linux-stable/drivers/acpi/asus_acpi.c
Julia Lawall abc5a87f4e asus_acpi: remove misleading mask
led_out is boolean, so there is no functional change here,
but apparently an extra mask with 1 caused some style checkers
to flag this as logic bug.

Signed-off-by: Julia Lawall <julia@diku.dk>
Acked-by: Luca Tettamanti <kronos.it@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Len Brown <len.brown@intel.com>
2008-03-18 02:31:34 -04:00

1460 lines
38 KiB
C
Raw Blame History

/*
* asus_acpi.c - Asus Laptop ACPI Extras
*
*
* Copyright (C) 2002-2005 Julien Lerouge, 2003-2006 Karol Kozimor
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*
* The development page for this driver is located at
* http://sourceforge.net/projects/acpi4asus/
*
* Credits:
* Pontus Fuchs - Helper functions, cleanup
* Johann Wiesner - Small compile fixes
* John Belmonte - ACPI code for Toshiba laptop was a good starting point.
* <20>ic Burghard - LED display support for W1N
*
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/types.h>
#include <linux/proc_fs.h>
#include <linux/backlight.h>
#include <acpi/acpi_drivers.h>
#include <acpi/acpi_bus.h>
#include <asm/uaccess.h>
#define ASUS_ACPI_VERSION "0.30"
#define PROC_ASUS "asus" //the directory
#define PROC_MLED "mled"
#define PROC_WLED "wled"
#define PROC_TLED "tled"
#define PROC_BT "bluetooth"
#define PROC_LEDD "ledd"
#define PROC_INFO "info"
#define PROC_LCD "lcd"
#define PROC_BRN "brn"
#define PROC_DISP "disp"
#define ACPI_HOTK_NAME "Asus Laptop ACPI Extras Driver"
#define ACPI_HOTK_CLASS "hotkey"
#define ACPI_HOTK_DEVICE_NAME "Hotkey"
/*
* Some events we use, same for all Asus
*/
#define BR_UP 0x10
#define BR_DOWN 0x20
/*
* Flags for hotk status
*/
#define MLED_ON 0x01 //mail LED
#define WLED_ON 0x02 //wireless LED
#define TLED_ON 0x04 //touchpad LED
#define BT_ON 0x08 //internal Bluetooth
MODULE_AUTHOR("Julien Lerouge, Karol Kozimor");
MODULE_DESCRIPTION(ACPI_HOTK_NAME);
MODULE_LICENSE("GPL");
static uid_t asus_uid;
static gid_t asus_gid;
module_param(asus_uid, uint, 0);
MODULE_PARM_DESC(asus_uid, "UID for entries in /proc/acpi/asus.\n");
module_param(asus_gid, uint, 0);
MODULE_PARM_DESC(asus_gid, "GID for entries in /proc/acpi/asus.\n");
/* For each model, all features implemented,
* those marked with R are relative to HOTK, A for absolute */
struct model_data {
char *name; //name of the laptop________________A
char *mt_mled; //method to handle mled_____________R
char *mled_status; //node to handle mled reading_______A
char *mt_wled; //method to handle wled_____________R
char *wled_status; //node to handle wled reading_______A
char *mt_tled; //method to handle tled_____________R
char *tled_status; //node to handle tled reading_______A
char *mt_ledd; //method to handle LED display______R
char *mt_bt_switch; //method to switch Bluetooth on/off_R
char *bt_status; //no model currently supports this__?
char *mt_lcd_switch; //method to turn LCD on/off_________A
char *lcd_status; //node to read LCD panel state______A
char *brightness_up; //method to set brightness up_______A
char *brightness_down; //guess what ?______________________A
char *brightness_set; //method to set absolute brightness_R
char *brightness_get; //method to get absolute brightness_R
char *brightness_status; //node to get brightness____________A
char *display_set; //method to set video output________R
char *display_get; //method to get video output________R
};
/*
* This is the main structure, we can use it to store anything interesting
* about the hotk device
*/
struct asus_hotk {
struct acpi_device *device; //the device we are in
acpi_handle handle; //the handle of the hotk device
char status; //status of the hotk, for LEDs, ...
u32 ledd_status; //status of the LED display
struct model_data *methods; //methods available on the laptop
u8 brightness; //brightness level
enum {
A1x = 0, //A1340D, A1300F
A2x, //A2500H
A4G, //A4700G
D1x, //D1
L2D, //L2000D
L3C, //L3800C
L3D, //L3400D
L3H, //L3H, L2000E, L5D
L4R, //L4500R
L5x, //L5800C
L8L, //L8400L
M1A, //M1300A
M2E, //M2400E, L4400L
M6N, //M6800N, W3400N
M6R, //M6700R, A3000G
P30, //Samsung P30
S1x, //S1300A, but also L1400B and M2400A (L84F)
S2x, //S200 (J1 reported), Victor MP-XP7210
W1N, //W1000N
W5A, //W5A
W3V, //W3030V
xxN, //M2400N, M3700N, M5200N, M6800N, S1300N, S5200N
A4S, //Z81sp
//(Centrino)
F3Sa,
END_MODEL
} model; //Models currently supported
u16 event_count[128]; //count for each event TODO make this better
};
/* Here we go */
#define A1x_PREFIX "\\_SB.PCI0.ISA.EC0."
#define L3C_PREFIX "\\_SB.PCI0.PX40.ECD0."
#define M1A_PREFIX "\\_SB.PCI0.PX40.EC0."
#define P30_PREFIX "\\_SB.PCI0.LPCB.EC0."
#define S1x_PREFIX "\\_SB.PCI0.PX40."
#define S2x_PREFIX A1x_PREFIX
#define xxN_PREFIX "\\_SB.PCI0.SBRG.EC0."
static struct model_data model_conf[END_MODEL] = {
/*
* TODO I have seen a SWBX and AIBX method on some models, like L1400B,
* it seems to be a kind of switch, but what for ?
*/
{
.name = "A1x",
.mt_mled = "MLED",
.mled_status = "\\MAIL",
.mt_lcd_switch = A1x_PREFIX "_Q10",
.lcd_status = "\\BKLI",
.brightness_up = A1x_PREFIX "_Q0E",
.brightness_down = A1x_PREFIX "_Q0F"},
{
.name = "A2x",
.mt_mled = "MLED",
.mt_wled = "WLED",
.wled_status = "\\SG66",
.mt_lcd_switch = "\\Q10",
.lcd_status = "\\BAOF",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "A4G",
.mt_mled = "MLED",
/* WLED present, but not controlled by ACPI */
.mt_lcd_switch = xxN_PREFIX "_Q10",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\ADVG"},
{
.name = "D1x",
.mt_mled = "MLED",
.mt_lcd_switch = "\\Q0D",
.lcd_status = "\\GP11",
.brightness_up = "\\Q0C",
.brightness_down = "\\Q0B",
.brightness_status = "\\BLVL",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L2D",
.mt_mled = "MLED",
.mled_status = "\\SGP6",
.mt_wled = "WLED",
.wled_status = "\\RCP3",
.mt_lcd_switch = "\\Q10",
.lcd_status = "\\SGP0",
.brightness_up = "\\Q0E",
.brightness_down = "\\Q0F",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L3C",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_lcd_switch = L3C_PREFIX "_Q10",
.lcd_status = "\\GL32",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\_SB.PCI0.PCI1.VGAC.NMAP"},
{
.name = "L3D",
.mt_mled = "MLED",
.mled_status = "\\MALD",
.mt_wled = "WLED",
.mt_lcd_switch = "\\Q10",
.lcd_status = "\\BKLG",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L3H",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_lcd_switch = "EHK",
.lcd_status = "\\_SB.PCI0.PM.PBC",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L4R",
.mt_mled = "MLED",
.mt_wled = "WLED",
.wled_status = "\\_SB.PCI0.SBRG.SG13",
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\_SB.PCI0.SBSM.SEO4",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\_SB.PCI0.P0P1.VGA.GETD"},
{
.name = "L5x",
.mt_mled = "MLED",
/* WLED present, but not controlled by ACPI */
.mt_tled = "TLED",
.mt_lcd_switch = "\\Q0D",
.lcd_status = "\\BAOF",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "L8L"
/* No features, but at least support the hotkeys */
},
{
.name = "M1A",
.mt_mled = "MLED",
.mt_lcd_switch = M1A_PREFIX "Q10",
.lcd_status = "\\PNOF",
.brightness_up = M1A_PREFIX "Q0E",
.brightness_down = M1A_PREFIX "Q0F",
.brightness_status = "\\BRIT",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "M2E",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_lcd_switch = "\\Q10",
.lcd_status = "\\GP06",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "M6N",
.mt_mled = "MLED",
.mt_wled = "WLED",
.wled_status = "\\_SB.PCI0.SBRG.SG13",
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\_SB.BKLT",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\SSTE"},
{
.name = "M6R",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\_SB.PCI0.SBSM.SEO4",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\_SB.PCI0.P0P1.VGA.GETD"},
{
.name = "P30",
.mt_wled = "WLED",
.mt_lcd_switch = P30_PREFIX "_Q0E",
.lcd_status = "\\BKLT",
.brightness_up = P30_PREFIX "_Q68",
.brightness_down = P30_PREFIX "_Q69",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\DNXT"},
{
.name = "S1x",
.mt_mled = "MLED",
.mled_status = "\\EMLE",
.mt_wled = "WLED",
.mt_lcd_switch = S1x_PREFIX "Q10",
.lcd_status = "\\PNOF",
.brightness_set = "SPLV",
.brightness_get = "GPLV"},
{
.name = "S2x",
.mt_mled = "MLED",
.mled_status = "\\MAIL",
.mt_lcd_switch = S2x_PREFIX "_Q10",
.lcd_status = "\\BKLI",
.brightness_up = S2x_PREFIX "_Q0B",
.brightness_down = S2x_PREFIX "_Q0A"},
{
.name = "W1N",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_ledd = "SLCM",
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\BKLT",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\ADVG"},
{
.name = "W5A",
.mt_bt_switch = "BLED",
.mt_wled = "WLED",
.mt_lcd_switch = xxN_PREFIX "_Q10",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\ADVG"},
{
.name = "W3V",
.mt_mled = "MLED",
.mt_wled = "WLED",
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\BKLT",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\INFB"},
{
.name = "xxN",
.mt_mled = "MLED",
/* WLED present, but not controlled by ACPI */
.mt_lcd_switch = xxN_PREFIX "_Q10",
.lcd_status = "\\BKLT",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.display_set = "SDSP",
.display_get = "\\ADVG"},
{
.name = "A4S",
.brightness_set = "SPLV",
.brightness_get = "GPLV",
.mt_bt_switch = "BLED",
.mt_wled = "WLED"
},
{
.name = "F3Sa",
.mt_bt_switch = "BLED",
.mt_wled = "WLED",
.mt_mled = "MLED",
.brightness_get = "GPLV",
.brightness_set = "SPLV",
.mt_lcd_switch = "\\_SB.PCI0.SBRG.EC0._Q10",
.lcd_status = "\\_SB.PCI0.SBRG.EC0.RPIN",
.display_get = "\\ADVG",
.display_set = "SDSP",
},
};
/* procdir we use */
static struct proc_dir_entry *asus_proc_dir;
static struct backlight_device *asus_backlight_device;
/*
* This header is made available to allow proper configuration given model,
* revision number , ... this info cannot go in struct asus_hotk because it is
* available before the hotk
*/
static struct acpi_table_header *asus_info;
/* The actual device the driver binds to */
static struct asus_hotk *hotk;
/*
* The hotkey driver and autoloading declaration
*/
static int asus_hotk_add(struct acpi_device *device);
static int asus_hotk_remove(struct acpi_device *device, int type);
static const struct acpi_device_id asus_device_ids[] = {
{"ATK0100", 0},
{"", 0},
};
MODULE_DEVICE_TABLE(acpi, asus_device_ids);
static struct acpi_driver asus_hotk_driver = {
.name = "asus_acpi",
.class = ACPI_HOTK_CLASS,
.ids = asus_device_ids,
.ops = {
.add = asus_hotk_add,
.remove = asus_hotk_remove,
},
};
/*
* This function evaluates an ACPI method, given an int as parameter, the
* method is searched within the scope of the handle, can be NULL. The output
* of the method is written is output, which can also be NULL
*
* returns 1 if write is successful, 0 else.
*/
static int write_acpi_int(acpi_handle handle, const char *method, int val,
struct acpi_buffer *output)
{
struct acpi_object_list params; //list of input parameters (an int here)
union acpi_object in_obj; //the only param we use
acpi_status status;
params.count = 1;
params.pointer = &in_obj;
in_obj.type = ACPI_TYPE_INTEGER;
in_obj.integer.value = val;
status = acpi_evaluate_object(handle, (char *)method, &params, output);
return (status == AE_OK);
}
static int read_acpi_int(acpi_handle handle, const char *method, int *val)
{
struct acpi_buffer output;
union acpi_object out_obj;
acpi_status status;
output.length = sizeof(out_obj);
output.pointer = &out_obj;
status = acpi_evaluate_object(handle, (char *)method, NULL, &output);
*val = out_obj.integer.value;
return (status == AE_OK) && (out_obj.type == ACPI_TYPE_INTEGER);
}
/*
* We write our info in page, we begin at offset off and cannot write more
* than count bytes. We set eof to 1 if we handle those 2 values. We return the
* number of bytes written in page
*/
static int
proc_read_info(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
int len = 0;
int temp;
char buf[16]; //enough for all info
/*
* We use the easy way, we don't care of off and count, so we don't set eof
* to 1
*/
len += sprintf(page, ACPI_HOTK_NAME " " ASUS_ACPI_VERSION "\n");
len += sprintf(page + len, "Model reference : %s\n",
hotk->methods->name);
/*
* The SFUN method probably allows the original driver to get the list
* of features supported by a given model. For now, 0x0100 or 0x0800
* bit signifies that the laptop is equipped with a Wi-Fi MiniPCI card.
* The significance of others is yet to be found.
*/
if (read_acpi_int(hotk->handle, "SFUN", &temp))
len +=
sprintf(page + len, "SFUN value : 0x%04x\n", temp);
/*
* Another value for userspace: the ASYM method returns 0x02 for
* battery low and 0x04 for battery critical, its readings tend to be
* more accurate than those provided by _BST.
* Note: since not all the laptops provide this method, errors are
* silently ignored.
*/
if (read_acpi_int(hotk->handle, "ASYM", &temp))
len +=
sprintf(page + len, "ASYM value : 0x%04x\n", temp);
if (asus_info) {
snprintf(buf, 16, "%d", asus_info->length);
len += sprintf(page + len, "DSDT length : %s\n", buf);
snprintf(buf, 16, "%d", asus_info->checksum);
len += sprintf(page + len, "DSDT checksum : %s\n", buf);
snprintf(buf, 16, "%d", asus_info->revision);
len += sprintf(page + len, "DSDT revision : %s\n", buf);
snprintf(buf, 7, "%s", asus_info->oem_id);
len += sprintf(page + len, "OEM id : %s\n", buf);
snprintf(buf, 9, "%s", asus_info->oem_table_id);
len += sprintf(page + len, "OEM table id : %s\n", buf);
snprintf(buf, 16, "%x", asus_info->oem_revision);
len += sprintf(page + len, "OEM revision : 0x%s\n", buf);
snprintf(buf, 5, "%s", asus_info->asl_compiler_id);
len += sprintf(page + len, "ASL comp vendor id : %s\n", buf);
snprintf(buf, 16, "%x", asus_info->asl_compiler_revision);
len += sprintf(page + len, "ASL comp revision : 0x%s\n", buf);
}
return len;
}
/*
* /proc handlers
* We write our info in page, we begin at offset off and cannot write more
* than count bytes. We set eof to 1 if we handle those 2 values. We return the
* number of bytes written in page
*/
/* Generic LED functions */
static int read_led(const char *ledname, int ledmask)
{
if (ledname) {
int led_status;
if (read_acpi_int(NULL, ledname, &led_status))
return led_status;
else
printk(KERN_WARNING "Asus ACPI: Error reading LED "
"status\n");
}
return (hotk->status & ledmask) ? 1 : 0;
}
static int parse_arg(const char __user * buf, unsigned long count, int *val)
{
char s[32];
if (!count)
return 0;
if (count > 31)
return -EINVAL;
if (copy_from_user(s, buf, count))
return -EFAULT;
s[count] = 0;
if (sscanf(s, "%i", val) != 1)
return -EINVAL;
return count;
}
/* FIXME: kill extraneous args so it can be called independently */
static int
write_led(const char __user * buffer, unsigned long count,
char *ledname, int ledmask, int invert)
{
int rv, value;
int led_out = 0;
rv = parse_arg(buffer, count, &value);
if (rv > 0)
led_out = value ? 1 : 0;
hotk->status =
(led_out) ? (hotk->status | ledmask) : (hotk->status & ~ledmask);
if (invert) /* invert target value */
led_out = !led_out;
if (!write_acpi_int(hotk->handle, ledname, led_out, NULL))
printk(KERN_WARNING "Asus ACPI: LED (%s) write failed\n",
ledname);
return rv;
}
/*
* Proc handlers for MLED
*/
static int
proc_read_mled(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n",
read_led(hotk->methods->mled_status, MLED_ON));
}
static int
proc_write_mled(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
return write_led(buffer, count, hotk->methods->mt_mled, MLED_ON, 1);
}
/*
* Proc handlers for LED display
*/
static int
proc_read_ledd(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "0x%08x\n", hotk->ledd_status);
}
static int
proc_write_ledd(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
int rv, value;
rv = parse_arg(buffer, count, &value);
if (rv > 0) {
if (!write_acpi_int
(hotk->handle, hotk->methods->mt_ledd, value, NULL))
printk(KERN_WARNING
"Asus ACPI: LED display write failed\n");
else
hotk->ledd_status = (u32) value;
}
return rv;
}
/*
* Proc handlers for WLED
*/
static int
proc_read_wled(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n",
read_led(hotk->methods->wled_status, WLED_ON));
}
static int
proc_write_wled(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
return write_led(buffer, count, hotk->methods->mt_wled, WLED_ON, 0);
}
/*
* Proc handlers for Bluetooth
*/
static int
proc_read_bluetooth(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n", read_led(hotk->methods->bt_status, BT_ON));
}
static int
proc_write_bluetooth(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
/* Note: mt_bt_switch controls both internal Bluetooth adapter's
presence and its LED */
return write_led(buffer, count, hotk->methods->mt_bt_switch, BT_ON, 0);
}
/*
* Proc handlers for TLED
*/
static int
proc_read_tled(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n",
read_led(hotk->methods->tled_status, TLED_ON));
}
static int
proc_write_tled(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
return write_led(buffer, count, hotk->methods->mt_tled, TLED_ON, 0);
}
static int get_lcd_state(void)
{
int lcd = 0;
if (hotk->model == L3H) {
/* L3H and the like have to be handled differently */
acpi_status status = 0;
struct acpi_object_list input;
union acpi_object mt_params[2];
struct acpi_buffer output;
union acpi_object out_obj;
input.count = 2;
input.pointer = mt_params;
/* Note: the following values are partly guessed up, but
otherwise they seem to work */
mt_params[0].type = ACPI_TYPE_INTEGER;
mt_params[0].integer.value = 0x02;
mt_params[1].type = ACPI_TYPE_INTEGER;
mt_params[1].integer.value = 0x02;
output.length = sizeof(out_obj);
output.pointer = &out_obj;
status =
acpi_evaluate_object(NULL, hotk->methods->lcd_status,
&input, &output);
if (status != AE_OK)
return -1;
if (out_obj.type == ACPI_TYPE_INTEGER)
/* That's what the AML code does */
lcd = out_obj.integer.value >> 8;
} else if (hotk->model == F3Sa) {
unsigned long tmp;
union acpi_object param;
struct acpi_object_list input;
acpi_status status;
/* Read pin 11 */
param.type = ACPI_TYPE_INTEGER;
param.integer.value = 0x11;
input.count = 1;
input.pointer = &param;
status = acpi_evaluate_integer(NULL, hotk->methods->lcd_status,
&input, &tmp);
if (status != AE_OK)
return -1;
lcd = tmp;
} else {
/* We don't have to check anything if we are here */
if (!read_acpi_int(NULL, hotk->methods->lcd_status, &lcd))
printk(KERN_WARNING
"Asus ACPI: Error reading LCD status\n");
if (hotk->model == L2D)
lcd = ~lcd;
}
return (lcd & 1);
}
static int set_lcd_state(int value)
{
int lcd = 0;
acpi_status status = 0;
lcd = value ? 1 : 0;
if (lcd != get_lcd_state()) {
/* switch */
if (hotk->model != L3H) {
status =
acpi_evaluate_object(NULL,
hotk->methods->mt_lcd_switch,
NULL, NULL);
} else { /* L3H and the like have to be handled differently */
if (!write_acpi_int
(hotk->handle, hotk->methods->mt_lcd_switch, 0x07,
NULL))
status = AE_ERROR;
/* L3H's AML executes EHK (0x07) upon Fn+F7 keypress,
the exact behaviour is simulated here */
}
if (ACPI_FAILURE(status))
printk(KERN_WARNING "Asus ACPI: Error switching LCD\n");
}
return 0;
}
static int
proc_read_lcd(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n", get_lcd_state());
}
static int
proc_write_lcd(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
int rv, value;
rv = parse_arg(buffer, count, &value);
if (rv > 0)
set_lcd_state(value);
return rv;
}
static int read_brightness(struct backlight_device *bd)
{
int value;
if (hotk->methods->brightness_get) { /* SPLV/GPLV laptop */
if (!read_acpi_int(hotk->handle, hotk->methods->brightness_get,
&value))
printk(KERN_WARNING
"Asus ACPI: Error reading brightness\n");
} else if (hotk->methods->brightness_status) { /* For D1 for example */
if (!read_acpi_int(NULL, hotk->methods->brightness_status,
&value))
printk(KERN_WARNING
"Asus ACPI: Error reading brightness\n");
} else /* No GPLV method */
value = hotk->brightness;
return value;
}
/*
* Change the brightness level
*/
static int set_brightness(int value)
{
acpi_status status = 0;
int ret = 0;
/* SPLV laptop */
if (hotk->methods->brightness_set) {
if (!write_acpi_int(hotk->handle, hotk->methods->brightness_set,
value, NULL))
printk(KERN_WARNING
"Asus ACPI: Error changing brightness\n");
ret = -EIO;
goto out;
}
/* No SPLV method if we are here, act as appropriate */
value -= read_brightness(NULL);
while (value != 0) {
status = acpi_evaluate_object(NULL, (value > 0) ?
hotk->methods->brightness_up :
hotk->methods->brightness_down,
NULL, NULL);
(value > 0) ? value-- : value++;
if (ACPI_FAILURE(status))
printk(KERN_WARNING
"Asus ACPI: Error changing brightness\n");
ret = -EIO;
}
out:
return ret;
}
static int set_brightness_status(struct backlight_device *bd)
{
return set_brightness(bd->props.brightness);
}
static int
proc_read_brn(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
return sprintf(page, "%d\n", read_brightness(NULL));
}
static int
proc_write_brn(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
int rv, value;
rv = parse_arg(buffer, count, &value);
if (rv > 0) {
value = (0 < value) ? ((15 < value) ? 15 : value) : 0;
/* 0 <= value <= 15 */
set_brightness(value);
}
return rv;
}
static void set_display(int value)
{
/* no sanity check needed for now */
if (!write_acpi_int(hotk->handle, hotk->methods->display_set,
value, NULL))
printk(KERN_WARNING "Asus ACPI: Error setting display\n");
return;
}
/*
* Now, *this* one could be more user-friendly, but so far, no-one has
* complained. The significance of bits is the same as in proc_write_disp()
*/
static int
proc_read_disp(char *page, char **start, off_t off, int count, int *eof,
void *data)
{
int value = 0;
if (!read_acpi_int(hotk->handle, hotk->methods->display_get, &value))
printk(KERN_WARNING
"Asus ACPI: Error reading display status\n");
value &= 0x07; /* needed for some models, shouldn't hurt others */
return sprintf(page, "%d\n", value);
}
/*
* Experimental support for display switching. As of now: 1 should activate
* the LCD output, 2 should do for CRT, and 4 for TV-Out. Any combination
* (bitwise) of these will suffice. I never actually tested 3 displays hooked up
* simultaneously, so be warned. See the acpi4asus README for more info.
*/
static int
proc_write_disp(struct file *file, const char __user * buffer,
unsigned long count, void *data)
{
int rv, value;
rv = parse_arg(buffer, count, &value);
if (rv > 0)
set_display(value);
return rv;
}
typedef int (proc_readfunc) (char *page, char **start, off_t off, int count,
int *eof, void *data);
typedef int (proc_writefunc) (struct file * file, const char __user * buffer,
unsigned long count, void *data);
static int
asus_proc_add(char *name, proc_writefunc * writefunc,
proc_readfunc * readfunc, mode_t mode,
struct acpi_device *device)
{
struct proc_dir_entry *proc =
create_proc_entry(name, mode, acpi_device_dir(device));
if (!proc) {
printk(KERN_WARNING " Unable to create %s fs entry\n", name);
return -1;
}
proc->write_proc = writefunc;
proc->read_proc = readfunc;
proc->data = acpi_driver_data(device);
proc->owner = THIS_MODULE;
proc->uid = asus_uid;
proc->gid = asus_gid;
return 0;
}
static int asus_hotk_add_fs(struct acpi_device *device)
{
struct proc_dir_entry *proc;
mode_t mode;
/*
* If parameter uid or gid is not changed, keep the default setting for
* our proc entries (-rw-rw-rw-) else, it means we care about security,
* and then set to -rw-rw----
*/
if ((asus_uid == 0) && (asus_gid == 0)) {
mode = S_IFREG | S_IRUGO | S_IWUGO;
} else {
mode = S_IFREG | S_IRUSR | S_IRGRP | S_IWUSR | S_IWGRP;
printk(KERN_WARNING " asus_uid and asus_gid parameters are "
"deprecated, use chown and chmod instead!\n");
}
acpi_device_dir(device) = asus_proc_dir;
if (!acpi_device_dir(device))
return -ENODEV;
proc = create_proc_entry(PROC_INFO, mode, acpi_device_dir(device));
if (proc) {
proc->read_proc = proc_read_info;
proc->data = acpi_driver_data(device);
proc->owner = THIS_MODULE;
proc->uid = asus_uid;
proc->gid = asus_gid;
} else {
printk(KERN_WARNING " Unable to create " PROC_INFO
" fs entry\n");
}
if (hotk->methods->mt_wled) {
asus_proc_add(PROC_WLED, &proc_write_wled, &proc_read_wled,
mode, device);
}
if (hotk->methods->mt_ledd) {
asus_proc_add(PROC_LEDD, &proc_write_ledd, &proc_read_ledd,
mode, device);
}
if (hotk->methods->mt_mled) {
asus_proc_add(PROC_MLED, &proc_write_mled, &proc_read_mled,
mode, device);
}
if (hotk->methods->mt_tled) {
asus_proc_add(PROC_TLED, &proc_write_tled, &proc_read_tled,
mode, device);
}
if (hotk->methods->mt_bt_switch) {
asus_proc_add(PROC_BT, &proc_write_bluetooth,
&proc_read_bluetooth, mode, device);
}
/*
* We need both read node and write method as LCD switch is also accessible
* from keyboard
*/
if (hotk->methods->mt_lcd_switch && hotk->methods->lcd_status) {
asus_proc_add(PROC_LCD, &proc_write_lcd, &proc_read_lcd, mode,
device);
}
if ((hotk->methods->brightness_up && hotk->methods->brightness_down) ||
(hotk->methods->brightness_get && hotk->methods->brightness_set)) {
asus_proc_add(PROC_BRN, &proc_write_brn, &proc_read_brn, mode,
device);
}
if (hotk->methods->display_set) {
asus_proc_add(PROC_DISP, &proc_write_disp, &proc_read_disp,
mode, device);
}
return 0;
}
static int asus_hotk_remove_fs(struct acpi_device *device)
{
if (acpi_device_dir(device)) {
remove_proc_entry(PROC_INFO, acpi_device_dir(device));
if (hotk->methods->mt_wled)
remove_proc_entry(PROC_WLED, acpi_device_dir(device));
if (hotk->methods->mt_mled)
remove_proc_entry(PROC_MLED, acpi_device_dir(device));
if (hotk->methods->mt_tled)
remove_proc_entry(PROC_TLED, acpi_device_dir(device));
if (hotk->methods->mt_ledd)
remove_proc_entry(PROC_LEDD, acpi_device_dir(device));
if (hotk->methods->mt_bt_switch)
remove_proc_entry(PROC_BT, acpi_device_dir(device));
if (hotk->methods->mt_lcd_switch && hotk->methods->lcd_status)
remove_proc_entry(PROC_LCD, acpi_device_dir(device));
if ((hotk->methods->brightness_up
&& hotk->methods->brightness_down)
|| (hotk->methods->brightness_get
&& hotk->methods->brightness_set))
remove_proc_entry(PROC_BRN, acpi_device_dir(device));
if (hotk->methods->display_set)
remove_proc_entry(PROC_DISP, acpi_device_dir(device));
}
return 0;
}
static void asus_hotk_notify(acpi_handle handle, u32 event, void *data)
{
/* TODO Find a better way to handle events count. */
if (!hotk)
return;
if ((event & ~((u32) BR_UP)) < 16) {
hotk->brightness = (event & ~((u32) BR_UP));
} else if ((event & ~((u32) BR_DOWN)) < 16) {
hotk->brightness = (event & ~((u32) BR_DOWN));
}
acpi_bus_generate_proc_event(hotk->device, event,
hotk->event_count[event % 128]++);
return;
}
/*
* Match the model string to the list of supported models. Return END_MODEL if
* no match or model is NULL.
*/
static int asus_model_match(char *model)
{
if (model == NULL)
return END_MODEL;
if (strncmp(model, "L3D", 3) == 0)
return L3D;
else if (strncmp(model, "L2E", 3) == 0 ||
strncmp(model, "L3H", 3) == 0 || strncmp(model, "L5D", 3) == 0)
return L3H;
else if (strncmp(model, "L3", 2) == 0 || strncmp(model, "L2B", 3) == 0)
return L3C;
else if (strncmp(model, "L8L", 3) == 0)
return L8L;
else if (strncmp(model, "L4R", 3) == 0)
return L4R;
else if (strncmp(model, "M6N", 3) == 0 || strncmp(model, "W3N", 3) == 0)
return M6N;
else if (strncmp(model, "M6R", 3) == 0 || strncmp(model, "A3G", 3) == 0)
return M6R;
else if (strncmp(model, "M2N", 3) == 0 ||
strncmp(model, "M3N", 3) == 0 ||
strncmp(model, "M5N", 3) == 0 ||
strncmp(model, "M6N", 3) == 0 ||
strncmp(model, "S1N", 3) == 0 ||
strncmp(model, "S5N", 3) == 0 || strncmp(model, "W1N", 3) == 0)
return xxN;
else if (strncmp(model, "M1", 2) == 0)
return M1A;
else if (strncmp(model, "M2", 2) == 0 || strncmp(model, "L4E", 3) == 0)
return M2E;
else if (strncmp(model, "L2", 2) == 0)
return L2D;
else if (strncmp(model, "L8", 2) == 0)
return S1x;
else if (strncmp(model, "D1", 2) == 0)
return D1x;
else if (strncmp(model, "A1", 2) == 0)
return A1x;
else if (strncmp(model, "A2", 2) == 0)
return A2x;
else if (strncmp(model, "J1", 2) == 0)
return S2x;
else if (strncmp(model, "L5", 2) == 0)
return L5x;
else if (strncmp(model, "A4G", 3) == 0)
return A4G;
else if (strncmp(model, "W1N", 3) == 0)
return W1N;
else if (strncmp(model, "W3V", 3) == 0)
return W3V;
else if (strncmp(model, "W5A", 3) == 0)
return W5A;
else if (strncmp(model, "A4S", 3) == 0)
return A4S;
else if (strncmp(model, "F3Sa", 4) == 0)
return F3Sa;
else
return END_MODEL;
}
/*
* This function is used to initialize the hotk with right values. In this
* method, we can make all the detection we want, and modify the hotk struct
*/
static int asus_hotk_get_info(void)
{
struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
union acpi_object *model = NULL;
int bsts_result;
char *string = NULL;
acpi_status status;
/*
* Get DSDT headers early enough to allow for differentiating between
* models, but late enough to allow acpi_bus_register_driver() to fail
* before doing anything ACPI-specific. Should we encounter a machine,
* which needs special handling (i.e. its hotkey device has a different
* HID), this bit will be moved. A global variable asus_info contains
* the DSDT header.
*/
status = acpi_get_table(ACPI_SIG_DSDT, 1, &asus_info);
if (ACPI_FAILURE(status))
printk(KERN_WARNING " Couldn't get the DSDT table header\n");
/* We have to write 0 on init this far for all ASUS models */
if (!write_acpi_int(hotk->handle, "INIT", 0, &buffer)) {
printk(KERN_ERR " Hotkey initialization failed\n");
return -ENODEV;
}
/* This needs to be called for some laptops to init properly */
if (!read_acpi_int(hotk->handle, "BSTS", &bsts_result))
printk(KERN_WARNING " Error calling BSTS\n");
else if (bsts_result)
printk(KERN_NOTICE " BSTS called, 0x%02x returned\n",
bsts_result);
/*
* Try to match the object returned by INIT to the specific model.
* Handle every possible object (or the lack of thereof) the DSDT
* writers might throw at us. When in trouble, we pass NULL to
* asus_model_match() and try something completely different.
*/
if (buffer.pointer) {
model = buffer.pointer;
switch (model->type) {
case ACPI_TYPE_STRING:
string = model->string.pointer;
break;
case ACPI_TYPE_BUFFER:
string = model->buffer.pointer;
break;
default:
kfree(model);
model = NULL;
break;
}
}
hotk->model = asus_model_match(string);
if (hotk->model == END_MODEL) { /* match failed */
if (asus_info &&
strncmp(asus_info->oem_table_id, "ODEM", 4) == 0) {
hotk->model = P30;
printk(KERN_NOTICE
" Samsung P30 detected, supported\n");
} else {
hotk->model = M2E;
printk(KERN_NOTICE " unsupported model %s, trying "
"default values\n", string);
printk(KERN_NOTICE
" send /proc/acpi/dsdt to the developers\n");
}
hotk->methods = &model_conf[hotk->model];
return AE_OK;
}
hotk->methods = &model_conf[hotk->model];
printk(KERN_NOTICE " %s model detected, supported\n", string);
/* Sort of per-model blacklist */
if (strncmp(string, "L2B", 3) == 0)
hotk->methods->lcd_status = NULL;
/* L2B is similar enough to L3C to use its settings, with this only
exception */
else if (strncmp(string, "A3G", 3) == 0)
hotk->methods->lcd_status = "\\BLFG";
/* A3G is like M6R */
else if (strncmp(string, "S5N", 3) == 0 ||
strncmp(string, "M5N", 3) == 0 ||
strncmp(string, "W3N", 3) == 0)
hotk->methods->mt_mled = NULL;
/* S5N, M5N and W3N have no MLED */
else if (strncmp(string, "L5D", 3) == 0)
hotk->methods->mt_wled = NULL;
/* L5D's WLED is not controlled by ACPI */
else if (strncmp(string, "M2N", 3) == 0 ||
strncmp(string, "W3V", 3) == 0 ||
strncmp(string, "S1N", 3) == 0)
hotk->methods->mt_wled = "WLED";
/* M2N, S1N and W3V have a usable WLED */
else if (asus_info) {
if (strncmp(asus_info->oem_table_id, "L1", 2) == 0)
hotk->methods->mled_status = NULL;
/* S1300A reports L84F, but L1400B too, account for that */
}
kfree(model);
return AE_OK;
}
static int asus_hotk_check(void)
{
int result = 0;
result = acpi_bus_get_status(hotk->device);
if (result)
return result;
if (hotk->device->status.present) {
result = asus_hotk_get_info();
} else {
printk(KERN_ERR " Hotkey device not present, aborting\n");
return -EINVAL;
}
return result;
}
static int asus_hotk_found;
static int asus_hotk_add(struct acpi_device *device)
{
acpi_status status = AE_OK;
int result;
if (!device)
return -EINVAL;
printk(KERN_NOTICE "Asus Laptop ACPI Extras version %s\n",
ASUS_ACPI_VERSION);
hotk = kzalloc(sizeof(struct asus_hotk), GFP_KERNEL);
if (!hotk)
return -ENOMEM;
hotk->handle = device->handle;
strcpy(acpi_device_name(device), ACPI_HOTK_DEVICE_NAME);
strcpy(acpi_device_class(device), ACPI_HOTK_CLASS);
acpi_driver_data(device) = hotk;
hotk->device = device;
result = asus_hotk_check();
if (result)
goto end;
result = asus_hotk_add_fs(device);
if (result)
goto end;
/*
* We install the handler, it will receive the hotk in parameter, so, we
* could add other data to the hotk struct
*/
status = acpi_install_notify_handler(hotk->handle, ACPI_SYSTEM_NOTIFY,
asus_hotk_notify, hotk);
if (ACPI_FAILURE(status))
printk(KERN_ERR " Error installing notify handler\n");
/* For laptops without GPLV: init the hotk->brightness value */
if ((!hotk->methods->brightness_get)
&& (!hotk->methods->brightness_status)
&& (hotk->methods->brightness_up && hotk->methods->brightness_down)) {
status =
acpi_evaluate_object(NULL, hotk->methods->brightness_down,
NULL, NULL);
if (ACPI_FAILURE(status))
printk(KERN_WARNING " Error changing brightness\n");
else {
status =
acpi_evaluate_object(NULL,
hotk->methods->brightness_up,
NULL, NULL);
if (ACPI_FAILURE(status))
printk(KERN_WARNING " Strange, error changing"
" brightness\n");
}
}
asus_hotk_found = 1;
/* LED display is off by default */
hotk->ledd_status = 0xFFF;
end:
if (result) {
kfree(hotk);
}
return result;
}
static int asus_hotk_remove(struct acpi_device *device, int type)
{
acpi_status status = 0;
if (!device || !acpi_driver_data(device))
return -EINVAL;
status = acpi_remove_notify_handler(hotk->handle, ACPI_SYSTEM_NOTIFY,
asus_hotk_notify);
if (ACPI_FAILURE(status))
printk(KERN_ERR "Asus ACPI: Error removing notify handler\n");
asus_hotk_remove_fs(device);
kfree(hotk);
return 0;
}
static struct backlight_ops asus_backlight_data = {
.get_brightness = read_brightness,
.update_status = set_brightness_status,
};
static void asus_acpi_exit(void)
{
if (asus_backlight_device)
backlight_device_unregister(asus_backlight_device);
acpi_bus_unregister_driver(&asus_hotk_driver);
remove_proc_entry(PROC_ASUS, acpi_root_dir);
return;
}
static int __init asus_acpi_init(void)
{
int result;
if (acpi_disabled)
return -ENODEV;
asus_proc_dir = proc_mkdir(PROC_ASUS, acpi_root_dir);
if (!asus_proc_dir) {
printk(KERN_ERR "Asus ACPI: Unable to create /proc entry\n");
return -ENODEV;
}
asus_proc_dir->owner = THIS_MODULE;
result = acpi_bus_register_driver(&asus_hotk_driver);
if (result < 0) {
remove_proc_entry(PROC_ASUS, acpi_root_dir);
return result;
}
/*
* This is a bit of a kludge. We only want this module loaded
* for ASUS systems, but there's currently no way to probe the
* ACPI namespace for ASUS HIDs. So we just return failure if
* we didn't find one, which will cause the module to be
* unloaded.
*/
if (!asus_hotk_found) {
acpi_bus_unregister_driver(&asus_hotk_driver);
remove_proc_entry(PROC_ASUS, acpi_root_dir);
return -ENODEV;
}
asus_backlight_device = backlight_device_register("asus",NULL,NULL,
&asus_backlight_data);
if (IS_ERR(asus_backlight_device)) {
printk(KERN_ERR "Could not register asus backlight device\n");
asus_backlight_device = NULL;
asus_acpi_exit();
return -ENODEV;
}
asus_backlight_device->props.max_brightness = 15;
return 0;
}
module_init(asus_acpi_init);
module_exit(asus_acpi_exit);