Stefan Richter b9530fd6c3 firewire: net: add Kconfig item, rename driver
The driver is now called firewire-net.  It might implement the transport
of other networking protocols in the future, notably IPv6 per RFC 3146.

Signed-off-by: Stefan Richter <stefanr@s5r6.in-berlin.de>
2009-06-14 14:26:29 +02:00

1820 lines
56 KiB
C

/*
* IPv4 over IEEE 1394, per RFC 2734
*
* Copyright (C) 2009 Jay Fenlason <fenlason@redhat.com>
*
* based on eth1394 by Ben Collins et al
*/
#include <linux/device.h>
#include <linux/ethtool.h>
#include <linux/firewire.h>
#include <linux/firewire-constants.h>
#include <linux/highmem.h>
#include <linux/in.h>
#include <linux/ip.h>
#include <linux/mod_devicetable.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/netdevice.h>
#include <linux/skbuff.h>
#include <asm/unaligned.h>
#include <net/arp.h>
/* Things to potentially make runtime cofigurable */
/* must be at least as large as our maximum receive size */
#define FIFO_SIZE 4096
/* Network timeout in glibbles */
#define IPV4_TIMEOUT 100000
/* Runitme configurable paramaters */
static int ipv4_mpd = 25;
static int ipv4_max_xmt = 0;
/* 16k for receiving arp and broadcast packets. Enough? */
static int ipv4_iso_page_count = 4;
MODULE_AUTHOR("Jay Fenlason (fenlason@redhat.com)");
MODULE_DESCRIPTION("Firewire IPv4 Driver (IPv4-over-IEEE1394 as per RFC 2734)");
MODULE_LICENSE("GPL");
MODULE_DEVICE_TABLE(ieee1394, ipv4_id_table);
module_param_named(max_partial_datagrams, ipv4_mpd, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_partial_datagrams, "Maximum number of received"
" incomplete fragmented datagrams (default = 25).");
/* Max xmt is useful for forcing fragmentation, which makes testing easier. */
module_param_named(max_transmit, ipv4_max_xmt, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(max_transmit, "Maximum datagram size to transmit"
" (larger datagrams will be fragmented) (default = 0 (use hardware defaults).");
/* iso page count controls how many pages will be used for receiving broadcast packets. */
module_param_named(iso_pages, ipv4_iso_page_count, int, S_IRUGO | S_IWUSR);
MODULE_PARM_DESC(iso_pages, "Number of pages to use for receiving broadcast packets"
" (default = 4).");
/* uncomment this line to do debugging */
#define fw_debug(s, args...) printk(KERN_DEBUG KBUILD_MODNAME ": " s, ## args)
/* comment out these lines to do debugging. */
/* #undef fw_debug */
/* #define fw_debug(s...) */
/* #define print_hex_dump(l...) */
/* Define a fake hardware header format for the networking core. Note that
* header size cannot exceed 16 bytes as that is the size of the header cache.
* Also, we do not need the source address in the header so we omit it and
* keep the header to under 16 bytes */
#define IPV4_ALEN (8)
/* This must equal sizeof(struct ipv4_ether_hdr) */
#define IPV4_HLEN (10)
/* FIXME: what's a good size for this? */
#define INVALID_FIFO_ADDR (u64)~0ULL
/* Things specified by standards */
#define BROADCAST_CHANNEL 31
#define S100_BUFFER_SIZE 512
#define MAX_BUFFER_SIZE 4096
#define IPV4_GASP_SPECIFIER_ID 0x00005EU
#define IPV4_GASP_VERSION 0x00000001U
#define IPV4_GASP_OVERHEAD (2 * sizeof(u32)) /* for GASP header */
#define IPV4_UNFRAG_HDR_SIZE sizeof(u32)
#define IPV4_FRAG_HDR_SIZE (2 * sizeof(u32))
#define IPV4_FRAG_OVERHEAD sizeof(u32)
#define ALL_NODES (0xffc0 | 0x003f)
#define IPV4_HDR_UNFRAG 0 /* unfragmented */
#define IPV4_HDR_FIRSTFRAG 1 /* first fragment */
#define IPV4_HDR_LASTFRAG 2 /* last fragment */
#define IPV4_HDR_INTFRAG 3 /* interior fragment */
/* Our arp packet (ARPHRD_IEEE1394) */
/* FIXME: note that this is probably bogus on weird-endian machines */
struct ipv4_arp {
u16 hw_type; /* 0x0018 */
u16 proto_type; /* 0x0806 */
u8 hw_addr_len; /* 16 */
u8 ip_addr_len; /* 4 */
u16 opcode; /* ARP Opcode */
/* Above is exactly the same format as struct arphdr */
u64 s_uniq_id; /* Sender's 64bit EUI */
u8 max_rec; /* Sender's max packet size */
u8 sspd; /* Sender's max speed */
u16 fifo_hi; /* hi 16bits of sender's FIFO addr */
u32 fifo_lo; /* lo 32bits of sender's FIFO addr */
u32 sip; /* Sender's IP Address */
u32 tip; /* IP Address of requested hw addr */
} __attribute__((packed));
struct ipv4_ether_hdr {
unsigned char h_dest[IPV4_ALEN]; /* destination address */
unsigned short h_proto; /* packet type ID field */
} __attribute__((packed));
static inline struct ipv4_ether_hdr *ipv4_ether_hdr(const struct sk_buff *skb)
{
return (struct ipv4_ether_hdr *)skb_mac_header(skb);
}
enum ipv4_tx_type {
IPV4_UNKNOWN = 0,
IPV4_GASP = 1,
IPV4_WRREQ = 2,
};
enum ipv4_broadcast_state {
IPV4_BROADCAST_ERROR,
IPV4_BROADCAST_RUNNING,
IPV4_BROADCAST_STOPPED,
};
#define ipv4_get_hdr_lf(h) (((h)->w0&0xC0000000)>>30)
#define ipv4_get_hdr_ether_type(h) (((h)->w0&0x0000FFFF) )
#define ipv4_get_hdr_dg_size(h) (((h)->w0&0x0FFF0000)>>16)
#define ipv4_get_hdr_fg_off(h) (((h)->w0&0x00000FFF) )
#define ipv4_get_hdr_dgl(h) (((h)->w1&0xFFFF0000)>>16)
#define ipv4_set_hdr_lf(lf) (( lf)<<30)
#define ipv4_set_hdr_ether_type(et) (( et) )
#define ipv4_set_hdr_dg_size(dgs) ((dgs)<<16)
#define ipv4_set_hdr_fg_off(fgo) ((fgo) )
#define ipv4_set_hdr_dgl(dgl) ((dgl)<<16)
struct ipv4_hdr {
u32 w0;
u32 w1;
};
static inline void ipv4_make_uf_hdr( struct ipv4_hdr *hdr, unsigned ether_type) {
hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_UNFRAG)
|ipv4_set_hdr_ether_type(ether_type);
fw_debug ( "Setting unfragmented header %p to %x\n", hdr, hdr->w0 );
}
static inline void ipv4_make_ff_hdr ( struct ipv4_hdr *hdr, unsigned ether_type, unsigned dg_size, unsigned dgl ) {
hdr->w0 = ipv4_set_hdr_lf(IPV4_HDR_FIRSTFRAG)
|ipv4_set_hdr_dg_size(dg_size)
|ipv4_set_hdr_ether_type(ether_type);
hdr->w1 = ipv4_set_hdr_dgl(dgl);
fw_debug ( "Setting fragmented header %p to first_frag %x,%x (et %x, dgs %x, dgl %x)\n", hdr, hdr->w0, hdr->w1,
ether_type, dg_size, dgl );
}
static inline void ipv4_make_sf_hdr ( struct ipv4_hdr *hdr, unsigned lf, unsigned dg_size, unsigned fg_off, unsigned dgl) {
hdr->w0 = ipv4_set_hdr_lf(lf)
|ipv4_set_hdr_dg_size(dg_size)
|ipv4_set_hdr_fg_off(fg_off);
hdr->w1 = ipv4_set_hdr_dgl(dgl);
fw_debug ( "Setting fragmented header %p to %x,%x (lf %x, dgs %x, fo %x dgl %x)\n",
hdr, hdr->w0, hdr->w1,
lf, dg_size, fg_off, dgl );
}
/* End of IP1394 headers */
/* Fragment types */
#define ETH1394_HDR_LF_UF 0 /* unfragmented */
#define ETH1394_HDR_LF_FF 1 /* first fragment */
#define ETH1394_HDR_LF_LF 2 /* last fragment */
#define ETH1394_HDR_LF_IF 3 /* interior fragment */
#define IP1394_HW_ADDR_LEN 16 /* As per RFC */
/* This list keeps track of what parts of the datagram have been filled in */
struct ipv4_fragment_info {
struct list_head fragment_info;
u16 offset;
u16 len;
};
struct ipv4_partial_datagram {
struct list_head pdg_list;
struct list_head fragment_info;
struct sk_buff *skb;
/* FIXME Why not use skb->data? */
char *pbuf;
u16 datagram_label;
u16 ether_type;
u16 datagram_size;
};
/*
* We keep one of these for each IPv4 capable device attached to a fw_card.
* The list of them is stored in the fw_card structure rather than in the
* ipv4_priv because the remote IPv4 nodes may be probed before the card is,
* so we need a place to store them before the ipv4_priv structure is
* allocated.
*/
struct ipv4_node {
struct list_head ipv4_nodes;
/* guid of the remote node */
u64 guid;
/* FIFO address to transmit datagrams to, or INVALID_FIFO_ADDR */
u64 fifo;
spinlock_t pdg_lock; /* partial datagram lock */
/* List of partial datagrams received from this node */
struct list_head pdg_list;
/* Number of entries in pdg_list at the moment */
unsigned pdg_size;
/* max payload to transmit to this remote node */
/* This already includes the IPV4_FRAG_HDR_SIZE overhead */
u16 max_payload;
/* outgoing datagram label */
u16 datagram_label;
/* Current node_id of the remote node */
u16 nodeid;
/* current generation of the remote node */
u8 generation;
/* max speed that this node can receive at */
u8 xmt_speed;
};
struct ipv4_priv {
spinlock_t lock;
enum ipv4_broadcast_state broadcast_state;
struct fw_iso_context *broadcast_rcv_context;
struct fw_iso_buffer broadcast_rcv_buffer;
void **broadcast_rcv_buffer_ptrs;
unsigned broadcast_rcv_next_ptr;
unsigned num_broadcast_rcv_ptrs;
unsigned rcv_buffer_size;
/*
* This value is the maximum unfragmented datagram size that can be
* sent by the hardware. It already has the GASP overhead and the
* unfragmented datagram header overhead calculated into it.
*/
unsigned broadcast_xmt_max_payload;
u16 broadcast_xmt_datagramlabel;
/*
* The csr address that remote nodes must send datagrams to for us to
* receive them.
*/
struct fw_address_handler handler;
u64 local_fifo;
/* Wake up to xmt */
/* struct work_struct wake;*/
/* List of packets to be sent */
struct list_head packet_list;
/*
* List of packets that were broadcasted. When we get an ISO interrupt
* one of them has been sent
*/
struct list_head broadcasted_list;
/* List of packets that have been sent but not yet acked */
struct list_head sent_list;
struct fw_card *card;
};
/* This is our task struct. It's used for the packet complete callback. */
struct ipv4_packet_task {
/*
* ptask can actually be on priv->packet_list, priv->broadcasted_list,
* or priv->sent_list depending on its current state.
*/
struct list_head packet_list;
struct fw_transaction transaction;
struct ipv4_hdr hdr;
struct sk_buff *skb;
struct ipv4_priv *priv;
enum ipv4_tx_type tx_type;
int outstanding_pkts;
unsigned max_payload;
u64 fifo_addr;
u16 dest_node;
u8 generation;
u8 speed;
};
static struct kmem_cache *ipv4_packet_task_cache;
static const char ipv4_driver_name[] = "firewire-ipv4";
static const struct ieee1394_device_id ipv4_id_table[] = {
{
.match_flags = IEEE1394_MATCH_SPECIFIER_ID |
IEEE1394_MATCH_VERSION,
.specifier_id = IPV4_GASP_SPECIFIER_ID,
.version = IPV4_GASP_VERSION,
},
{ }
};
static u32 ipv4_unit_directory_data[] = {
0x00040000, /* unit directory */
0x12000000 | IPV4_GASP_SPECIFIER_ID, /* specifier ID */
0x81000003, /* text descriptor */
0x13000000 | IPV4_GASP_VERSION, /* version */
0x81000005, /* text descriptor */
0x00030000, /* Three quadlets */
0x00000000, /* Text */
0x00000000, /* Language 0 */
0x49414e41, /* I A N A */
0x00030000, /* Three quadlets */
0x00000000, /* Text */
0x00000000, /* Language 0 */
0x49507634, /* I P v 4 */
};
static struct fw_descriptor ipv4_unit_directory = {
.length = ARRAY_SIZE(ipv4_unit_directory_data),
.key = 0xd1000000,
.data = ipv4_unit_directory_data
};
static int ipv4_send_packet(struct ipv4_packet_task *ptask );
/* ------------------------------------------------------------------ */
/******************************************
* HW Header net device functions
******************************************/
/* These functions have been adapted from net/ethernet/eth.c */
/* Create a fake MAC header for an arbitrary protocol layer.
* saddr=NULL means use device source address
* daddr=NULL means leave destination address (eg unresolved arp). */
static int ipv4_header ( struct sk_buff *skb, struct net_device *dev,
unsigned short type, const void *daddr,
const void *saddr, unsigned len) {
struct ipv4_ether_hdr *eth;
eth = (struct ipv4_ether_hdr *)skb_push(skb, sizeof(*eth));
eth->h_proto = htons(type);
if (dev->flags & (IFF_LOOPBACK | IFF_NOARP)) {
memset(eth->h_dest, 0, dev->addr_len);
return dev->hard_header_len;
}
if (daddr) {
memcpy(eth->h_dest, daddr, dev->addr_len);
return dev->hard_header_len;
}
return -dev->hard_header_len;
}
/* Rebuild the faked MAC header. This is called after an ARP
* (or in future other address resolution) has completed on this
* sk_buff. We now let ARP fill in the other fields.
*
* This routine CANNOT use cached dst->neigh!
* Really, it is used only when dst->neigh is wrong.
*/
static int ipv4_rebuild_header(struct sk_buff *skb)
{
struct ipv4_ether_hdr *eth;
eth = (struct ipv4_ether_hdr *)skb->data;
if (eth->h_proto == htons(ETH_P_IP))
return arp_find((unsigned char *)&eth->h_dest, skb);
fw_notify ( "%s: unable to resolve type %04x addresses\n",
skb->dev->name,ntohs(eth->h_proto) );
return 0;
}
static int ipv4_header_cache(const struct neighbour *neigh, struct hh_cache *hh) {
unsigned short type = hh->hh_type;
struct net_device *dev;
struct ipv4_ether_hdr *eth;
if (type == htons(ETH_P_802_3))
return -1;
dev = neigh->dev;
eth = (struct ipv4_ether_hdr *)((u8 *)hh->hh_data + 16 - sizeof(*eth));
eth->h_proto = type;
memcpy(eth->h_dest, neigh->ha, dev->addr_len);
hh->hh_len = IPV4_HLEN;
return 0;
}
/* Called by Address Resolution module to notify changes in address. */
static void ipv4_header_cache_update(struct hh_cache *hh, const struct net_device *dev, const unsigned char * haddr ) {
memcpy((u8 *)hh->hh_data + 16 - IPV4_HLEN, haddr, dev->addr_len);
}
static int ipv4_header_parse(const struct sk_buff *skb, unsigned char *haddr) {
memcpy(haddr, skb->dev->dev_addr, IPV4_ALEN);
return IPV4_ALEN;
}
static const struct header_ops ipv4_header_ops = {
.create = ipv4_header,
.rebuild = ipv4_rebuild_header,
.cache = ipv4_header_cache,
.cache_update = ipv4_header_cache_update,
.parse = ipv4_header_parse,
};
/* ------------------------------------------------------------------ */
/* FIXME: is this correct for all cases? */
static bool ipv4_frag_overlap(struct ipv4_partial_datagram *pd, unsigned offset, unsigned len)
{
struct ipv4_fragment_info *fi;
unsigned end = offset + len;
list_for_each_entry(fi, &pd->fragment_info, fragment_info) {
if (offset < fi->offset + fi->len && end > fi->offset) {
fw_debug ( "frag_overlap pd %p fi %p (%x@%x) with %x@%x\n", pd, fi, fi->len, fi->offset, len, offset );
return true;
}
}
fw_debug ( "frag_overlap %p does not overlap with %x@%x\n", pd, len, offset );
return false;
}
/* Assumes that new fragment does not overlap any existing fragments */
static struct ipv4_fragment_info *ipv4_frag_new ( struct ipv4_partial_datagram *pd, unsigned offset, unsigned len ) {
struct ipv4_fragment_info *fi, *fi2, *new;
struct list_head *list;
fw_debug ( "frag_new pd %p %x@%x\n", pd, len, offset );
list = &pd->fragment_info;
list_for_each_entry(fi, &pd->fragment_info, fragment_info) {
if (fi->offset + fi->len == offset) {
/* The new fragment can be tacked on to the end */
/* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fragment_info.next, struct ipv4_fragment_info, fragment_info);
if (fi->offset + fi->len == fi2->offset) {
fw_debug ( "pd %p: hole filling %p (%x@%x) and %p(%x@%x): now %x@%x\n", pd, fi, fi->len, fi->offset,
fi2, fi2->len, fi2->offset, fi->len + len + fi2->len, fi->offset );
/* glue fragments together */
fi->len += len + fi2->len;
list_del(&fi2->fragment_info);
kfree(fi2);
} else {
fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, fi->len+len, fi->offset );
fi->len += len;
}
return fi;
}
if (offset + len == fi->offset) {
/* The new fragment can be tacked on to the beginning */
/* Did the new fragment plug a hole? */
fi2 = list_entry(fi->fragment_info.prev, struct ipv4_fragment_info, fragment_info);
if (fi2->offset + fi2->len == fi->offset) {
/* glue fragments together */
fw_debug ( "pd %p: extending %p and merging with %p from %x@%x to %x@%x\n",
pd, fi2, fi, fi2->len, fi2->offset, fi2->len + fi->len + len, fi2->offset );
fi2->len += fi->len + len;
list_del(&fi->fragment_info);
kfree(fi);
return fi2;
}
fw_debug ( "pd %p: extending %p from %x@%x to %x@%x\n", pd, fi, fi->len, fi->offset, offset, fi->len + len );
fi->offset = offset;
fi->len += len;
return fi;
}
if (offset > fi->offset + fi->len) {
list = &fi->fragment_info;
break;
}
if (offset + len < fi->offset) {
list = fi->fragment_info.prev;
break;
}
}
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new) {
fw_error ( "out of memory in fragment handling!\n" );
return NULL;
}
new->offset = offset;
new->len = len;
list_add(&new->fragment_info, list);
fw_debug ( "pd %p: new frag %p %x@%x\n", pd, new, new->len, new->offset );
list_for_each_entry( fi, &pd->fragment_info, fragment_info )
fw_debug ( "fi %p %x@%x\n", fi, fi->len, fi->offset );
return new;
}
/* ------------------------------------------------------------------ */
static struct ipv4_partial_datagram *ipv4_pd_new(struct net_device *netdev,
struct ipv4_node *node, u16 datagram_label, unsigned dg_size, u32 *frag_buf,
unsigned frag_off, unsigned frag_len) {
struct ipv4_partial_datagram *new;
struct ipv4_fragment_info *fi;
new = kmalloc(sizeof(*new), GFP_ATOMIC);
if (!new)
goto fail;
INIT_LIST_HEAD(&new->fragment_info);
fi = ipv4_frag_new ( new, frag_off, frag_len);
if ( fi == NULL )
goto fail_w_new;
new->datagram_label = datagram_label;
new->datagram_size = dg_size;
new->skb = dev_alloc_skb(dg_size + netdev->hard_header_len + 15);
if ( new->skb == NULL )
goto fail_w_fi;
skb_reserve(new->skb, (netdev->hard_header_len + 15) & ~15);
new->pbuf = skb_put(new->skb, dg_size);
memcpy(new->pbuf + frag_off, frag_buf, frag_len);
list_add_tail(&new->pdg_list, &node->pdg_list);
fw_debug ( "pd_new: new pd %p { dgl %u, dg_size %u, skb %p, pbuf %p } on node %p\n",
new, new->datagram_label, new->datagram_size, new->skb, new->pbuf, node );
return new;
fail_w_fi:
kfree(fi);
fail_w_new:
kfree(new);
fail:
fw_error("ipv4_pd_new: no memory\n");
return NULL;
}
static struct ipv4_partial_datagram *ipv4_pd_find(struct ipv4_node *node, u16 datagram_label) {
struct ipv4_partial_datagram *pd;
list_for_each_entry(pd, &node->pdg_list, pdg_list) {
if ( pd->datagram_label == datagram_label ) {
fw_debug ( "pd_find(node %p, label %u): pd %p\n", node, datagram_label, pd );
return pd;
}
}
fw_debug ( "pd_find(node %p, label %u) no entry\n", node, datagram_label );
return NULL;
}
static void ipv4_pd_delete ( struct ipv4_partial_datagram *old ) {
struct ipv4_fragment_info *fi, *n;
fw_debug ( "pd_delete %p\n", old );
list_for_each_entry_safe(fi, n, &old->fragment_info, fragment_info) {
fw_debug ( "Freeing fi %p\n", fi );
kfree(fi);
}
list_del(&old->pdg_list);
dev_kfree_skb_any(old->skb);
kfree(old);
}
static bool ipv4_pd_update ( struct ipv4_node *node, struct ipv4_partial_datagram *pd,
u32 *frag_buf, unsigned frag_off, unsigned frag_len) {
fw_debug ( "pd_update node %p, pd %p, frag_buf %p, %x@%x\n", node, pd, frag_buf, frag_len, frag_off );
if ( ipv4_frag_new ( pd, frag_off, frag_len ) == NULL)
return false;
memcpy(pd->pbuf + frag_off, frag_buf, frag_len);
/*
* Move list entry to beginnig of list so that oldest partial
* datagrams percolate to the end of the list
*/
list_move_tail(&pd->pdg_list, &node->pdg_list);
fw_debug ( "New pd list:\n" );
list_for_each_entry ( pd, &node->pdg_list, pdg_list ) {
fw_debug ( "pd %p\n", pd );
}
return true;
}
static bool ipv4_pd_is_complete ( struct ipv4_partial_datagram *pd ) {
struct ipv4_fragment_info *fi;
bool ret;
fi = list_entry(pd->fragment_info.next, struct ipv4_fragment_info, fragment_info);
ret = (fi->len == pd->datagram_size);
fw_debug ( "pd_is_complete (pd %p, dgs %x): fi %p (%x@%x) %s\n", pd, pd->datagram_size, fi, fi->len, fi->offset, ret ? "yes" : "no" );
return ret;
}
/* ------------------------------------------------------------------ */
static int ipv4_node_new ( struct fw_card *card, struct fw_device *device ) {
struct ipv4_node *node;
node = kmalloc ( sizeof(*node), GFP_KERNEL );
if ( ! node ) {
fw_error ( "allocate new node failed\n" );
return -ENOMEM;
}
node->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
node->fifo = INVALID_FIFO_ADDR;
INIT_LIST_HEAD(&node->pdg_list);
spin_lock_init(&node->pdg_lock);
node->pdg_size = 0;
node->generation = device->generation;
rmb();
node->nodeid = device->node_id;
/* FIXME what should it really be? */
node->max_payload = S100_BUFFER_SIZE - IPV4_UNFRAG_HDR_SIZE;
node->datagram_label = 0U;
node->xmt_speed = device->max_speed;
list_add_tail ( &node->ipv4_nodes, &card->ipv4_nodes );
fw_debug ( "node_new: %p { guid %016llx, generation %u, nodeid %x, max_payload %x, xmt_speed %x } added\n",
node, (unsigned long long)node->guid, node->generation, node->nodeid, node->max_payload, node->xmt_speed );
return 0;
}
static struct ipv4_node *ipv4_node_find_by_guid(struct ipv4_priv *priv, u64 guid) {
struct ipv4_node *node;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes)
if (node->guid == guid) {
/* FIXME: lock the node first? */
spin_unlock_irqrestore ( &priv->lock, flags );
fw_debug ( "node_find_by_guid (%016llx) found %p\n", (unsigned long long)guid, node );
return node;
}
spin_unlock_irqrestore ( &priv->lock, flags );
fw_debug ( "node_find_by_guid (%016llx) not found\n", (unsigned long long)guid );
return NULL;
}
static struct ipv4_node *ipv4_node_find_by_nodeid(struct ipv4_priv *priv, u16 nodeid) {
struct ipv4_node *node;
unsigned long flags;
spin_lock_irqsave(&priv->lock, flags);
list_for_each_entry(node, &priv->card->ipv4_nodes, ipv4_nodes)
if (node->nodeid == nodeid) {
/* FIXME: lock the node first? */
spin_unlock_irqrestore ( &priv->lock, flags );
fw_debug ( "node_find_by_nodeid (%x) found %p\n", nodeid, node );
return node;
}
fw_debug ( "node_find_by_nodeid (%x) not found\n", nodeid );
spin_unlock_irqrestore ( &priv->lock, flags );
return NULL;
}
/* This is only complicated because we can't assume priv exists */
static void ipv4_node_delete ( struct fw_card *card, struct fw_device *device ) {
struct net_device *netdev;
struct ipv4_priv *priv;
struct ipv4_node *node;
u64 guid;
unsigned long flags;
struct ipv4_partial_datagram *pd, *pd_next;
guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
netdev = card->netdev;
if ( netdev )
priv = netdev_priv ( netdev );
else
priv = NULL;
if ( priv )
spin_lock_irqsave ( &priv->lock, flags );
list_for_each_entry( node, &card->ipv4_nodes, ipv4_nodes ) {
if ( node->guid == guid ) {
list_del ( &node->ipv4_nodes );
list_for_each_entry_safe( pd, pd_next, &node->pdg_list, pdg_list )
ipv4_pd_delete ( pd );
break;
}
}
if ( priv )
spin_unlock_irqrestore ( &priv->lock, flags );
}
/* ------------------------------------------------------------------ */
static int ipv4_finish_incoming_packet ( struct net_device *netdev,
struct sk_buff *skb, u16 source_node_id, bool is_broadcast, u16 ether_type ) {
struct ipv4_priv *priv;
static u64 broadcast_hw = ~0ULL;
int status;
u64 guid;
fw_debug ( "ipv4_finish_incoming_packet(%p, %p, %x, %s, %x\n",
netdev, skb, source_node_id, is_broadcast ? "true" : "false", ether_type );
priv = netdev_priv(netdev);
/* Write metadata, and then pass to the receive level */
skb->dev = netdev;
skb->ip_summed = CHECKSUM_UNNECESSARY; /* don't check it */
/*
* Parse the encapsulation header. This actually does the job of
* converting to an ethernet frame header, as well as arp
* conversion if needed. ARP conversion is easier in this
* direction, since we are using ethernet as our backend.
*/
/*
* If this is an ARP packet, convert it. First, we want to make
* use of some of the fields, since they tell us a little bit
* about the sending machine.
*/
if (ether_type == ETH_P_ARP) {
struct ipv4_arp *arp1394;
struct arphdr *arp;
unsigned char *arp_ptr;
u64 fifo_addr;
u8 max_rec;
u8 sspd;
u16 max_payload;
struct ipv4_node *node;
static const u16 ipv4_speed_to_max_payload[] = {
/* S100, S200, S400, S800, S1600, S3200 */
512, 1024, 2048, 4096, 4096, 4096
};
/* fw_debug ( "ARP packet\n" ); */
arp1394 = (struct ipv4_arp *)skb->data;
arp = (struct arphdr *)skb->data;
arp_ptr = (unsigned char *)(arp + 1);
fifo_addr = (u64)ntohs(arp1394->fifo_hi) << 32 |
ntohl(arp1394->fifo_lo);
max_rec = priv->card->max_receive;
if ( arp1394->max_rec < max_rec )
max_rec = arp1394->max_rec;
sspd = arp1394->sspd;
/*
* Sanity check. MacOSX seems to be sending us 131 in this
* field (atleast on my Panther G5). Not sure why.
*/
if (sspd > 5 ) {
fw_notify ( "sspd %x out of range\n", sspd );
sspd = 0;
}
max_payload = min(ipv4_speed_to_max_payload[sspd],
(u16)(1 << (max_rec + 1))) - IPV4_UNFRAG_HDR_SIZE;
guid = be64_to_cpu(get_unaligned(&arp1394->s_uniq_id));
node = ipv4_node_find_by_guid(priv, guid);
if (!node) {
fw_notify ( "No node for ARP packet from %llx\n", guid );
goto failed_proto;
}
if ( node->nodeid != source_node_id || node->generation != priv->card->generation ) {
fw_notify ( "Internal error: node->nodeid (%x) != soucre_node_id (%x) or node->generation (%x) != priv->card->generation(%x)\n",
node->nodeid, source_node_id, node->generation, priv->card->generation );
node->nodeid = source_node_id;
node->generation = priv->card->generation;
}
/* FIXME: for debugging */
if ( sspd > SCODE_400 )
sspd = SCODE_400;
/* Update our speed/payload/fifo_offset table */
/*
* FIXME: this does not handle cases where two high-speed endpoints must use a slower speed because of
* a lower speed hub between them. We need to look at the actual topology map here.
*/
fw_debug ( "Setting node %p fifo %llx (was %llx), max_payload %x (was %x), speed %x (was %x)\n",
node, fifo_addr, node->fifo, max_payload, node->max_payload, sspd, node->xmt_speed );
node->fifo = fifo_addr;
node->max_payload = max_payload;
/*
* Only allow speeds to go down from their initial value.
* Otherwise a local node that can only do S400 or slower may
* be told to transmit at S800 to a faster remote node.
*/
if ( node->xmt_speed > sspd )
node->xmt_speed = sspd;
/*
* Now that we're done with the 1394 specific stuff, we'll
* need to alter some of the data. Believe it or not, all
* that needs to be done is sender_IP_address needs to be
* moved, the destination hardware address get stuffed
* in and the hardware address length set to 8.
*
* IMPORTANT: The code below overwrites 1394 specific data
* needed above so keep the munging of the data for the
* higher level IP stack last.
*/
arp->ar_hln = 8;
arp_ptr += arp->ar_hln; /* skip over sender unique id */
*(u32 *)arp_ptr = arp1394->sip; /* move sender IP addr */
arp_ptr += arp->ar_pln; /* skip over sender IP addr */
if (arp->ar_op == htons(ARPOP_REQUEST))
memset(arp_ptr, 0, sizeof(u64));
else
memcpy(arp_ptr, netdev->dev_addr, sizeof(u64));
}
/* Now add the ethernet header. */
guid = cpu_to_be64(priv->card->guid);
if (dev_hard_header(skb, netdev, ether_type, is_broadcast ? &broadcast_hw : &guid, NULL,
skb->len) >= 0) {
struct ipv4_ether_hdr *eth;
u16 *rawp;
__be16 protocol;
skb_reset_mac_header(skb);
skb_pull(skb, sizeof(*eth));
eth = ipv4_ether_hdr(skb);
if (*eth->h_dest & 1) {
if (memcmp(eth->h_dest, netdev->broadcast, netdev->addr_len) == 0) {
fw_debug ( "Broadcast\n" );
skb->pkt_type = PACKET_BROADCAST;
}
#if 0
else
skb->pkt_type = PACKET_MULTICAST;
#endif
} else {
if (memcmp(eth->h_dest, netdev->dev_addr, netdev->addr_len)) {
u64 a1, a2;
memcpy ( &a1, eth->h_dest, sizeof(u64));
memcpy ( &a2, netdev->dev_addr, sizeof(u64));
fw_debug ( "Otherhost %llx %llx %x\n", a1, a2, netdev->addr_len );
skb->pkt_type = PACKET_OTHERHOST;
}
}
if (ntohs(eth->h_proto) >= 1536) {
fw_debug ( " proto %x %x\n", eth->h_proto, ntohs(eth->h_proto) );
protocol = eth->h_proto;
} else {
rawp = (u16 *)skb->data;
if (*rawp == 0xFFFF) {
fw_debug ( "proto 802_3\n" );
protocol = htons(ETH_P_802_3);
} else {
fw_debug ( "proto 802_2\n" );
protocol = htons(ETH_P_802_2);
}
}
skb->protocol = protocol;
}
status = netif_rx(skb);
if ( status == NET_RX_DROP) {
netdev->stats.rx_errors++;
netdev->stats.rx_dropped++;
} else {
netdev->stats.rx_packets++;
netdev->stats.rx_bytes += skb->len;
}
if (netif_queue_stopped(netdev))
netif_wake_queue(netdev);
return 0;
failed_proto:
netdev->stats.rx_errors++;
netdev->stats.rx_dropped++;
dev_kfree_skb_any(skb);
if (netif_queue_stopped(netdev))
netif_wake_queue(netdev);
netdev->last_rx = jiffies;
return 0;
}
/* ------------------------------------------------------------------ */
static int ipv4_incoming_packet ( struct ipv4_priv *priv, u32 *buf, int len, u16 source_node_id, bool is_broadcast ) {
struct sk_buff *skb;
struct net_device *netdev;
struct ipv4_hdr hdr;
unsigned lf;
unsigned long flags;
struct ipv4_node *node;
struct ipv4_partial_datagram *pd;
int fg_off;
int dg_size;
u16 datagram_label;
int retval;
u16 ether_type;
fw_debug ( "ipv4_incoming_packet(%p, %p, %d, %x, %s)\n", priv, buf, len, source_node_id, is_broadcast ? "true" : "false" );
netdev = priv->card->netdev;
hdr.w0 = ntohl(buf[0]);
lf = ipv4_get_hdr_lf(&hdr);
if ( lf == IPV4_HDR_UNFRAG ) {
/*
* An unfragmented datagram has been received by the ieee1394
* bus. Build an skbuff around it so we can pass it to the
* high level network layer.
*/
ether_type = ipv4_get_hdr_ether_type(&hdr);
fw_debug ( "header w0 = %x, lf = %x, ether_type = %x\n", hdr.w0, lf, ether_type );
buf++;
len -= IPV4_UNFRAG_HDR_SIZE;
skb = dev_alloc_skb(len + netdev->hard_header_len + 15);
if (unlikely(!skb)) {
fw_error ( "Out of memory for incoming packet\n");
netdev->stats.rx_dropped++;
return -1;
}
skb_reserve(skb, (netdev->hard_header_len + 15) & ~15);
memcpy(skb_put(skb, len), buf, len );
return ipv4_finish_incoming_packet(netdev, skb, source_node_id, is_broadcast, ether_type );
}
/* A datagram fragment has been received, now the fun begins. */
hdr.w1 = ntohl(buf[1]);
buf +=2;
len -= IPV4_FRAG_HDR_SIZE;
if ( lf ==IPV4_HDR_FIRSTFRAG ) {
ether_type = ipv4_get_hdr_ether_type(&hdr);
fg_off = 0;
} else {
fg_off = ipv4_get_hdr_fg_off(&hdr);
ether_type = 0; /* Shut up compiler! */
}
datagram_label = ipv4_get_hdr_dgl(&hdr);
dg_size = ipv4_get_hdr_dg_size(&hdr); /* ??? + 1 */
fw_debug ( "fragmented: %x.%x = lf %x, ether_type %x, fg_off %x, dgl %x, dg_size %x\n", hdr.w0, hdr.w1, lf, ether_type, fg_off, datagram_label, dg_size );
node = ipv4_node_find_by_nodeid ( priv, source_node_id);
spin_lock_irqsave(&node->pdg_lock, flags);
pd = ipv4_pd_find( node, datagram_label );
if (pd == NULL) {
while ( node->pdg_size >= ipv4_mpd ) {
/* remove the oldest */
ipv4_pd_delete ( list_first_entry(&node->pdg_list, struct ipv4_partial_datagram, pdg_list) );
node->pdg_size--;
}
pd = ipv4_pd_new ( netdev, node, datagram_label, dg_size,
buf, fg_off, len);
if ( pd == NULL) {
retval = -ENOMEM;
goto bad_proto;
}
node->pdg_size++;
} else {
if (ipv4_frag_overlap(pd, fg_off, len) || pd->datagram_size != dg_size) {
/*
* Differing datagram sizes or overlapping fragments,
* Either way the remote machine is playing silly buggers
* with us: obliterate the old datagram and start a new one.
*/
ipv4_pd_delete ( pd );
pd = ipv4_pd_new ( netdev, node, datagram_label,
dg_size, buf, fg_off, len);
if ( pd == NULL ) {
retval = -ENOMEM;
node->pdg_size--;
goto bad_proto;
}
} else {
bool worked;
worked = ipv4_pd_update ( node, pd,
buf, fg_off, len );
if ( ! worked ) {
/*
* Couldn't save off fragment anyway
* so might as well obliterate the
* datagram now.
*/
ipv4_pd_delete ( pd );
node->pdg_size--;
goto bad_proto;
}
}
} /* new datagram or add to existing one */
if ( lf == IPV4_HDR_FIRSTFRAG )
pd->ether_type = ether_type;
if ( ipv4_pd_is_complete ( pd ) ) {
ether_type = pd->ether_type;
node->pdg_size--;
skb = skb_get(pd->skb);
ipv4_pd_delete ( pd );
spin_unlock_irqrestore(&node->pdg_lock, flags);
return ipv4_finish_incoming_packet ( netdev, skb, source_node_id, false, ether_type );
}
/*
* Datagram is not complete, we're done for the
* moment.
*/
spin_unlock_irqrestore(&node->pdg_lock, flags);
return 0;
bad_proto:
spin_unlock_irqrestore(&node->pdg_lock, flags);
if (netif_queue_stopped(netdev))
netif_wake_queue(netdev);
return 0;
}
static void ipv4_receive_packet ( struct fw_card *card, struct fw_request *r,
int tcode, int destination, int source, int generation, int speed,
unsigned long long offset, void *payload, size_t length, void *callback_data ) {
struct ipv4_priv *priv;
int status;
fw_debug ( "ipv4_receive_packet(%p,%p,%x,%x,%x,%x,%x,%llx,%p,%lx,%p)\n",
card, r, tcode, destination, source, generation, speed, offset, payload,
(unsigned long)length, callback_data);
print_hex_dump ( KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 32, 1, payload, length, false );
priv = callback_data;
if ( tcode != TCODE_WRITE_BLOCK_REQUEST
|| destination != card->node_id
|| generation != card->generation
|| offset != priv->handler.offset ) {
fw_send_response(card, r, RCODE_CONFLICT_ERROR);
fw_debug("Conflict error card node_id=%x, card generation=%x, local offset %llx\n",
card->node_id, card->generation, (unsigned long long)priv->handler.offset );
return;
}
status = ipv4_incoming_packet ( priv, payload, length, source, false );
if ( status != 0 ) {
fw_error ( "Incoming packet failure\n" );
fw_send_response ( card, r, RCODE_CONFLICT_ERROR );
return;
}
fw_send_response ( card, r, RCODE_COMPLETE );
}
static void ipv4_receive_broadcast(struct fw_iso_context *context, u32 cycle,
size_t header_length, void *header, void *data) {
struct ipv4_priv *priv;
struct fw_iso_packet packet;
struct fw_card *card;
u16 *hdr_ptr;
u32 *buf_ptr;
int retval;
u32 length;
u16 source_node_id;
u32 specifier_id;
u32 ver;
unsigned long offset;
unsigned long flags;
fw_debug ( "ipv4_receive_broadcast ( context=%p, cycle=%x, header_length=%lx, header=%p, data=%p )\n", context, cycle, (unsigned long)header_length, header, data );
print_hex_dump ( KERN_DEBUG, "header: ", DUMP_PREFIX_OFFSET, 32, 1, header, header_length, false );
priv = data;
card = priv->card;
hdr_ptr = header;
length = ntohs(hdr_ptr[0]);
spin_lock_irqsave(&priv->lock,flags);
offset = priv->rcv_buffer_size * priv->broadcast_rcv_next_ptr;
buf_ptr = priv->broadcast_rcv_buffer_ptrs[priv->broadcast_rcv_next_ptr++];
if ( priv->broadcast_rcv_next_ptr == priv->num_broadcast_rcv_ptrs )
priv->broadcast_rcv_next_ptr = 0;
spin_unlock_irqrestore(&priv->lock,flags);
fw_debug ( "length %u at %p\n", length, buf_ptr );
print_hex_dump ( KERN_DEBUG, "buffer: ", DUMP_PREFIX_OFFSET, 32, 1, buf_ptr, length, false );
specifier_id = (be32_to_cpu(buf_ptr[0]) & 0xffff) << 8
| (be32_to_cpu(buf_ptr[1]) & 0xff000000) >> 24;
ver = be32_to_cpu(buf_ptr[1]) & 0xFFFFFF;
source_node_id = be32_to_cpu(buf_ptr[0]) >> 16;
/* fw_debug ( "source %x SpecID %x ver %x\n", source_node_id, specifier_id, ver ); */
if ( specifier_id == IPV4_GASP_SPECIFIER_ID && ver == IPV4_GASP_VERSION ) {
buf_ptr += 2;
length -= IPV4_GASP_OVERHEAD;
ipv4_incoming_packet(priv, buf_ptr, length, source_node_id, true);
} else
fw_debug ( "Ignoring packet: not GASP\n" );
packet.payload_length = priv->rcv_buffer_size;
packet.interrupt = 1;
packet.skip = 0;
packet.tag = 3;
packet.sy = 0;
packet.header_length = IPV4_GASP_OVERHEAD;
spin_lock_irqsave(&priv->lock,flags);
retval = fw_iso_context_queue ( priv->broadcast_rcv_context, &packet,
&priv->broadcast_rcv_buffer, offset );
spin_unlock_irqrestore(&priv->lock,flags);
if ( retval < 0 )
fw_error ( "requeue failed\n" );
}
static void debug_ptask ( struct ipv4_packet_task *ptask ) {
static const char *tx_types[] = { "Unknown", "GASP", "Write" };
fw_debug ( "packet %p { hdr { w0 %x w1 %x }, skb %p, priv %p,"
" tx_type %s, outstanding_pkts %d, max_payload %x, fifo %llx,"
" speed %x, dest_node %x, generation %x }\n",
ptask, ptask->hdr.w0, ptask->hdr.w1, ptask->skb, ptask->priv,
ptask->tx_type > IPV4_WRREQ ? "Invalid" : tx_types[ptask->tx_type],
ptask->outstanding_pkts, ptask->max_payload,
ptask->fifo_addr, ptask->speed, ptask->dest_node, ptask->generation );
print_hex_dump ( KERN_DEBUG, "packet :", DUMP_PREFIX_OFFSET, 32, 1,
ptask->skb->data, ptask->skb->len, false );
}
static void ipv4_transmit_packet_done ( struct ipv4_packet_task *ptask ) {
struct ipv4_priv *priv;
unsigned long flags;
priv = ptask->priv;
spin_lock_irqsave ( &priv->lock, flags );
list_del ( &ptask->packet_list );
spin_unlock_irqrestore ( &priv->lock, flags );
ptask->outstanding_pkts--;
if ( ptask->outstanding_pkts > 0 ) {
u16 dg_size;
u16 fg_off;
u16 datagram_label;
u16 lf;
struct sk_buff *skb;
/* Update the ptask to point to the next fragment and send it */
lf = ipv4_get_hdr_lf(&ptask->hdr);
switch (lf) {
case IPV4_HDR_LASTFRAG:
case IPV4_HDR_UNFRAG:
default:
fw_error ( "Outstanding packet %x lf %x, header %x,%x\n", ptask->outstanding_pkts, lf, ptask->hdr.w0, ptask->hdr.w1 );
BUG();
case IPV4_HDR_FIRSTFRAG:
/* Set frag type here for future interior fragments */
dg_size = ipv4_get_hdr_dg_size(&ptask->hdr);
fg_off = ptask->max_payload - IPV4_FRAG_HDR_SIZE;
datagram_label = ipv4_get_hdr_dgl(&ptask->hdr);
break;
case IPV4_HDR_INTFRAG:
dg_size = ipv4_get_hdr_dg_size(&ptask->hdr);
fg_off = ipv4_get_hdr_fg_off(&ptask->hdr) + ptask->max_payload - IPV4_FRAG_HDR_SIZE;
datagram_label = ipv4_get_hdr_dgl(&ptask->hdr);
break;
}
skb = ptask->skb;
skb_pull ( skb, ptask->max_payload );
if ( ptask->outstanding_pkts > 1 ) {
ipv4_make_sf_hdr ( &ptask->hdr,
IPV4_HDR_INTFRAG, dg_size, fg_off, datagram_label );
} else {
ipv4_make_sf_hdr ( &ptask->hdr,
IPV4_HDR_LASTFRAG, dg_size, fg_off, datagram_label );
ptask->max_payload = skb->len + IPV4_FRAG_HDR_SIZE;
}
ipv4_send_packet ( ptask );
} else {
dev_kfree_skb_any ( ptask->skb );
kmem_cache_free( ipv4_packet_task_cache, ptask );
}
}
static void ipv4_write_complete ( struct fw_card *card, int rcode,
void *payload, size_t length, void *data ) {
struct ipv4_packet_task *ptask;
ptask = data;
fw_debug ( "ipv4_write_complete ( %p, %x, %p, %lx, %p )\n",
card, rcode, payload, (unsigned long)length, data );
debug_ptask ( ptask );
if ( rcode == RCODE_COMPLETE ) {
ipv4_transmit_packet_done ( ptask );
} else {
fw_error ( "ipv4_write_complete: failed: %x\n", rcode );
/* ??? error recovery */
}
}
static int ipv4_send_packet ( struct ipv4_packet_task *ptask ) {
struct ipv4_priv *priv;
unsigned tx_len;
struct ipv4_hdr *bufhdr;
unsigned long flags;
struct net_device *netdev;
#if 0 /* stefanr */
int retval;
#endif
fw_debug ( "ipv4_send_packet\n" );
debug_ptask ( ptask );
priv = ptask->priv;
tx_len = ptask->max_payload;
switch (ipv4_get_hdr_lf(&ptask->hdr)) {
case IPV4_HDR_UNFRAG:
bufhdr = (struct ipv4_hdr *)skb_push(ptask->skb, IPV4_UNFRAG_HDR_SIZE);
bufhdr->w0 = htonl(ptask->hdr.w0);
break;
case IPV4_HDR_FIRSTFRAG:
case IPV4_HDR_INTFRAG:
case IPV4_HDR_LASTFRAG:
bufhdr = (struct ipv4_hdr *)skb_push(ptask->skb, IPV4_FRAG_HDR_SIZE);
bufhdr->w0 = htonl(ptask->hdr.w0);
bufhdr->w1 = htonl(ptask->hdr.w1);
break;
default:
BUG();
}
if ( ptask->tx_type == IPV4_GASP ) {
u32 *packets;
int generation;
int nodeid;
/* ptask->generation may not have been set yet */
generation = priv->card->generation;
smp_rmb();
nodeid = priv->card->node_id;
packets = (u32 *)skb_push(ptask->skb, sizeof(u32)*2);
packets[0] = htonl(nodeid << 16 | (IPV4_GASP_SPECIFIER_ID>>8));
packets[1] = htonl((IPV4_GASP_SPECIFIER_ID & 0xFF) << 24 | IPV4_GASP_VERSION);
fw_send_request ( priv->card, &ptask->transaction, TCODE_STREAM_DATA,
fw_stream_packet_destination_id(3, BROADCAST_CHANNEL, 0),
generation, SCODE_100, 0ULL, ptask->skb->data, tx_len + 8, ipv4_write_complete, ptask );
spin_lock_irqsave(&priv->lock,flags);
list_add_tail ( &ptask->packet_list, &priv->broadcasted_list );
spin_unlock_irqrestore(&priv->lock,flags);
#if 0 /* stefanr */
return retval;
#else
return 0;
#endif
}
fw_debug("send_request (%p, %p, WRITE_BLOCK, %x, %x, %x, %llx, %p, %d, %p, %p\n",
priv->card, &ptask->transaction, ptask->dest_node, ptask->generation,
ptask->speed, (unsigned long long)ptask->fifo_addr, ptask->skb->data, tx_len,
ipv4_write_complete, ptask );
fw_send_request ( priv->card, &ptask->transaction,
TCODE_WRITE_BLOCK_REQUEST, ptask->dest_node, ptask->generation, ptask->speed,
ptask->fifo_addr, ptask->skb->data, tx_len, ipv4_write_complete, ptask );
spin_lock_irqsave(&priv->lock,flags);
list_add_tail ( &ptask->packet_list, &priv->sent_list );
spin_unlock_irqrestore(&priv->lock,flags);
netdev = priv->card->netdev;
netdev->trans_start = jiffies;
return 0;
}
static int ipv4_broadcast_start ( struct ipv4_priv *priv ) {
struct fw_iso_context *context;
int retval;
unsigned num_packets;
unsigned max_receive;
struct fw_iso_packet packet;
unsigned long offset;
unsigned u;
/* unsigned transmit_speed; */
#if 0 /* stefanr */
if ( priv->card->broadcast_channel != (BROADCAST_CHANNEL_VALID|BROADCAST_CHANNEL_INITIAL)) {
fw_notify ( "Invalid broadcast channel %x\n", priv->card->broadcast_channel );
/* FIXME: try again later? */
/* return -EINVAL; */
}
#endif
if ( priv->local_fifo == INVALID_FIFO_ADDR ) {
struct fw_address_region region;
priv->handler.length = FIFO_SIZE;
priv->handler.address_callback = ipv4_receive_packet;
priv->handler.callback_data = priv;
/* FIXME: this is OHCI, but what about others? */
region.start = 0xffff00000000ULL;
region.end = 0xfffffffffffcULL;
retval = fw_core_add_address_handler ( &priv->handler, &region );
if ( retval < 0 )
goto failed_initial;
priv->local_fifo = priv->handler.offset;
}
/*
* FIXME: rawiso limits us to PAGE_SIZE. This only matters if we ever have
* a machine with PAGE_SIZE < 4096
*/
max_receive = 1U << (priv->card->max_receive + 1);
num_packets = ( ipv4_iso_page_count * PAGE_SIZE ) / max_receive;
if ( ! priv->broadcast_rcv_context ) {
void **ptrptr;
context = fw_iso_context_create ( priv->card,
FW_ISO_CONTEXT_RECEIVE, BROADCAST_CHANNEL,
priv->card->link_speed, 8, ipv4_receive_broadcast, priv );
if (IS_ERR(context)) {
retval = PTR_ERR(context);
goto failed_context_create;
}
retval = fw_iso_buffer_init ( &priv->broadcast_rcv_buffer,
priv->card, ipv4_iso_page_count, DMA_FROM_DEVICE );
if ( retval < 0 )
goto failed_buffer_init;
ptrptr = kmalloc ( sizeof(void*)*num_packets, GFP_KERNEL );
if ( ! ptrptr ) {
retval = -ENOMEM;
goto failed_ptrs_alloc;
}
priv->broadcast_rcv_buffer_ptrs = ptrptr;
for ( u = 0; u < ipv4_iso_page_count; u++ ) {
void *ptr;
unsigned v;
ptr = kmap ( priv->broadcast_rcv_buffer.pages[u] );
for ( v = 0; v < num_packets / ipv4_iso_page_count; v++ )
*ptrptr++ = (void *)((char *)ptr + v * max_receive);
}
priv->broadcast_rcv_context = context;
} else
context = priv->broadcast_rcv_context;
packet.payload_length = max_receive;
packet.interrupt = 1;
packet.skip = 0;
packet.tag = 3;
packet.sy = 0;
packet.header_length = IPV4_GASP_OVERHEAD;
offset = 0;
for ( u = 0; u < num_packets; u++ ) {
retval = fw_iso_context_queue ( context, &packet,
&priv->broadcast_rcv_buffer, offset );
if ( retval < 0 )
goto failed_rcv_queue;
offset += max_receive;
}
priv->num_broadcast_rcv_ptrs = num_packets;
priv->rcv_buffer_size = max_receive;
priv->broadcast_rcv_next_ptr = 0U;
retval = fw_iso_context_start ( context, -1, 0, FW_ISO_CONTEXT_MATCH_ALL_TAGS ); /* ??? sync */
if ( retval < 0 )
goto failed_rcv_queue;
/* FIXME: adjust this when we know the max receive speeds of all other IP nodes on the bus. */
/* since we only xmt at S100 ??? */
priv->broadcast_xmt_max_payload = S100_BUFFER_SIZE - IPV4_GASP_OVERHEAD - IPV4_UNFRAG_HDR_SIZE;
priv->broadcast_state = IPV4_BROADCAST_RUNNING;
return 0;
failed_rcv_queue:
kfree ( priv->broadcast_rcv_buffer_ptrs );
priv->broadcast_rcv_buffer_ptrs = NULL;
failed_ptrs_alloc:
fw_iso_buffer_destroy ( &priv->broadcast_rcv_buffer, priv->card );
failed_buffer_init:
fw_iso_context_destroy ( context );
priv->broadcast_rcv_context = NULL;
failed_context_create:
fw_core_remove_address_handler ( &priv->handler );
failed_initial:
priv->local_fifo = INVALID_FIFO_ADDR;
return retval;
}
/* This is called after an "ifup" */
static int ipv4_open(struct net_device *dev) {
struct ipv4_priv *priv;
int ret;
priv = netdev_priv(dev);
if (priv->broadcast_state == IPV4_BROADCAST_ERROR) {
ret = ipv4_broadcast_start ( priv );
if (ret)
return ret;
}
netif_start_queue(dev);
return 0;
}
/* This is called after an "ifdown" */
static int ipv4_stop(struct net_device *netdev)
{
/* flush priv->wake */
/* flush_scheduled_work(); */
netif_stop_queue(netdev);
return 0;
}
/* Transmit a packet (called by kernel) */
static int ipv4_tx(struct sk_buff *skb, struct net_device *netdev)
{
struct ipv4_ether_hdr hdr_buf;
struct ipv4_priv *priv = netdev_priv(netdev);
__be16 proto;
u16 dest_node;
enum ipv4_tx_type tx_type;
unsigned max_payload;
u16 dg_size;
u16 *datagram_label_ptr;
struct ipv4_packet_task *ptask;
struct ipv4_node *node = NULL;
ptask = kmem_cache_alloc(ipv4_packet_task_cache, GFP_ATOMIC);
if (ptask == NULL)
goto fail;
skb = skb_share_check(skb, GFP_ATOMIC);
if (!skb)
goto fail;
/*
* Get rid of the fake ipv4 header, but first make a copy.
* We might need to rebuild the header on tx failure.
*/
memcpy(&hdr_buf, skb->data, sizeof(hdr_buf));
skb_pull(skb, sizeof(hdr_buf));
proto = hdr_buf.h_proto;
dg_size = skb->len;
/*
* Set the transmission type for the packet. ARP packets and IP
* broadcast packets are sent via GASP.
*/
if ( memcmp(hdr_buf.h_dest, netdev->broadcast, IPV4_ALEN) == 0
|| proto == htons(ETH_P_ARP)
|| ( proto == htons(ETH_P_IP)
&& IN_MULTICAST(ntohl(ip_hdr(skb)->daddr)) ) ) {
/* fw_debug ( "transmitting arp or multicast packet\n" );*/
tx_type = IPV4_GASP;
dest_node = ALL_NODES;
max_payload = priv->broadcast_xmt_max_payload;
/* BUG_ON(max_payload < S100_BUFFER_SIZE - IPV4_GASP_OVERHEAD); */
datagram_label_ptr = &priv->broadcast_xmt_datagramlabel;
ptask->fifo_addr = INVALID_FIFO_ADDR;
ptask->generation = 0U;
ptask->dest_node = 0U;
ptask->speed = 0;
} else {
__be64 guid = get_unaligned((u64 *)hdr_buf.h_dest);
u8 generation;
node = ipv4_node_find_by_guid(priv, be64_to_cpu(guid));
if (!node) {
fw_debug ( "Normal packet but no node\n" );
goto fail;
}
if (node->fifo == INVALID_FIFO_ADDR) {
fw_debug ( "Normal packet but no fifo addr\n" );
goto fail;
}
/* fw_debug ( "Transmitting normal packet to %x at %llxx\n", node->nodeid, node->fifo ); */
generation = node->generation;
dest_node = node->nodeid;
max_payload = node->max_payload;
/* BUG_ON(max_payload < S100_BUFFER_SIZE - IPV4_FRAG_HDR_SIZE); */
datagram_label_ptr = &node->datagram_label;
tx_type = IPV4_WRREQ;
ptask->fifo_addr = node->fifo;
ptask->generation = generation;
ptask->dest_node = dest_node;
ptask->speed = node->xmt_speed;
}
/* If this is an ARP packet, convert it */
if (proto == htons(ETH_P_ARP)) {
/* Convert a standard ARP packet to 1394 ARP. The first 8 bytes (the entire
* arphdr) is the same format as the ip1394 header, so they overlap. The rest
* needs to be munged a bit. The remainder of the arphdr is formatted based
* on hwaddr len and ipaddr len. We know what they'll be, so it's easy to
* judge.
*
* Now that the EUI is used for the hardware address all we need to do to make
* this work for 1394 is to insert 2 quadlets that contain max_rec size,
* speed, and unicast FIFO address information between the sender_unique_id
* and the IP addresses.
*/
struct arphdr *arp = (struct arphdr *)skb->data;
unsigned char *arp_ptr = (unsigned char *)(arp + 1);
struct ipv4_arp *arp1394 = (struct ipv4_arp *)skb->data;
u32 ipaddr;
ipaddr = *(u32*)(arp_ptr + IPV4_ALEN);
arp1394->hw_addr_len = 16;
arp1394->max_rec = priv->card->max_receive;
arp1394->sspd = priv->card->link_speed;
arp1394->fifo_hi = htons(priv->local_fifo >> 32);
arp1394->fifo_lo = htonl(priv->local_fifo & 0xFFFFFFFF);
arp1394->sip = ipaddr;
}
if ( ipv4_max_xmt && max_payload > ipv4_max_xmt )
max_payload = ipv4_max_xmt;
ptask->hdr.w0 = 0;
ptask->hdr.w1 = 0;
ptask->skb = skb;
ptask->priv = priv;
ptask->tx_type = tx_type;
/* Does it all fit in one packet? */
if ( dg_size <= max_payload ) {
ipv4_make_uf_hdr(&ptask->hdr, be16_to_cpu(proto));
ptask->outstanding_pkts = 1;
max_payload = dg_size + IPV4_UNFRAG_HDR_SIZE;
} else {
u16 datagram_label;
max_payload -= IPV4_FRAG_OVERHEAD;
datagram_label = (*datagram_label_ptr)++;
ipv4_make_ff_hdr(&ptask->hdr, be16_to_cpu(proto), dg_size, datagram_label );
ptask->outstanding_pkts = DIV_ROUND_UP(dg_size, max_payload);
max_payload += IPV4_FRAG_HDR_SIZE;
}
ptask->max_payload = max_payload;
ipv4_send_packet ( ptask );
return NETDEV_TX_OK;
fail:
if (ptask)
kmem_cache_free(ipv4_packet_task_cache, ptask);
if (skb != NULL)
dev_kfree_skb(skb);
netdev->stats.tx_dropped++;
netdev->stats.tx_errors++;
/*
* FIXME: According to a patch from 2003-02-26, "returning non-zero
* causes serious problems" here, allegedly. Before that patch,
* -ERRNO was returned which is not appropriate under Linux 2.6.
* Perhaps more needs to be done? Stop the queue in serious
* conditions and restart it elsewhere?
*/
return NETDEV_TX_OK;
}
/*
* FIXME: What to do if we timeout? I think a host reset is probably in order,
* so that's what we do. Should we increment the stat counters too?
*/
static void ipv4_tx_timeout(struct net_device *dev) {
struct ipv4_priv *priv;
priv = netdev_priv(dev);
fw_error ( "%s: Timeout, resetting host\n", dev->name );
#if 0 /* stefanr */
fw_core_initiate_bus_reset ( priv->card, 1 );
#endif
}
static int ipv4_change_mtu ( struct net_device *dev, int new_mtu ) {
#if 0
int max_mtu;
struct ipv4_priv *priv;
#endif
if (new_mtu < 68)
return -EINVAL;
#if 0
priv = netdev_priv(dev);
/* This is not actually true because we can fragment packets at the firewire layer */
max_mtu = (1 << (priv->card->max_receive + 1))
- sizeof(struct ipv4_hdr) - IPV4_GASP_OVERHEAD;
if (new_mtu > max_mtu) {
fw_notify ( "%s: Local node constrains MTU to %d\n", dev->name, max_mtu);
return -ERANGE;
}
#endif
dev->mtu = new_mtu;
return 0;
}
static void ipv4_get_drvinfo(struct net_device *dev,
struct ethtool_drvinfo *info) {
strcpy(info->driver, ipv4_driver_name);
strcpy(info->bus_info, "ieee1394"); /* FIXME provide more detail? */
}
static struct ethtool_ops ipv4_ethtool_ops = {
.get_drvinfo = ipv4_get_drvinfo,
};
static const struct net_device_ops ipv4_netdev_ops = {
.ndo_open = ipv4_open,
.ndo_stop = ipv4_stop,
.ndo_start_xmit = ipv4_tx,
.ndo_tx_timeout = ipv4_tx_timeout,
.ndo_change_mtu = ipv4_change_mtu,
};
static void ipv4_init_dev ( struct net_device *dev ) {
dev->header_ops = &ipv4_header_ops;
dev->netdev_ops = &ipv4_netdev_ops;
SET_ETHTOOL_OPS(dev, &ipv4_ethtool_ops);
dev->watchdog_timeo = IPV4_TIMEOUT;
dev->flags = IFF_BROADCAST | IFF_MULTICAST;
dev->features = NETIF_F_HIGHDMA;
dev->addr_len = IPV4_ALEN;
dev->hard_header_len = IPV4_HLEN;
dev->type = ARPHRD_IEEE1394;
/* FIXME: This value was copied from ether_setup(). Is it too much? */
dev->tx_queue_len = 1000;
}
static int ipv4_probe ( struct device *dev ) {
struct fw_unit * unit;
struct fw_device *device;
struct fw_card *card;
struct net_device *netdev;
struct ipv4_priv *priv;
unsigned max_mtu;
__be64 guid;
fw_debug("ipv4 Probing\n" );
unit = fw_unit ( dev );
device = fw_device ( unit->device.parent );
card = device->card;
if ( ! device->is_local ) {
int added;
fw_debug ( "Non-local, adding remote node entry\n" );
added = ipv4_node_new ( card, device );
return added;
}
fw_debug("ipv4 Local: adding netdev\n" );
netdev = alloc_netdev ( sizeof(*priv), "firewire%d", ipv4_init_dev );
if ( netdev == NULL) {
fw_error( "Out of memory\n");
goto out;
}
SET_NETDEV_DEV(netdev, card->device);
priv = netdev_priv(netdev);
spin_lock_init(&priv->lock);
priv->broadcast_state = IPV4_BROADCAST_ERROR;
priv->broadcast_rcv_context = NULL;
priv->broadcast_xmt_max_payload = 0;
priv->broadcast_xmt_datagramlabel = 0;
priv->local_fifo = INVALID_FIFO_ADDR;
/* INIT_WORK(&priv->wake, ipv4_handle_queue);*/
INIT_LIST_HEAD(&priv->packet_list);
INIT_LIST_HEAD(&priv->broadcasted_list);
INIT_LIST_HEAD(&priv->sent_list );
priv->card = card;
/*
* Use the RFC 2734 default 1500 octets or the maximum payload
* as initial MTU
*/
max_mtu = (1 << (card->max_receive + 1))
- sizeof(struct ipv4_hdr) - IPV4_GASP_OVERHEAD;
netdev->mtu = min(1500U, max_mtu);
/* Set our hardware address while we're at it */
guid = cpu_to_be64(card->guid);
memcpy(netdev->dev_addr, &guid, sizeof(u64));
memset(netdev->broadcast, 0xff, sizeof(u64));
if ( register_netdev ( netdev ) ) {
fw_error ( "Cannot register the driver\n");
goto out;
}
fw_notify ( "%s: IPv4 over Firewire on device %016llx\n",
netdev->name, card->guid );
card->netdev = netdev;
return 0 /* ipv4_new_node ( ud ) */;
out:
if ( netdev )
free_netdev ( netdev );
return -ENOENT;
}
static int ipv4_remove ( struct device *dev ) {
struct fw_unit * unit;
struct fw_device *device;
struct fw_card *card;
struct net_device *netdev;
struct ipv4_priv *priv;
struct ipv4_node *node;
struct ipv4_partial_datagram *pd, *pd_next;
struct ipv4_packet_task *ptask, *pt_next;
fw_debug("ipv4 Removing\n" );
unit = fw_unit ( dev );
device = fw_device ( unit->device.parent );
card = device->card;
if ( ! device->is_local ) {
fw_debug ( "Node %x is non-local, removing remote node entry\n", device->node_id );
ipv4_node_delete ( card, device );
return 0;
}
netdev = card->netdev;
if ( netdev ) {
fw_debug ( "Node %x is local: deleting netdev\n", device->node_id );
priv = netdev_priv ( netdev );
unregister_netdev ( netdev );
fw_debug ( "unregistered\n" );
if ( priv->local_fifo != INVALID_FIFO_ADDR )
fw_core_remove_address_handler ( &priv->handler );
fw_debug ( "address handler gone\n" );
if ( priv->broadcast_rcv_context ) {
fw_iso_context_stop ( priv->broadcast_rcv_context );
fw_iso_buffer_destroy ( &priv->broadcast_rcv_buffer, priv->card );
fw_iso_context_destroy ( priv->broadcast_rcv_context );
fw_debug ( "rcv stopped\n" );
}
list_for_each_entry_safe( ptask, pt_next, &priv->packet_list, packet_list ) {
dev_kfree_skb_any ( ptask->skb );
kmem_cache_free( ipv4_packet_task_cache, ptask );
}
list_for_each_entry_safe( ptask, pt_next, &priv->broadcasted_list, packet_list ) {
dev_kfree_skb_any ( ptask->skb );
kmem_cache_free( ipv4_packet_task_cache, ptask );
}
list_for_each_entry_safe( ptask, pt_next, &priv->sent_list, packet_list ) {
dev_kfree_skb_any ( ptask->skb );
kmem_cache_free( ipv4_packet_task_cache, ptask );
}
fw_debug ( "lists emptied\n" );
list_for_each_entry( node, &card->ipv4_nodes, ipv4_nodes ) {
if ( node->pdg_size ) {
list_for_each_entry_safe( pd, pd_next, &node->pdg_list, pdg_list )
ipv4_pd_delete ( pd );
node->pdg_size = 0;
}
node->fifo = INVALID_FIFO_ADDR;
}
fw_debug ( "nodes cleaned up\n" );
free_netdev ( netdev );
card->netdev = NULL;
fw_debug ( "done\n" );
}
return 0;
}
static void ipv4_update ( struct fw_unit *unit ) {
struct fw_device *device;
struct fw_card *card;
fw_debug ( "ipv4_update unit %p\n", unit );
device = fw_device ( unit->device.parent );
card = device->card;
if ( ! device->is_local ) {
struct ipv4_node *node;
u64 guid;
struct net_device *netdev;
struct ipv4_priv *priv;
netdev = card->netdev;
if ( netdev ) {
priv = netdev_priv ( netdev );
guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
node = ipv4_node_find_by_guid ( priv, guid );
if ( ! node ) {
fw_error ( "ipv4_update: no node for device %llx\n", guid );
return;
}
fw_debug ( "Non-local, updating remote node entry for guid %llx old generation %x, old nodeid %x\n", guid, node->generation, node->nodeid );
node->generation = device->generation;
rmb();
node->nodeid = device->node_id;
fw_debug ( "New generation %x, new nodeid %x\n", node->generation, node->nodeid );
} else
fw_error ( "nonlocal, but no netdev? How can that be?\n" );
} else {
/* FIXME: What do we need to do on bus reset? */
fw_debug ( "Local, doing nothing\n" );
}
}
static struct fw_driver ipv4_driver = {
.driver = {
.owner = THIS_MODULE,
.name = ipv4_driver_name,
.bus = &fw_bus_type,
.probe = ipv4_probe,
.remove = ipv4_remove,
},
.update = ipv4_update,
.id_table = ipv4_id_table,
};
static int __init ipv4_init ( void ) {
int added;
added = fw_core_add_descriptor ( &ipv4_unit_directory );
if ( added < 0 )
fw_error ( "Failed to add descriptor" );
ipv4_packet_task_cache = kmem_cache_create("packet_task",
sizeof(struct ipv4_packet_task), 0, 0, NULL);
fw_debug("Adding ipv4 module\n" );
return driver_register ( &ipv4_driver.driver );
}
static void __exit ipv4_cleanup ( void ) {
fw_core_remove_descriptor ( &ipv4_unit_directory );
fw_debug("Removing ipv4 module\n" );
driver_unregister ( &ipv4_driver.driver );
}
module_init(ipv4_init);
module_exit(ipv4_cleanup);