
* Copyright (C) 2007, 2008 Magnus Damm
* Copyright (C) 2009 - 2012 Paul Mundt
*
* Based on intc2.c and ipr.c
*
* Copyright (C) 1999 Niibe Yutaka & Takeshi Yaegashi
* Copyright (C) 2000 Kazumoto Kojima
* Copyright (C) 2001 David J. Mckay (david.mckay@st.com)
* Copyright (C) 2003 Takashi Kusuda <kusuda-takashi@hitachi-ul.co.jp>
* Copyright (C) 2005, 2006 Paul Mundt
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*/
#define pr_fmt(fmt) "intc: " fmt
#include <linux/init.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/slab.h>
#include <linux/stat.h>
#include <linux/interrupt.h>
#include <linux/sh_intc.h>
#include <linux/irqdomain.h>
#include <linux/device.h>
#include <linux/syscore_ops.h>
#include <linux/list.h>
#include <linux/spinlock.h>
#include <linux/radix-tree.h>
#include <linux/export.h>
#include <linux/sort.h>
#include "internals.h"
LIST_HEAD(intc_list);
DEFINE_RAW_SPINLOCK(intc_big_lock);
static unsigned int nr_intc_controllers;
/*
* Default priority level
* - this needs to be at least 2 for 5-bit priorities on 7780
*/
static unsigned int default_prio_level = 2; /* 2 - 16 */
static unsigned int intc_prio_level[INTC_NR_IRQS]; /* for now */
unsigned int intc_get_dfl_prio_level(void)
{
return default_prio_level;
}
unsigned int intc_get_prio_level(unsigned int irq)
{
return intc_prio_level[irq];
}
void intc_set_prio_level(unsigned int irq, unsigned int level)
{
unsigned long flags;
raw_spin_lock_irqsave(&intc_big_lock, flags);
intc_prio_level[irq] = level;
raw_spin_unlock_irqrestore(&intc_big_lock, flags);
}
static void intc_redirect_irq(struct irq_desc *desc)
{
generic_handle_irq((unsigned int)irq_desc_get_handler_data(desc));
}
static void __init intc_register_irq(struct intc_desc *desc,
struct intc_desc_int *d,
intc_enum enum_id,
unsigned int irq)
{
struct intc_handle_int *hp;
struct irq_data *irq_data;
unsigned int data[2], primary;
unsigned long flags;
raw_spin_lock_irqsave(&intc_big_lock, flags);
radix_tree_insert(&d->tree, enum_id, intc_irq_xlate_get(irq));
raw_spin_unlock_irqrestore(&intc_big_lock, flags);
/*
* Prefer single interrupt source bitmap over other combinations:
*
* 1. bitmap, single interrupt source
* 2. priority, single interrupt source
* 3. bitmap, multiple interrupt sources (groups)
* 4. priority, multiple interrupt sources (groups)
*/
data[0] = intc_get_mask_handle(desc, d, enum_id, 0);
data[1] = intc_get_prio_handle(desc, d, enum_id, 0);
primary = 0;
if (!data[0] && data[1])
primary = 1;
if (!data[0] && !data[1])
pr_warning("missing unique irq mask for irq %d (vect 0x%04x)\n",
irq, irq2evt(irq));
data[0] = data[0] ? data[0] : intc_get_mask_handle(desc, d, enum_id, 1);
data[1] = data[1] ? data[1] : intc_get_prio_handle(desc, d, enum_id, 1);
if (!data[primary])
primary ^= 1;
BUG_ON(!data[primary]); /* must have primary masking method */
irq_data = irq_get_irq_data(irq);
disable_irq_nosync(irq);
irq_set_chip_and_handler_name(irq, &d->chip, handle_level_irq,
"level");
irq_set_chip_data(irq, (void *)data[primary]);
/*
* set priority level
*/
intc_set_prio_level(irq, intc_get_dfl_prio_level());
/* enable secondary masking method if present */
if (data[!primary])
_intc_enable(irq_data, data[!primary]);
/* add irq to d->prio list if priority is available */
if (data[1]) {
hp = d->prio + d->nr_prio;
hp->irq = irq;
hp->handle = data[1];
if (primary) {
/*
* only secondary priority should access registers, so
* set _INTC_FN(h) = REG_FN_ERR for intc_set_priority()
*/
hp->handle &= ~_INTC_MK(0x0f, 0, 0, 0, 0, 0);
hp->handle |= _INTC_MK(REG_FN_ERR, 0, 0, 0, 0, 0);
}
d->nr_prio++;
}
/* add irq to d->sense list if sense is available */
data[0] = intc_get_sense_handle(desc, d, enum_id);
if (data[0]) {
(d->sense + d->nr_sense)->irq = irq;
(d->sense + d->nr_sense)->handle = data[0];
d->nr_sense++;
}
/* irq should be disabled by default */
d->chip.irq_mask(irq_data);
intc_set_ack_handle(irq, desc, d, enum_id);
intc_set_dist_handle(irq, desc, d, enum_id);
activate_irq(irq);
}
static unsigned int __init save_reg(struct intc_desc_int *d,
unsigned int cnt,
unsigned long value,
unsigned int smp)
{
if (value) {
value = intc_phys_to_virt(d, value);
d->reg[cnt] = value;
#ifdef CONFIG_SMP
d->smp[cnt] = smp;
#endif
return 1;
}
return 0;
}
int __init register_intc_controller(struct intc_desc *desc)
{
unsigned int i, k, smp;
struct intc_hw_desc *hw = &desc->hw;
struct intc_desc_int *d;
struct resource *res;
pr_info("Registered controller '%s' with %u IRQs\n",
desc->name, hw->nr_vectors);
d = kzalloc(sizeof(*d), GFP_NOWAIT);
if (!d)
goto err0;
INIT_LIST_HEAD(&d->list);
list_add_tail(&d->list, &intc_list);
raw_spin_lock_init(&d->lock);
INIT_RADIX_TREE(&d->tree, GFP_ATOMIC);
d->index = nr_intc_controllers;
if (desc->num_resources) {
d->nr_windows = desc->num_resources;
d->window = kcalloc(d->nr_windows, sizeof(*d->window),
GFP_NOWAIT);
if (!d->window)
goto err1;
for (k = 0; k < d->nr_windows; k++) {
res = desc->resource + k;
WARN_ON(resource_type(res) != IORESOURCE_MEM);
d->window[k].phys = res->start;
d->window[k].size = resource_size(res);
d->window[k].virt = ioremap_nocache(res->start,
resource_size(res));
if (!d->window[k].virt)
goto err2;
}
}
d->nr_reg = hw->mask_regs ? hw->nr_mask_regs * 2 : 0;
#ifdef CONFIG_INTC_BALANCING
if (d->nr_reg)
d->nr_reg += hw->nr_mask_regs;
#endif
d->nr_reg += hw->prio_regs ? hw->nr_prio_regs * 2 : 0;
d->nr_reg += hw->sense_regs ? hw->nr_sense_regs : 0;
d->nr_reg += hw->ack_regs ? hw->nr_ack_regs : 0;
d->nr_reg += hw->subgroups ? hw->nr_subgroups : 0;
d->reg = kcalloc(d->nr_reg, sizeof(*d->reg), GFP_NOWAIT);
if (!d->reg)
goto err2;
#ifdef CONFIG_SMP
d->smp = kcalloc(d->nr_reg, sizeof(*d->smp), GFP_NOWAIT);
if (!d->smp)
goto err3;
#endif
k = 0;
if (hw->mask_regs) {
for (i = 0; i < hw->nr_mask_regs; i++) {
smp = IS_SMP(hw->mask_regs[i]);
k += save_reg(d, k, hw->mask_regs[i].set_reg, smp);
k += save_reg(d, k, hw->mask_regs[i].clr_reg, smp);
#ifdef CONFIG_INTC_BALANCING
k += save_reg(d, k, hw->mask_regs[i].dist_reg, 0);
#endif
}
}
if (hw->prio_regs) {
d->prio = kcalloc(hw->nr_vectors, sizeof(*d->prio),
GFP_NOWAIT);
if (!d->prio)
goto err4;
for (i = 0; i < hw->nr_prio_regs; i++) {
smp = IS_SMP(hw->prio_regs[i]);
k += save_reg(d, k, hw->prio_regs[i].set_reg, smp);
k += save_reg(d, k, hw->prio_regs[i].clr_reg, smp);
}
sort(d->prio, hw->nr_prio_regs, sizeof(*d->prio),
intc_handle_int_cmp, NULL);
}
if (hw->sense_regs) {
d->sense = kcalloc(hw->nr_vectors, sizeof(*d->sense),
GFP_NOWAIT);
if (!d->sense)
goto err5;
for (i = 0; i < hw->nr_sense_regs; i++)
k += save_reg(d, k, hw->sense_regs[i].reg, 0);
sort(d->sense, hw->nr_sense_regs, sizeof(*d->sense),
intc_handle_int_cmp, NULL);
}
if (hw->subgroups)
for (i = 0; i < hw->nr_subgroups; i++)
if (hw->subgroups[i].reg)
k+= save_reg(d, k, hw->subgroups[i].reg, 0);
memcpy(&d->chip, &intc_irq_chip, sizeof(struct irq_chip));
d->chip.name = desc->name;
if (hw->ack_regs)
for (i = 0; i < hw->nr_ack_regs; i++)
k += save_reg(d, k, hw->ack_regs[i].set_reg, 0);
else
d->chip.irq_mask_ack = d->chip.irq_disable;
/* disable bits matching force_disable before registering irqs */
if (desc->force_disable)
intc_enable_disable_enum(desc, d, desc->force_disable, 0);
/* disable bits matching force_enable before registering irqs */
if (desc->force_enable)
intc_enable_disable_enum(desc, d, desc->force_enable, 0);
BUG_ON(k > 256); /* _INTC_ADDR_E() and _INTC_ADDR_D() are 8 bits */
intc_irq_domain_init(d, hw);
/* register the vectors one by one */
for (i = 0; i < hw->nr_vectors; i++) {
struct intc_vect *vect = hw->vectors + i;
unsigned int irq = evt2irq(vect->vect);
int res;
if (!vect->enum_id)
continue;
res = irq_create_identity_mapping(d->domain, irq);
if (unlikely(res)) {
if (res == -EEXIST) {
res = irq_domain_associate(d->domain, irq, irq);
if (unlikely(res)) {
pr_err("domain association failure\n");
continue;
}
} else {
pr_err("can't identity map IRQ %d\n", irq);
continue;
}
}
intc_irq_xlate_set(irq, vect->enum_id, d);
intc_register_irq(desc, d, vect->enum_id, irq);
for (k = i + 1; k < hw->nr_vectors; k++) {
struct intc_vect *vect2 = hw->vectors + k;
unsigned int irq2 = evt2irq(vect2->vect);
if (vect->enum_id != vect2->enum_id)
continue;
/*
* In the case of multi-evt handling and sparse
* IRQ support, each vector still needs to have
* its own backing irq_desc.
*/
res = irq_create_identity_mapping(d->domain, irq2);
if (unlikely(res)) {
if (res == -EEXIST) {
res = irq_domain_associate(d->domain,
irq2, irq2);
if (unlikely(res)) {
pr_err("domain association "
"failure\n");
continue;
}
} else {
pr_err("can't identity map IRQ %d\n",
irq);
continue;
}
}
vect2->enum_id = 0;
/* redirect this interrupts to the first one */
irq_set_chip(irq2, &dummy_irq_chip);
irq_set_chained_handler_and_data(irq2,
intc_redirect_irq,
(void *)irq);
}
}
intc_subgroup_init(desc, d);
/* enable bits matching force_enable after registering irqs */
if (desc->force_enable)
intc_enable_disable_enum(desc, d, desc->force_enable, 1);
d->skip_suspend = desc->skip_syscore_suspend;
nr_intc_controllers++;
return 0;
err5:
kfree(d->prio);
err4:
#ifdef CONFIG_SMP
kfree(d->smp);
err3:
#endif
kfree(d->reg);
err2:
for (k = 0; k < d->nr_windows; k++)
if (d->window[k].virt)
iounmap(d->window[k].virt);
kfree(d->window);
err1:
kfree(d);
err0:
pr_err("unable to allocate INTC memory\n");
return -ENOMEM;
}
static int intc_suspend(void)
{
struct intc_desc_int *d;
list_for_each_entry(d, &intc_list, list) {
int irq;
if (d->skip_suspend)
continue;
/* enable wakeup irqs belonging to this intc controller */
for_each_active_irq(irq) {
struct irq_data *data;
struct irq_chip *chip;
data = irq_get_irq_data(irq);
chip = irq_data_get_irq_chip(data);
if (chip != &d->chip)
continue;
if (irqd_is_wakeup_set(data))
chip->irq_enable(data);
}
}
return 0;
}
static void intc_resume(void)
{
struct intc_desc_int *d;
list_for_each_entry(d, &intc_list, list) {
int irq;
if (d->skip_suspend)
continue;
for_each_active_irq(irq) {
struct irq_data *data;
struct irq_chip *chip;
data = irq_get_irq_data(irq);
chip = irq_data_get_irq_chip(data);
/*
* This will catch the redirect and VIRQ cases
* due to the dummy_irq_chip being inserted.
*/
if (chip != &d->chip)
continue;
if (irqd_irq_disabled(data))
chip->irq_disable(data);
else
chip->irq_enable(data);
}
}
}
struct syscore_ops intc_syscore_ops = {
.suspend = intc_suspend,
.resume = intc_resume,
};
struct bus_type intc_subsys = {
.name = "intc",
.dev_name = "intc",
};
static ssize_t
show_intc_name(struct device *dev, struct device_attribute *attr, char *buf)
{
struct intc_desc_int *d;
d = container_of(dev, struct intc_desc_int, dev);
return sprintf(buf, "%s\n", d->chip.name);
}
static DEVICE_ATTR(name, S_IRUGO, show_intc_name, NULL);
static int __init register_intc_devs(void)
{
struct intc_desc_int *d;
int error;
register_syscore_ops(&intc_syscore_ops);
error = subsys_system_register(&intc_subsys, NULL);
if (!error) {
list_for_each_entry(d, &intc_list, list) {
d->dev.id = d->index;
d->dev.bus = &intc_subsys;
error = device_register(&d->dev);
if (error == 0)
error = device_create_file(&d->dev,
&dev_attr_name);
if (error)
break;
}
}
if (error)
pr_err("device registration error\n");
return error;
}
device_initcall(register_intc_devs);