mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-10 07:00:48 +00:00
3a15b45b54
A bitmap_zalloc() must be balanced by a corresponding bitmap_free() in the error handling path of afu_allocate_irqs(). Acked-by: Andrew Donnellan <ajd@linux.ibm.com> Signed-off-by: Christophe JAILLET <christophe.jaillet@wanadoo.fr> Link: https://lore.kernel.org/r/ce5869418f5838187946eb6b11a52715a93ece3d.1657566849.git.christophe.jaillet@wanadoo.fr Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
451 lines
12 KiB
C
451 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/*
|
|
* Copyright 2014 IBM Corp.
|
|
*/
|
|
|
|
#include <linux/interrupt.h>
|
|
#include <linux/irqdomain.h>
|
|
#include <linux/workqueue.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/wait.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/pid.h>
|
|
#include <asm/cputable.h>
|
|
#include <misc/cxl-base.h>
|
|
|
|
#include "cxl.h"
|
|
#include "trace.h"
|
|
|
|
static int afu_irq_range_start(void)
|
|
{
|
|
if (cpu_has_feature(CPU_FTR_HVMODE))
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static irqreturn_t schedule_cxl_fault(struct cxl_context *ctx, u64 dsisr, u64 dar)
|
|
{
|
|
ctx->dsisr = dsisr;
|
|
ctx->dar = dar;
|
|
schedule_work(&ctx->fault_work);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t cxl_irq_psl9(int irq, struct cxl_context *ctx, struct cxl_irq_info *irq_info)
|
|
{
|
|
u64 dsisr, dar;
|
|
|
|
dsisr = irq_info->dsisr;
|
|
dar = irq_info->dar;
|
|
|
|
trace_cxl_psl9_irq(ctx, irq, dsisr, dar);
|
|
|
|
pr_devel("CXL interrupt %i for afu pe: %i DSISR: %#llx DAR: %#llx\n", irq, ctx->pe, dsisr, dar);
|
|
|
|
if (dsisr & CXL_PSL9_DSISR_An_TF) {
|
|
pr_devel("CXL interrupt: Scheduling translation fault handling for later (pe: %i)\n", ctx->pe);
|
|
return schedule_cxl_fault(ctx, dsisr, dar);
|
|
}
|
|
|
|
if (dsisr & CXL_PSL9_DSISR_An_PE)
|
|
return cxl_ops->handle_psl_slice_error(ctx, dsisr,
|
|
irq_info->errstat);
|
|
if (dsisr & CXL_PSL9_DSISR_An_AE) {
|
|
pr_devel("CXL interrupt: AFU Error 0x%016llx\n", irq_info->afu_err);
|
|
|
|
if (ctx->pending_afu_err) {
|
|
/*
|
|
* This shouldn't happen - the PSL treats these errors
|
|
* as fatal and will have reset the AFU, so there's not
|
|
* much point buffering multiple AFU errors.
|
|
* OTOH if we DO ever see a storm of these come in it's
|
|
* probably best that we log them somewhere:
|
|
*/
|
|
dev_err_ratelimited(&ctx->afu->dev, "CXL AFU Error undelivered to pe %i: 0x%016llx\n",
|
|
ctx->pe, irq_info->afu_err);
|
|
} else {
|
|
spin_lock(&ctx->lock);
|
|
ctx->afu_err = irq_info->afu_err;
|
|
ctx->pending_afu_err = 1;
|
|
spin_unlock(&ctx->lock);
|
|
|
|
wake_up_all(&ctx->wq);
|
|
}
|
|
|
|
cxl_ops->ack_irq(ctx, CXL_PSL_TFC_An_A, 0);
|
|
return IRQ_HANDLED;
|
|
}
|
|
if (dsisr & CXL_PSL9_DSISR_An_OC)
|
|
pr_devel("CXL interrupt: OS Context Warning\n");
|
|
|
|
WARN(1, "Unhandled CXL PSL IRQ\n");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
irqreturn_t cxl_irq_psl8(int irq, struct cxl_context *ctx, struct cxl_irq_info *irq_info)
|
|
{
|
|
u64 dsisr, dar;
|
|
|
|
dsisr = irq_info->dsisr;
|
|
dar = irq_info->dar;
|
|
|
|
trace_cxl_psl_irq(ctx, irq, dsisr, dar);
|
|
|
|
pr_devel("CXL interrupt %i for afu pe: %i DSISR: %#llx DAR: %#llx\n", irq, ctx->pe, dsisr, dar);
|
|
|
|
if (dsisr & CXL_PSL_DSISR_An_DS) {
|
|
/*
|
|
* We don't inherently need to sleep to handle this, but we do
|
|
* need to get a ref to the task's mm, which we can't do from
|
|
* irq context without the potential for a deadlock since it
|
|
* takes the task_lock. An alternate option would be to keep a
|
|
* reference to the task's mm the entire time it has cxl open,
|
|
* but to do that we need to solve the issue where we hold a
|
|
* ref to the mm, but the mm can hold a ref to the fd after an
|
|
* mmap preventing anything from being cleaned up.
|
|
*/
|
|
pr_devel("Scheduling segment miss handling for later pe: %i\n", ctx->pe);
|
|
return schedule_cxl_fault(ctx, dsisr, dar);
|
|
}
|
|
|
|
if (dsisr & CXL_PSL_DSISR_An_M)
|
|
pr_devel("CXL interrupt: PTE not found\n");
|
|
if (dsisr & CXL_PSL_DSISR_An_P)
|
|
pr_devel("CXL interrupt: Storage protection violation\n");
|
|
if (dsisr & CXL_PSL_DSISR_An_A)
|
|
pr_devel("CXL interrupt: AFU lock access to write through or cache inhibited storage\n");
|
|
if (dsisr & CXL_PSL_DSISR_An_S)
|
|
pr_devel("CXL interrupt: Access was afu_wr or afu_zero\n");
|
|
if (dsisr & CXL_PSL_DSISR_An_K)
|
|
pr_devel("CXL interrupt: Access not permitted by virtual page class key protection\n");
|
|
|
|
if (dsisr & CXL_PSL_DSISR_An_DM) {
|
|
/*
|
|
* In some cases we might be able to handle the fault
|
|
* immediately if hash_page would succeed, but we still need
|
|
* the task's mm, which as above we can't get without a lock
|
|
*/
|
|
pr_devel("Scheduling page fault handling for later pe: %i\n", ctx->pe);
|
|
return schedule_cxl_fault(ctx, dsisr, dar);
|
|
}
|
|
if (dsisr & CXL_PSL_DSISR_An_ST)
|
|
WARN(1, "CXL interrupt: Segment Table PTE not found\n");
|
|
if (dsisr & CXL_PSL_DSISR_An_UR)
|
|
pr_devel("CXL interrupt: AURP PTE not found\n");
|
|
if (dsisr & CXL_PSL_DSISR_An_PE)
|
|
return cxl_ops->handle_psl_slice_error(ctx, dsisr,
|
|
irq_info->errstat);
|
|
if (dsisr & CXL_PSL_DSISR_An_AE) {
|
|
pr_devel("CXL interrupt: AFU Error 0x%016llx\n", irq_info->afu_err);
|
|
|
|
if (ctx->pending_afu_err) {
|
|
/*
|
|
* This shouldn't happen - the PSL treats these errors
|
|
* as fatal and will have reset the AFU, so there's not
|
|
* much point buffering multiple AFU errors.
|
|
* OTOH if we DO ever see a storm of these come in it's
|
|
* probably best that we log them somewhere:
|
|
*/
|
|
dev_err_ratelimited(&ctx->afu->dev, "CXL AFU Error "
|
|
"undelivered to pe %i: 0x%016llx\n",
|
|
ctx->pe, irq_info->afu_err);
|
|
} else {
|
|
spin_lock(&ctx->lock);
|
|
ctx->afu_err = irq_info->afu_err;
|
|
ctx->pending_afu_err = true;
|
|
spin_unlock(&ctx->lock);
|
|
|
|
wake_up_all(&ctx->wq);
|
|
}
|
|
|
|
cxl_ops->ack_irq(ctx, CXL_PSL_TFC_An_A, 0);
|
|
return IRQ_HANDLED;
|
|
}
|
|
if (dsisr & CXL_PSL_DSISR_An_OC)
|
|
pr_devel("CXL interrupt: OS Context Warning\n");
|
|
|
|
WARN(1, "Unhandled CXL PSL IRQ\n");
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t cxl_irq_afu(int irq, void *data)
|
|
{
|
|
struct cxl_context *ctx = data;
|
|
irq_hw_number_t hwirq = irqd_to_hwirq(irq_get_irq_data(irq));
|
|
int irq_off, afu_irq = 0;
|
|
__u16 range;
|
|
int r;
|
|
|
|
/*
|
|
* Look for the interrupt number.
|
|
* On bare-metal, we know range 0 only contains the PSL
|
|
* interrupt so we could start counting at range 1 and initialize
|
|
* afu_irq at 1.
|
|
* In a guest, range 0 also contains AFU interrupts, so it must
|
|
* be counted for. Therefore we initialize afu_irq at 0 to take into
|
|
* account the PSL interrupt.
|
|
*
|
|
* For code-readability, it just seems easier to go over all
|
|
* the ranges on bare-metal and guest. The end result is the same.
|
|
*/
|
|
for (r = 0; r < CXL_IRQ_RANGES; r++) {
|
|
irq_off = hwirq - ctx->irqs.offset[r];
|
|
range = ctx->irqs.range[r];
|
|
if (irq_off >= 0 && irq_off < range) {
|
|
afu_irq += irq_off;
|
|
break;
|
|
}
|
|
afu_irq += range;
|
|
}
|
|
if (unlikely(r >= CXL_IRQ_RANGES)) {
|
|
WARN(1, "Received AFU IRQ out of range for pe %i (virq %i hwirq %lx)\n",
|
|
ctx->pe, irq, hwirq);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
trace_cxl_afu_irq(ctx, afu_irq, irq, hwirq);
|
|
pr_devel("Received AFU interrupt %i for pe: %i (virq %i hwirq %lx)\n",
|
|
afu_irq, ctx->pe, irq, hwirq);
|
|
|
|
if (unlikely(!ctx->irq_bitmap)) {
|
|
WARN(1, "Received AFU IRQ for context with no IRQ bitmap\n");
|
|
return IRQ_HANDLED;
|
|
}
|
|
spin_lock(&ctx->lock);
|
|
set_bit(afu_irq - 1, ctx->irq_bitmap);
|
|
ctx->pending_irq = true;
|
|
spin_unlock(&ctx->lock);
|
|
|
|
wake_up_all(&ctx->wq);
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
unsigned int cxl_map_irq(struct cxl *adapter, irq_hw_number_t hwirq,
|
|
irq_handler_t handler, void *cookie, const char *name)
|
|
{
|
|
unsigned int virq;
|
|
int result;
|
|
|
|
/* IRQ Domain? */
|
|
virq = irq_create_mapping(NULL, hwirq);
|
|
if (!virq) {
|
|
dev_warn(&adapter->dev, "cxl_map_irq: irq_create_mapping failed\n");
|
|
return 0;
|
|
}
|
|
|
|
if (cxl_ops->setup_irq)
|
|
cxl_ops->setup_irq(adapter, hwirq, virq);
|
|
|
|
pr_devel("hwirq %#lx mapped to virq %u\n", hwirq, virq);
|
|
|
|
result = request_irq(virq, handler, 0, name, cookie);
|
|
if (result) {
|
|
dev_warn(&adapter->dev, "cxl_map_irq: request_irq failed: %i\n", result);
|
|
return 0;
|
|
}
|
|
|
|
return virq;
|
|
}
|
|
|
|
void cxl_unmap_irq(unsigned int virq, void *cookie)
|
|
{
|
|
free_irq(virq, cookie);
|
|
}
|
|
|
|
int cxl_register_one_irq(struct cxl *adapter,
|
|
irq_handler_t handler,
|
|
void *cookie,
|
|
irq_hw_number_t *dest_hwirq,
|
|
unsigned int *dest_virq,
|
|
const char *name)
|
|
{
|
|
int hwirq, virq;
|
|
|
|
if ((hwirq = cxl_ops->alloc_one_irq(adapter)) < 0)
|
|
return hwirq;
|
|
|
|
if (!(virq = cxl_map_irq(adapter, hwirq, handler, cookie, name)))
|
|
goto err;
|
|
|
|
*dest_hwirq = hwirq;
|
|
*dest_virq = virq;
|
|
|
|
return 0;
|
|
|
|
err:
|
|
cxl_ops->release_one_irq(adapter, hwirq);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
void afu_irq_name_free(struct cxl_context *ctx)
|
|
{
|
|
struct cxl_irq_name *irq_name, *tmp;
|
|
|
|
list_for_each_entry_safe(irq_name, tmp, &ctx->irq_names, list) {
|
|
kfree(irq_name->name);
|
|
list_del(&irq_name->list);
|
|
kfree(irq_name);
|
|
}
|
|
}
|
|
|
|
int afu_allocate_irqs(struct cxl_context *ctx, u32 count)
|
|
{
|
|
int rc, r, i, j = 1;
|
|
struct cxl_irq_name *irq_name;
|
|
int alloc_count;
|
|
|
|
/*
|
|
* In native mode, range 0 is reserved for the multiplexed
|
|
* PSL interrupt. It has been allocated when the AFU was initialized.
|
|
*
|
|
* In a guest, the PSL interrupt is not mutliplexed, but per-context,
|
|
* and is the first interrupt from range 0. It still needs to be
|
|
* allocated, so bump the count by one.
|
|
*/
|
|
if (cpu_has_feature(CPU_FTR_HVMODE))
|
|
alloc_count = count;
|
|
else
|
|
alloc_count = count + 1;
|
|
|
|
if ((rc = cxl_ops->alloc_irq_ranges(&ctx->irqs, ctx->afu->adapter,
|
|
alloc_count)))
|
|
return rc;
|
|
|
|
if (cpu_has_feature(CPU_FTR_HVMODE)) {
|
|
/* Multiplexed PSL Interrupt */
|
|
ctx->irqs.offset[0] = ctx->afu->native->psl_hwirq;
|
|
ctx->irqs.range[0] = 1;
|
|
}
|
|
|
|
ctx->irq_count = count;
|
|
ctx->irq_bitmap = bitmap_zalloc(count, GFP_KERNEL);
|
|
if (!ctx->irq_bitmap)
|
|
goto out;
|
|
|
|
/*
|
|
* Allocate names first. If any fail, bail out before allocating
|
|
* actual hardware IRQs.
|
|
*/
|
|
for (r = afu_irq_range_start(); r < CXL_IRQ_RANGES; r++) {
|
|
for (i = 0; i < ctx->irqs.range[r]; i++) {
|
|
irq_name = kmalloc(sizeof(struct cxl_irq_name),
|
|
GFP_KERNEL);
|
|
if (!irq_name)
|
|
goto out;
|
|
irq_name->name = kasprintf(GFP_KERNEL, "cxl-%s-pe%i-%i",
|
|
dev_name(&ctx->afu->dev),
|
|
ctx->pe, j);
|
|
if (!irq_name->name) {
|
|
kfree(irq_name);
|
|
goto out;
|
|
}
|
|
/* Add to tail so next look get the correct order */
|
|
list_add_tail(&irq_name->list, &ctx->irq_names);
|
|
j++;
|
|
}
|
|
}
|
|
return 0;
|
|
|
|
out:
|
|
cxl_ops->release_irq_ranges(&ctx->irqs, ctx->afu->adapter);
|
|
bitmap_free(ctx->irq_bitmap);
|
|
afu_irq_name_free(ctx);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void afu_register_hwirqs(struct cxl_context *ctx)
|
|
{
|
|
irq_hw_number_t hwirq;
|
|
struct cxl_irq_name *irq_name;
|
|
int r, i;
|
|
irqreturn_t (*handler)(int irq, void *data);
|
|
|
|
/* We've allocated all memory now, so let's do the irq allocations */
|
|
irq_name = list_first_entry(&ctx->irq_names, struct cxl_irq_name, list);
|
|
for (r = afu_irq_range_start(); r < CXL_IRQ_RANGES; r++) {
|
|
hwirq = ctx->irqs.offset[r];
|
|
for (i = 0; i < ctx->irqs.range[r]; hwirq++, i++) {
|
|
if (r == 0 && i == 0)
|
|
/*
|
|
* The very first interrupt of range 0 is
|
|
* always the PSL interrupt, but we only
|
|
* need to connect a handler for guests,
|
|
* because there's one PSL interrupt per
|
|
* context.
|
|
* On bare-metal, the PSL interrupt is
|
|
* multiplexed and was setup when the AFU
|
|
* was configured.
|
|
*/
|
|
handler = cxl_ops->psl_interrupt;
|
|
else
|
|
handler = cxl_irq_afu;
|
|
cxl_map_irq(ctx->afu->adapter, hwirq, handler, ctx,
|
|
irq_name->name);
|
|
irq_name = list_next_entry(irq_name, list);
|
|
}
|
|
}
|
|
}
|
|
|
|
int afu_register_irqs(struct cxl_context *ctx, u32 count)
|
|
{
|
|
int rc;
|
|
|
|
rc = afu_allocate_irqs(ctx, count);
|
|
if (rc)
|
|
return rc;
|
|
|
|
afu_register_hwirqs(ctx);
|
|
return 0;
|
|
}
|
|
|
|
void afu_release_irqs(struct cxl_context *ctx, void *cookie)
|
|
{
|
|
irq_hw_number_t hwirq;
|
|
unsigned int virq;
|
|
int r, i;
|
|
|
|
for (r = afu_irq_range_start(); r < CXL_IRQ_RANGES; r++) {
|
|
hwirq = ctx->irqs.offset[r];
|
|
for (i = 0; i < ctx->irqs.range[r]; hwirq++, i++) {
|
|
virq = irq_find_mapping(NULL, hwirq);
|
|
if (virq)
|
|
cxl_unmap_irq(virq, cookie);
|
|
}
|
|
}
|
|
|
|
afu_irq_name_free(ctx);
|
|
cxl_ops->release_irq_ranges(&ctx->irqs, ctx->afu->adapter);
|
|
|
|
ctx->irq_count = 0;
|
|
}
|
|
|
|
void cxl_afu_decode_psl_serr(struct cxl_afu *afu, u64 serr)
|
|
{
|
|
dev_crit(&afu->dev,
|
|
"PSL Slice error received. Check AFU for root cause.\n");
|
|
dev_crit(&afu->dev, "PSL_SERR_An: 0x%016llx\n", serr);
|
|
if (serr & CXL_PSL_SERR_An_afuto)
|
|
dev_crit(&afu->dev, "AFU MMIO Timeout\n");
|
|
if (serr & CXL_PSL_SERR_An_afudis)
|
|
dev_crit(&afu->dev,
|
|
"MMIO targeted Accelerator that was not enabled\n");
|
|
if (serr & CXL_PSL_SERR_An_afuov)
|
|
dev_crit(&afu->dev, "AFU CTAG Overflow\n");
|
|
if (serr & CXL_PSL_SERR_An_badsrc)
|
|
dev_crit(&afu->dev, "Bad Interrupt Source\n");
|
|
if (serr & CXL_PSL_SERR_An_badctx)
|
|
dev_crit(&afu->dev, "Bad Context Handle\n");
|
|
if (serr & CXL_PSL_SERR_An_llcmdis)
|
|
dev_crit(&afu->dev, "LLCMD to Disabled AFU\n");
|
|
if (serr & CXL_PSL_SERR_An_llcmdto)
|
|
dev_crit(&afu->dev, "LLCMD Timeout to AFU\n");
|
|
if (serr & CXL_PSL_SERR_An_afupar)
|
|
dev_crit(&afu->dev, "AFU MMIO Parity Error\n");
|
|
if (serr & CXL_PSL_SERR_An_afudup)
|
|
dev_crit(&afu->dev, "AFU MMIO Duplicate CTAG Error\n");
|
|
if (serr & CXL_PSL_SERR_An_AE)
|
|
dev_crit(&afu->dev,
|
|
"AFU asserted JDONE with JERROR in AFU Directed Mode\n");
|
|
}
|