linux-stable/arch/x86/kernel/sys_x86_64.c
Rick Edgecombe 29f890d105 x86/mm: Introduce MAP_ABOVE4G
The x86 Control-flow Enforcement Technology (CET) feature includes a new
type of memory called shadow stack. This shadow stack memory has some
unusual properties, which require some core mm changes to function
properly.

One of the properties is that the shadow stack pointer (SSP), which is a
CPU register that points to the shadow stack like the stack pointer points
to the stack, can't be pointing outside of the 32 bit address space when
the CPU is executing in 32 bit mode. It is desirable to prevent executing
in 32 bit mode when shadow stack is enabled because the kernel can't easily
support 32 bit signals.

On x86 it is possible to transition to 32 bit mode without any special
interaction with the kernel, by doing a "far call" to a 32 bit segment.
So the shadow stack implementation can use this address space behavior
as a feature, by enforcing that shadow stack memory is always mapped
outside of the 32 bit address space. This way userspace will trigger a
general protection fault which will in turn trigger a segfault if it
tries to transition to 32 bit mode with shadow stack enabled.

This provides a clean error generating border for the user if they try
attempt to do 32 bit mode shadow stack, rather than leave the kernel in a
half working state for userspace to be surprised by.

So to allow future shadow stack enabling patches to map shadow stacks
out of the 32 bit address space, introduce MAP_ABOVE4G. The behavior
is pretty much like MAP_32BIT, except that it has the opposite address
range. The are a few differences though.

If both MAP_32BIT and MAP_ABOVE4G are provided, the kernel will use the
MAP_ABOVE4G behavior. Like MAP_32BIT, MAP_ABOVE4G is ignored in a 32 bit
syscall.

Since the default search behavior is top down, the normal kaslr base can
be used for MAP_ABOVE4G. This is unlike MAP_32BIT which has to add its
own randomization in the bottom up case.

For MAP_32BIT, only the bottom up search path is used. For MAP_ABOVE4G
both are potentially valid, so both are used. In the bottomup search
path, the default behavior is already consistent with MAP_ABOVE4G since
mmap base should be above 4GB.

Without MAP_ABOVE4G, the shadow stack will already normally be above 4GB.
So without introducing MAP_ABOVE4G, trying to transition to 32 bit mode
with shadow stack enabled would usually segfault anyway. This is already
pretty decent guard rails. But the addition of MAP_ABOVE4G is some small
complexity spent to make it make it more complete.

Signed-off-by: Rick Edgecombe <rick.p.edgecombe@intel.com>
Signed-off-by: Dave Hansen <dave.hansen@linux.intel.com>
Reviewed-by: Borislav Petkov (AMD) <bp@alien8.de>
Reviewed-by: Kees Cook <keescook@chromium.org>
Acked-by: Mike Rapoport (IBM) <rppt@kernel.org>
Tested-by: Pengfei Xu <pengfei.xu@intel.com>
Tested-by: John Allen <john.allen@amd.com>
Tested-by: Kees Cook <keescook@chromium.org>
Link: https://lore.kernel.org/all/20230613001108.3040476-21-rick.p.edgecombe%40intel.com
2023-07-11 14:12:19 -07:00

233 lines
5.9 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/compat.h>
#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sched/mm.h>
#include <linux/syscalls.h>
#include <linux/mm.h>
#include <linux/fs.h>
#include <linux/smp.h>
#include <linux/sem.h>
#include <linux/msg.h>
#include <linux/shm.h>
#include <linux/stat.h>
#include <linux/mman.h>
#include <linux/file.h>
#include <linux/utsname.h>
#include <linux/personality.h>
#include <linux/random.h>
#include <linux/uaccess.h>
#include <linux/elf.h>
#include <asm/elf.h>
#include <asm/ia32.h>
/*
* Align a virtual address to avoid aliasing in the I$ on AMD F15h.
*/
static unsigned long get_align_mask(void)
{
/* handle 32- and 64-bit case with a single conditional */
if (va_align.flags < 0 || !(va_align.flags & (2 - mmap_is_ia32())))
return 0;
if (!(current->flags & PF_RANDOMIZE))
return 0;
return va_align.mask;
}
/*
* To avoid aliasing in the I$ on AMD F15h, the bits defined by the
* va_align.bits, [12:upper_bit), are set to a random value instead of
* zeroing them. This random value is computed once per boot. This form
* of ASLR is known as "per-boot ASLR".
*
* To achieve this, the random value is added to the info.align_offset
* value before calling vm_unmapped_area() or ORed directly to the
* address.
*/
static unsigned long get_align_bits(void)
{
return va_align.bits & get_align_mask();
}
unsigned long align_vdso_addr(unsigned long addr)
{
unsigned long align_mask = get_align_mask();
addr = (addr + align_mask) & ~align_mask;
return addr | get_align_bits();
}
static int __init control_va_addr_alignment(char *str)
{
/* guard against enabling this on other CPU families */
if (va_align.flags < 0)
return 1;
if (*str == 0)
return 1;
if (!strcmp(str, "32"))
va_align.flags = ALIGN_VA_32;
else if (!strcmp(str, "64"))
va_align.flags = ALIGN_VA_64;
else if (!strcmp(str, "off"))
va_align.flags = 0;
else if (!strcmp(str, "on"))
va_align.flags = ALIGN_VA_32 | ALIGN_VA_64;
else
pr_warn("invalid option value: 'align_va_addr=%s'\n", str);
return 1;
}
__setup("align_va_addr=", control_va_addr_alignment);
SYSCALL_DEFINE6(mmap, unsigned long, addr, unsigned long, len,
unsigned long, prot, unsigned long, flags,
unsigned long, fd, unsigned long, off)
{
if (off & ~PAGE_MASK)
return -EINVAL;
return ksys_mmap_pgoff(addr, len, prot, flags, fd, off >> PAGE_SHIFT);
}
static void find_start_end(unsigned long addr, unsigned long flags,
unsigned long *begin, unsigned long *end)
{
if (!in_32bit_syscall() && (flags & MAP_32BIT)) {
/* This is usually used needed to map code in small
model, so it needs to be in the first 31bit. Limit
it to that. This means we need to move the
unmapped base down for this case. This can give
conflicts with the heap, but we assume that glibc
malloc knows how to fall back to mmap. Give it 1GB
of playground for now. -AK */
*begin = 0x40000000;
*end = 0x80000000;
if (current->flags & PF_RANDOMIZE) {
*begin = randomize_page(*begin, 0x02000000);
}
return;
}
*begin = get_mmap_base(1);
if (in_32bit_syscall())
*end = task_size_32bit();
else
*end = task_size_64bit(addr > DEFAULT_MAP_WINDOW);
}
unsigned long
arch_get_unmapped_area(struct file *filp, unsigned long addr,
unsigned long len, unsigned long pgoff, unsigned long flags)
{
struct mm_struct *mm = current->mm;
struct vm_area_struct *vma;
struct vm_unmapped_area_info info;
unsigned long begin, end;
if (flags & MAP_FIXED)
return addr;
find_start_end(addr, flags, &begin, &end);
if (len > end)
return -ENOMEM;
if (addr) {
addr = PAGE_ALIGN(addr);
vma = find_vma(mm, addr);
if (end - len >= addr &&
(!vma || addr + len <= vm_start_gap(vma)))
return addr;
}
info.flags = 0;
info.length = len;
info.low_limit = begin;
info.high_limit = end;
info.align_mask = 0;
info.align_offset = pgoff << PAGE_SHIFT;
if (filp) {
info.align_mask = get_align_mask();
info.align_offset += get_align_bits();
}
return vm_unmapped_area(&info);
}
unsigned long
arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
const unsigned long len, const unsigned long pgoff,
const unsigned long flags)
{
struct vm_area_struct *vma;
struct mm_struct *mm = current->mm;
unsigned long addr = addr0;
struct vm_unmapped_area_info info;
/* requested length too big for entire address space */
if (len > TASK_SIZE)
return -ENOMEM;
/* No address checking. See comment at mmap_address_hint_valid() */
if (flags & MAP_FIXED)
return addr;
/* for MAP_32BIT mappings we force the legacy mmap base */
if (!in_32bit_syscall() && (flags & MAP_32BIT))
goto bottomup;
/* requesting a specific address */
if (addr) {
addr &= PAGE_MASK;
if (!mmap_address_hint_valid(addr, len))
goto get_unmapped_area;
vma = find_vma(mm, addr);
if (!vma || addr + len <= vm_start_gap(vma))
return addr;
}
get_unmapped_area:
info.flags = VM_UNMAPPED_AREA_TOPDOWN;
info.length = len;
if (!in_32bit_syscall() && (flags & MAP_ABOVE4G))
info.low_limit = SZ_4G;
else
info.low_limit = PAGE_SIZE;
info.high_limit = get_mmap_base(0);
/*
* If hint address is above DEFAULT_MAP_WINDOW, look for unmapped area
* in the full address space.
*
* !in_32bit_syscall() check to avoid high addresses for x32
* (and make it no op on native i386).
*/
if (addr > DEFAULT_MAP_WINDOW && !in_32bit_syscall())
info.high_limit += TASK_SIZE_MAX - DEFAULT_MAP_WINDOW;
info.align_mask = 0;
info.align_offset = pgoff << PAGE_SHIFT;
if (filp) {
info.align_mask = get_align_mask();
info.align_offset += get_align_bits();
}
addr = vm_unmapped_area(&info);
if (!(addr & ~PAGE_MASK))
return addr;
VM_BUG_ON(addr != -ENOMEM);
bottomup:
/*
* A failed mmap() very likely causes application failure,
* so fall back to the bottom-up function here. This scenario
* can happen with large stack limits and large mmap()
* allocations.
*/
return arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
}