linux-stable/mm/process_vm_access.c
York Jasper Niebuhr 932b59e3be mm: fix process_vm_rw page counts
1. There is a "-1" missing in the page number calculation in
   process_vm_rw_core.  While this can't break anything, it can cause
   unnecessary allocations in certain cases:

   Consider handling an iovec ranging over PVM_MAX_PP_ARRAY_COUNT pages
   that is also aligned to a page boundary.  While pp_stack could hold
   references to such an amount of pinned pages, nr_pages yields
   (PVM_MAX_PP_ARRAY + 1) in process_vm_rw_core.  Consequently, a larger
   buffer is allocated with kmalloc for no reason.

   For any page boundary aligned iovec that is a multiple of PAGE_SIZE
   and larger than PVM_MAX_PP_ARRAY_COUNT pages, nr_pages will be too big
   by 1 and thus kmalloc allocates excess space for one more pointer.

2. max_pages_per_loop is constant and there is no reason to have it as
   a variable.  A macro does the job just fine and saves memory.

3. Replaced "sizeof(struct pages *)" with "sizeof(struct page *)" to
   have matching types for allocation and prevent confusion.

Link: https://lkml.kernel.org/r/20231111184859.44264-1-yjnworkstation@gmail.com
Signed-off-by: York Jasper Niebuhr <yjnworkstation@gmail.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2023-12-10 16:51:39 -08:00

306 lines
8.3 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* linux/mm/process_vm_access.c
*
* Copyright (C) 2010-2011 Christopher Yeoh <cyeoh@au1.ibm.com>, IBM Corp.
*/
#include <linux/compat.h>
#include <linux/mm.h>
#include <linux/uio.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/highmem.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/syscalls.h>
/**
* process_vm_rw_pages - read/write pages from task specified
* @pages: array of pointers to pages we want to copy
* @offset: offset in page to start copying from/to
* @len: number of bytes to copy
* @iter: where to copy to/from locally
* @vm_write: 0 means copy from, 1 means copy to
* Returns 0 on success, error code otherwise
*/
static int process_vm_rw_pages(struct page **pages,
unsigned offset,
size_t len,
struct iov_iter *iter,
int vm_write)
{
/* Do the copy for each page */
while (len && iov_iter_count(iter)) {
struct page *page = *pages++;
size_t copy = PAGE_SIZE - offset;
size_t copied;
if (copy > len)
copy = len;
if (vm_write)
copied = copy_page_from_iter(page, offset, copy, iter);
else
copied = copy_page_to_iter(page, offset, copy, iter);
len -= copied;
if (copied < copy && iov_iter_count(iter))
return -EFAULT;
offset = 0;
}
return 0;
}
/* Maximum number of pages kmalloc'd to hold struct page's during copy */
#define PVM_MAX_KMALLOC_PAGES 2
/* Maximum number of pages that can be stored at a time */
#define PVM_MAX_USER_PAGES (PVM_MAX_KMALLOC_PAGES * PAGE_SIZE / sizeof(struct page *))
/**
* process_vm_rw_single_vec - read/write pages from task specified
* @addr: start memory address of target process
* @len: size of area to copy to/from
* @iter: where to copy to/from locally
* @process_pages: struct pages area that can store at least
* nr_pages_to_copy struct page pointers
* @mm: mm for task
* @task: task to read/write from
* @vm_write: 0 means copy from, 1 means copy to
* Returns 0 on success or on failure error code
*/
static int process_vm_rw_single_vec(unsigned long addr,
unsigned long len,
struct iov_iter *iter,
struct page **process_pages,
struct mm_struct *mm,
struct task_struct *task,
int vm_write)
{
unsigned long pa = addr & PAGE_MASK;
unsigned long start_offset = addr - pa;
unsigned long nr_pages;
ssize_t rc = 0;
unsigned int flags = 0;
/* Work out address and page range required */
if (len == 0)
return 0;
nr_pages = (addr + len - 1) / PAGE_SIZE - addr / PAGE_SIZE + 1;
if (vm_write)
flags |= FOLL_WRITE;
while (!rc && nr_pages && iov_iter_count(iter)) {
int pinned_pages = min_t(unsigned long, nr_pages, PVM_MAX_USER_PAGES);
int locked = 1;
size_t bytes;
/*
* Get the pages we're interested in. We must
* access remotely because task/mm might not
* current/current->mm
*/
mmap_read_lock(mm);
pinned_pages = pin_user_pages_remote(mm, pa, pinned_pages,
flags, process_pages,
&locked);
if (locked)
mmap_read_unlock(mm);
if (pinned_pages <= 0)
return -EFAULT;
bytes = pinned_pages * PAGE_SIZE - start_offset;
if (bytes > len)
bytes = len;
rc = process_vm_rw_pages(process_pages,
start_offset, bytes, iter,
vm_write);
len -= bytes;
start_offset = 0;
nr_pages -= pinned_pages;
pa += pinned_pages * PAGE_SIZE;
/* If vm_write is set, the pages need to be made dirty: */
unpin_user_pages_dirty_lock(process_pages, pinned_pages,
vm_write);
}
return rc;
}
/* Maximum number of entries for process pages array
which lives on stack */
#define PVM_MAX_PP_ARRAY_COUNT 16
/**
* process_vm_rw_core - core of reading/writing pages from task specified
* @pid: PID of process to read/write from/to
* @iter: where to copy to/from locally
* @rvec: iovec array specifying where to copy to/from in the other process
* @riovcnt: size of rvec array
* @flags: currently unused
* @vm_write: 0 if reading from other process, 1 if writing to other process
*
* Returns the number of bytes read/written or error code. May
* return less bytes than expected if an error occurs during the copying
* process.
*/
static ssize_t process_vm_rw_core(pid_t pid, struct iov_iter *iter,
const struct iovec *rvec,
unsigned long riovcnt,
unsigned long flags, int vm_write)
{
struct task_struct *task;
struct page *pp_stack[PVM_MAX_PP_ARRAY_COUNT];
struct page **process_pages = pp_stack;
struct mm_struct *mm;
unsigned long i;
ssize_t rc = 0;
unsigned long nr_pages = 0;
unsigned long nr_pages_iov;
ssize_t iov_len;
size_t total_len = iov_iter_count(iter);
/*
* Work out how many pages of struct pages we're going to need
* when eventually calling get_user_pages
*/
for (i = 0; i < riovcnt; i++) {
iov_len = rvec[i].iov_len;
if (iov_len > 0) {
nr_pages_iov = ((unsigned long)rvec[i].iov_base
+ iov_len - 1)
/ PAGE_SIZE - (unsigned long)rvec[i].iov_base
/ PAGE_SIZE + 1;
nr_pages = max(nr_pages, nr_pages_iov);
}
}
if (nr_pages == 0)
return 0;
if (nr_pages > PVM_MAX_PP_ARRAY_COUNT) {
/* For reliability don't try to kmalloc more than
2 pages worth */
process_pages = kmalloc(min_t(size_t, PVM_MAX_KMALLOC_PAGES * PAGE_SIZE,
sizeof(struct page *)*nr_pages),
GFP_KERNEL);
if (!process_pages)
return -ENOMEM;
}
/* Get process information */
task = find_get_task_by_vpid(pid);
if (!task) {
rc = -ESRCH;
goto free_proc_pages;
}
mm = mm_access(task, PTRACE_MODE_ATTACH_REALCREDS);
if (!mm || IS_ERR(mm)) {
rc = IS_ERR(mm) ? PTR_ERR(mm) : -ESRCH;
/*
* Explicitly map EACCES to EPERM as EPERM is a more
* appropriate error code for process_vw_readv/writev
*/
if (rc == -EACCES)
rc = -EPERM;
goto put_task_struct;
}
for (i = 0; i < riovcnt && iov_iter_count(iter) && !rc; i++)
rc = process_vm_rw_single_vec(
(unsigned long)rvec[i].iov_base, rvec[i].iov_len,
iter, process_pages, mm, task, vm_write);
/* copied = space before - space after */
total_len -= iov_iter_count(iter);
/* If we have managed to copy any data at all then
we return the number of bytes copied. Otherwise
we return the error code */
if (total_len)
rc = total_len;
mmput(mm);
put_task_struct:
put_task_struct(task);
free_proc_pages:
if (process_pages != pp_stack)
kfree(process_pages);
return rc;
}
/**
* process_vm_rw - check iovecs before calling core routine
* @pid: PID of process to read/write from/to
* @lvec: iovec array specifying where to copy to/from locally
* @liovcnt: size of lvec array
* @rvec: iovec array specifying where to copy to/from in the other process
* @riovcnt: size of rvec array
* @flags: currently unused
* @vm_write: 0 if reading from other process, 1 if writing to other process
*
* Returns the number of bytes read/written or error code. May
* return less bytes than expected if an error occurs during the copying
* process.
*/
static ssize_t process_vm_rw(pid_t pid,
const struct iovec __user *lvec,
unsigned long liovcnt,
const struct iovec __user *rvec,
unsigned long riovcnt,
unsigned long flags, int vm_write)
{
struct iovec iovstack_l[UIO_FASTIOV];
struct iovec iovstack_r[UIO_FASTIOV];
struct iovec *iov_l = iovstack_l;
struct iovec *iov_r;
struct iov_iter iter;
ssize_t rc;
int dir = vm_write ? ITER_SOURCE : ITER_DEST;
if (flags != 0)
return -EINVAL;
/* Check iovecs */
rc = import_iovec(dir, lvec, liovcnt, UIO_FASTIOV, &iov_l, &iter);
if (rc < 0)
return rc;
if (!iov_iter_count(&iter))
goto free_iov_l;
iov_r = iovec_from_user(rvec, riovcnt, UIO_FASTIOV, iovstack_r,
in_compat_syscall());
if (IS_ERR(iov_r)) {
rc = PTR_ERR(iov_r);
goto free_iov_l;
}
rc = process_vm_rw_core(pid, &iter, iov_r, riovcnt, flags, vm_write);
if (iov_r != iovstack_r)
kfree(iov_r);
free_iov_l:
kfree(iov_l);
return rc;
}
SYSCALL_DEFINE6(process_vm_readv, pid_t, pid, const struct iovec __user *, lvec,
unsigned long, liovcnt, const struct iovec __user *, rvec,
unsigned long, riovcnt, unsigned long, flags)
{
return process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 0);
}
SYSCALL_DEFINE6(process_vm_writev, pid_t, pid,
const struct iovec __user *, lvec,
unsigned long, liovcnt, const struct iovec __user *, rvec,
unsigned long, riovcnt, unsigned long, flags)
{
return process_vm_rw(pid, lvec, liovcnt, rvec, riovcnt, flags, 1);
}