mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-07 21:53:44 +00:00
52f238653e
Add a new CONFIG_PER_VMA_LOCK_STATS config option to dump extra statistics about handling page fault under VMA lock. Link: https://lkml.kernel.org/r/20230227173632.3292573-29-surenb@google.com Signed-off-by: Suren Baghdasaryan <surenb@google.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2261 lines
55 KiB
C
2261 lines
55 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* linux/mm/vmstat.c
|
|
*
|
|
* Manages VM statistics
|
|
* Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
|
|
*
|
|
* zoned VM statistics
|
|
* Copyright (C) 2006 Silicon Graphics, Inc.,
|
|
* Christoph Lameter <christoph@lameter.com>
|
|
* Copyright (C) 2008-2014 Christoph Lameter
|
|
*/
|
|
#include <linux/fs.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/err.h>
|
|
#include <linux/module.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/vmstat.h>
|
|
#include <linux/proc_fs.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/debugfs.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/math64.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/compaction.h>
|
|
#include <linux/mm_inline.h>
|
|
#include <linux/page_ext.h>
|
|
#include <linux/page_owner.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#ifdef CONFIG_NUMA
|
|
int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
|
|
|
|
/* zero numa counters within a zone */
|
|
static void zero_zone_numa_counters(struct zone *zone)
|
|
{
|
|
int item, cpu;
|
|
|
|
for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
|
|
atomic_long_set(&zone->vm_numa_event[item], 0);
|
|
for_each_online_cpu(cpu) {
|
|
per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
|
|
= 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* zero numa counters of all the populated zones */
|
|
static void zero_zones_numa_counters(void)
|
|
{
|
|
struct zone *zone;
|
|
|
|
for_each_populated_zone(zone)
|
|
zero_zone_numa_counters(zone);
|
|
}
|
|
|
|
/* zero global numa counters */
|
|
static void zero_global_numa_counters(void)
|
|
{
|
|
int item;
|
|
|
|
for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
|
|
atomic_long_set(&vm_numa_event[item], 0);
|
|
}
|
|
|
|
static void invalid_numa_statistics(void)
|
|
{
|
|
zero_zones_numa_counters();
|
|
zero_global_numa_counters();
|
|
}
|
|
|
|
static DEFINE_MUTEX(vm_numa_stat_lock);
|
|
|
|
int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
|
|
void *buffer, size_t *length, loff_t *ppos)
|
|
{
|
|
int ret, oldval;
|
|
|
|
mutex_lock(&vm_numa_stat_lock);
|
|
if (write)
|
|
oldval = sysctl_vm_numa_stat;
|
|
ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
|
|
if (ret || !write)
|
|
goto out;
|
|
|
|
if (oldval == sysctl_vm_numa_stat)
|
|
goto out;
|
|
else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
|
|
static_branch_enable(&vm_numa_stat_key);
|
|
pr_info("enable numa statistics\n");
|
|
} else {
|
|
static_branch_disable(&vm_numa_stat_key);
|
|
invalid_numa_statistics();
|
|
pr_info("disable numa statistics, and clear numa counters\n");
|
|
}
|
|
|
|
out:
|
|
mutex_unlock(&vm_numa_stat_lock);
|
|
return ret;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_VM_EVENT_COUNTERS
|
|
DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
|
|
EXPORT_PER_CPU_SYMBOL(vm_event_states);
|
|
|
|
static void sum_vm_events(unsigned long *ret)
|
|
{
|
|
int cpu;
|
|
int i;
|
|
|
|
memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
|
|
|
|
for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
|
|
ret[i] += this->event[i];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Accumulate the vm event counters across all CPUs.
|
|
* The result is unavoidably approximate - it can change
|
|
* during and after execution of this function.
|
|
*/
|
|
void all_vm_events(unsigned long *ret)
|
|
{
|
|
cpus_read_lock();
|
|
sum_vm_events(ret);
|
|
cpus_read_unlock();
|
|
}
|
|
EXPORT_SYMBOL_GPL(all_vm_events);
|
|
|
|
/*
|
|
* Fold the foreign cpu events into our own.
|
|
*
|
|
* This is adding to the events on one processor
|
|
* but keeps the global counts constant.
|
|
*/
|
|
void vm_events_fold_cpu(int cpu)
|
|
{
|
|
struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
|
|
int i;
|
|
|
|
for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
|
|
count_vm_events(i, fold_state->event[i]);
|
|
fold_state->event[i] = 0;
|
|
}
|
|
}
|
|
|
|
#endif /* CONFIG_VM_EVENT_COUNTERS */
|
|
|
|
/*
|
|
* Manage combined zone based / global counters
|
|
*
|
|
* vm_stat contains the global counters
|
|
*/
|
|
atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
|
|
atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
|
|
atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
|
|
EXPORT_SYMBOL(vm_zone_stat);
|
|
EXPORT_SYMBOL(vm_node_stat);
|
|
|
|
#ifdef CONFIG_NUMA
|
|
static void fold_vm_zone_numa_events(struct zone *zone)
|
|
{
|
|
unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
|
|
int cpu;
|
|
enum numa_stat_item item;
|
|
|
|
for_each_online_cpu(cpu) {
|
|
struct per_cpu_zonestat *pzstats;
|
|
|
|
pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
|
|
for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
|
|
zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
|
|
}
|
|
|
|
for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
|
|
zone_numa_event_add(zone_numa_events[item], zone, item);
|
|
}
|
|
|
|
void fold_vm_numa_events(void)
|
|
{
|
|
struct zone *zone;
|
|
|
|
for_each_populated_zone(zone)
|
|
fold_vm_zone_numa_events(zone);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_SMP
|
|
|
|
int calculate_pressure_threshold(struct zone *zone)
|
|
{
|
|
int threshold;
|
|
int watermark_distance;
|
|
|
|
/*
|
|
* As vmstats are not up to date, there is drift between the estimated
|
|
* and real values. For high thresholds and a high number of CPUs, it
|
|
* is possible for the min watermark to be breached while the estimated
|
|
* value looks fine. The pressure threshold is a reduced value such
|
|
* that even the maximum amount of drift will not accidentally breach
|
|
* the min watermark
|
|
*/
|
|
watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
|
|
threshold = max(1, (int)(watermark_distance / num_online_cpus()));
|
|
|
|
/*
|
|
* Maximum threshold is 125
|
|
*/
|
|
threshold = min(125, threshold);
|
|
|
|
return threshold;
|
|
}
|
|
|
|
int calculate_normal_threshold(struct zone *zone)
|
|
{
|
|
int threshold;
|
|
int mem; /* memory in 128 MB units */
|
|
|
|
/*
|
|
* The threshold scales with the number of processors and the amount
|
|
* of memory per zone. More memory means that we can defer updates for
|
|
* longer, more processors could lead to more contention.
|
|
* fls() is used to have a cheap way of logarithmic scaling.
|
|
*
|
|
* Some sample thresholds:
|
|
*
|
|
* Threshold Processors (fls) Zonesize fls(mem)+1
|
|
* ------------------------------------------------------------------
|
|
* 8 1 1 0.9-1 GB 4
|
|
* 16 2 2 0.9-1 GB 4
|
|
* 20 2 2 1-2 GB 5
|
|
* 24 2 2 2-4 GB 6
|
|
* 28 2 2 4-8 GB 7
|
|
* 32 2 2 8-16 GB 8
|
|
* 4 2 2 <128M 1
|
|
* 30 4 3 2-4 GB 5
|
|
* 48 4 3 8-16 GB 8
|
|
* 32 8 4 1-2 GB 4
|
|
* 32 8 4 0.9-1GB 4
|
|
* 10 16 5 <128M 1
|
|
* 40 16 5 900M 4
|
|
* 70 64 7 2-4 GB 5
|
|
* 84 64 7 4-8 GB 6
|
|
* 108 512 9 4-8 GB 6
|
|
* 125 1024 10 8-16 GB 8
|
|
* 125 1024 10 16-32 GB 9
|
|
*/
|
|
|
|
mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
|
|
|
|
threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
|
|
|
|
/*
|
|
* Maximum threshold is 125
|
|
*/
|
|
threshold = min(125, threshold);
|
|
|
|
return threshold;
|
|
}
|
|
|
|
/*
|
|
* Refresh the thresholds for each zone.
|
|
*/
|
|
void refresh_zone_stat_thresholds(void)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
struct zone *zone;
|
|
int cpu;
|
|
int threshold;
|
|
|
|
/* Zero current pgdat thresholds */
|
|
for_each_online_pgdat(pgdat) {
|
|
for_each_online_cpu(cpu) {
|
|
per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
|
|
}
|
|
}
|
|
|
|
for_each_populated_zone(zone) {
|
|
struct pglist_data *pgdat = zone->zone_pgdat;
|
|
unsigned long max_drift, tolerate_drift;
|
|
|
|
threshold = calculate_normal_threshold(zone);
|
|
|
|
for_each_online_cpu(cpu) {
|
|
int pgdat_threshold;
|
|
|
|
per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
|
|
= threshold;
|
|
|
|
/* Base nodestat threshold on the largest populated zone. */
|
|
pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
|
|
per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
|
|
= max(threshold, pgdat_threshold);
|
|
}
|
|
|
|
/*
|
|
* Only set percpu_drift_mark if there is a danger that
|
|
* NR_FREE_PAGES reports the low watermark is ok when in fact
|
|
* the min watermark could be breached by an allocation
|
|
*/
|
|
tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
|
|
max_drift = num_online_cpus() * threshold;
|
|
if (max_drift > tolerate_drift)
|
|
zone->percpu_drift_mark = high_wmark_pages(zone) +
|
|
max_drift;
|
|
}
|
|
}
|
|
|
|
void set_pgdat_percpu_threshold(pg_data_t *pgdat,
|
|
int (*calculate_pressure)(struct zone *))
|
|
{
|
|
struct zone *zone;
|
|
int cpu;
|
|
int threshold;
|
|
int i;
|
|
|
|
for (i = 0; i < pgdat->nr_zones; i++) {
|
|
zone = &pgdat->node_zones[i];
|
|
if (!zone->percpu_drift_mark)
|
|
continue;
|
|
|
|
threshold = (*calculate_pressure)(zone);
|
|
for_each_online_cpu(cpu)
|
|
per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
|
|
= threshold;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For use when we know that interrupts are disabled,
|
|
* or when we know that preemption is disabled and that
|
|
* particular counter cannot be updated from interrupt context.
|
|
*/
|
|
void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
|
|
long delta)
|
|
{
|
|
struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
|
|
s8 __percpu *p = pcp->vm_stat_diff + item;
|
|
long x;
|
|
long t;
|
|
|
|
/*
|
|
* Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
|
|
* atomicity is provided by IRQs being disabled -- either explicitly
|
|
* or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
|
|
* CPU migrations and preemption potentially corrupts a counter so
|
|
* disable preemption.
|
|
*/
|
|
preempt_disable_nested();
|
|
|
|
x = delta + __this_cpu_read(*p);
|
|
|
|
t = __this_cpu_read(pcp->stat_threshold);
|
|
|
|
if (unlikely(abs(x) > t)) {
|
|
zone_page_state_add(x, zone, item);
|
|
x = 0;
|
|
}
|
|
__this_cpu_write(*p, x);
|
|
|
|
preempt_enable_nested();
|
|
}
|
|
EXPORT_SYMBOL(__mod_zone_page_state);
|
|
|
|
void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
|
|
long delta)
|
|
{
|
|
struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
|
|
s8 __percpu *p = pcp->vm_node_stat_diff + item;
|
|
long x;
|
|
long t;
|
|
|
|
if (vmstat_item_in_bytes(item)) {
|
|
/*
|
|
* Only cgroups use subpage accounting right now; at
|
|
* the global level, these items still change in
|
|
* multiples of whole pages. Store them as pages
|
|
* internally to keep the per-cpu counters compact.
|
|
*/
|
|
VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
|
|
delta >>= PAGE_SHIFT;
|
|
}
|
|
|
|
/* See __mod_node_page_state */
|
|
preempt_disable_nested();
|
|
|
|
x = delta + __this_cpu_read(*p);
|
|
|
|
t = __this_cpu_read(pcp->stat_threshold);
|
|
|
|
if (unlikely(abs(x) > t)) {
|
|
node_page_state_add(x, pgdat, item);
|
|
x = 0;
|
|
}
|
|
__this_cpu_write(*p, x);
|
|
|
|
preempt_enable_nested();
|
|
}
|
|
EXPORT_SYMBOL(__mod_node_page_state);
|
|
|
|
/*
|
|
* Optimized increment and decrement functions.
|
|
*
|
|
* These are only for a single page and therefore can take a struct page *
|
|
* argument instead of struct zone *. This allows the inclusion of the code
|
|
* generated for page_zone(page) into the optimized functions.
|
|
*
|
|
* No overflow check is necessary and therefore the differential can be
|
|
* incremented or decremented in place which may allow the compilers to
|
|
* generate better code.
|
|
* The increment or decrement is known and therefore one boundary check can
|
|
* be omitted.
|
|
*
|
|
* NOTE: These functions are very performance sensitive. Change only
|
|
* with care.
|
|
*
|
|
* Some processors have inc/dec instructions that are atomic vs an interrupt.
|
|
* However, the code must first determine the differential location in a zone
|
|
* based on the processor number and then inc/dec the counter. There is no
|
|
* guarantee without disabling preemption that the processor will not change
|
|
* in between and therefore the atomicity vs. interrupt cannot be exploited
|
|
* in a useful way here.
|
|
*/
|
|
void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
|
|
{
|
|
struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
|
|
s8 __percpu *p = pcp->vm_stat_diff + item;
|
|
s8 v, t;
|
|
|
|
/* See __mod_node_page_state */
|
|
preempt_disable_nested();
|
|
|
|
v = __this_cpu_inc_return(*p);
|
|
t = __this_cpu_read(pcp->stat_threshold);
|
|
if (unlikely(v > t)) {
|
|
s8 overstep = t >> 1;
|
|
|
|
zone_page_state_add(v + overstep, zone, item);
|
|
__this_cpu_write(*p, -overstep);
|
|
}
|
|
|
|
preempt_enable_nested();
|
|
}
|
|
|
|
void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
|
|
{
|
|
struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
|
|
s8 __percpu *p = pcp->vm_node_stat_diff + item;
|
|
s8 v, t;
|
|
|
|
VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
|
|
|
|
/* See __mod_node_page_state */
|
|
preempt_disable_nested();
|
|
|
|
v = __this_cpu_inc_return(*p);
|
|
t = __this_cpu_read(pcp->stat_threshold);
|
|
if (unlikely(v > t)) {
|
|
s8 overstep = t >> 1;
|
|
|
|
node_page_state_add(v + overstep, pgdat, item);
|
|
__this_cpu_write(*p, -overstep);
|
|
}
|
|
|
|
preempt_enable_nested();
|
|
}
|
|
|
|
void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
__inc_zone_state(page_zone(page), item);
|
|
}
|
|
EXPORT_SYMBOL(__inc_zone_page_state);
|
|
|
|
void __inc_node_page_state(struct page *page, enum node_stat_item item)
|
|
{
|
|
__inc_node_state(page_pgdat(page), item);
|
|
}
|
|
EXPORT_SYMBOL(__inc_node_page_state);
|
|
|
|
void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
|
|
{
|
|
struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
|
|
s8 __percpu *p = pcp->vm_stat_diff + item;
|
|
s8 v, t;
|
|
|
|
/* See __mod_node_page_state */
|
|
preempt_disable_nested();
|
|
|
|
v = __this_cpu_dec_return(*p);
|
|
t = __this_cpu_read(pcp->stat_threshold);
|
|
if (unlikely(v < - t)) {
|
|
s8 overstep = t >> 1;
|
|
|
|
zone_page_state_add(v - overstep, zone, item);
|
|
__this_cpu_write(*p, overstep);
|
|
}
|
|
|
|
preempt_enable_nested();
|
|
}
|
|
|
|
void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
|
|
{
|
|
struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
|
|
s8 __percpu *p = pcp->vm_node_stat_diff + item;
|
|
s8 v, t;
|
|
|
|
VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
|
|
|
|
/* See __mod_node_page_state */
|
|
preempt_disable_nested();
|
|
|
|
v = __this_cpu_dec_return(*p);
|
|
t = __this_cpu_read(pcp->stat_threshold);
|
|
if (unlikely(v < - t)) {
|
|
s8 overstep = t >> 1;
|
|
|
|
node_page_state_add(v - overstep, pgdat, item);
|
|
__this_cpu_write(*p, overstep);
|
|
}
|
|
|
|
preempt_enable_nested();
|
|
}
|
|
|
|
void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
__dec_zone_state(page_zone(page), item);
|
|
}
|
|
EXPORT_SYMBOL(__dec_zone_page_state);
|
|
|
|
void __dec_node_page_state(struct page *page, enum node_stat_item item)
|
|
{
|
|
__dec_node_state(page_pgdat(page), item);
|
|
}
|
|
EXPORT_SYMBOL(__dec_node_page_state);
|
|
|
|
#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
|
|
/*
|
|
* If we have cmpxchg_local support then we do not need to incur the overhead
|
|
* that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
|
|
*
|
|
* mod_state() modifies the zone counter state through atomic per cpu
|
|
* operations.
|
|
*
|
|
* Overstep mode specifies how overstep should handled:
|
|
* 0 No overstepping
|
|
* 1 Overstepping half of threshold
|
|
* -1 Overstepping minus half of threshold
|
|
*/
|
|
static inline void mod_zone_state(struct zone *zone,
|
|
enum zone_stat_item item, long delta, int overstep_mode)
|
|
{
|
|
struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
|
|
s8 __percpu *p = pcp->vm_stat_diff + item;
|
|
long o, n, t, z;
|
|
|
|
do {
|
|
z = 0; /* overflow to zone counters */
|
|
|
|
/*
|
|
* The fetching of the stat_threshold is racy. We may apply
|
|
* a counter threshold to the wrong the cpu if we get
|
|
* rescheduled while executing here. However, the next
|
|
* counter update will apply the threshold again and
|
|
* therefore bring the counter under the threshold again.
|
|
*
|
|
* Most of the time the thresholds are the same anyways
|
|
* for all cpus in a zone.
|
|
*/
|
|
t = this_cpu_read(pcp->stat_threshold);
|
|
|
|
o = this_cpu_read(*p);
|
|
n = delta + o;
|
|
|
|
if (abs(n) > t) {
|
|
int os = overstep_mode * (t >> 1) ;
|
|
|
|
/* Overflow must be added to zone counters */
|
|
z = n + os;
|
|
n = -os;
|
|
}
|
|
} while (this_cpu_cmpxchg(*p, o, n) != o);
|
|
|
|
if (z)
|
|
zone_page_state_add(z, zone, item);
|
|
}
|
|
|
|
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
|
|
long delta)
|
|
{
|
|
mod_zone_state(zone, item, delta, 0);
|
|
}
|
|
EXPORT_SYMBOL(mod_zone_page_state);
|
|
|
|
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
mod_zone_state(page_zone(page), item, 1, 1);
|
|
}
|
|
EXPORT_SYMBOL(inc_zone_page_state);
|
|
|
|
void dec_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
mod_zone_state(page_zone(page), item, -1, -1);
|
|
}
|
|
EXPORT_SYMBOL(dec_zone_page_state);
|
|
|
|
static inline void mod_node_state(struct pglist_data *pgdat,
|
|
enum node_stat_item item, int delta, int overstep_mode)
|
|
{
|
|
struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
|
|
s8 __percpu *p = pcp->vm_node_stat_diff + item;
|
|
long o, n, t, z;
|
|
|
|
if (vmstat_item_in_bytes(item)) {
|
|
/*
|
|
* Only cgroups use subpage accounting right now; at
|
|
* the global level, these items still change in
|
|
* multiples of whole pages. Store them as pages
|
|
* internally to keep the per-cpu counters compact.
|
|
*/
|
|
VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
|
|
delta >>= PAGE_SHIFT;
|
|
}
|
|
|
|
do {
|
|
z = 0; /* overflow to node counters */
|
|
|
|
/*
|
|
* The fetching of the stat_threshold is racy. We may apply
|
|
* a counter threshold to the wrong the cpu if we get
|
|
* rescheduled while executing here. However, the next
|
|
* counter update will apply the threshold again and
|
|
* therefore bring the counter under the threshold again.
|
|
*
|
|
* Most of the time the thresholds are the same anyways
|
|
* for all cpus in a node.
|
|
*/
|
|
t = this_cpu_read(pcp->stat_threshold);
|
|
|
|
o = this_cpu_read(*p);
|
|
n = delta + o;
|
|
|
|
if (abs(n) > t) {
|
|
int os = overstep_mode * (t >> 1) ;
|
|
|
|
/* Overflow must be added to node counters */
|
|
z = n + os;
|
|
n = -os;
|
|
}
|
|
} while (this_cpu_cmpxchg(*p, o, n) != o);
|
|
|
|
if (z)
|
|
node_page_state_add(z, pgdat, item);
|
|
}
|
|
|
|
void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
|
|
long delta)
|
|
{
|
|
mod_node_state(pgdat, item, delta, 0);
|
|
}
|
|
EXPORT_SYMBOL(mod_node_page_state);
|
|
|
|
void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
|
|
{
|
|
mod_node_state(pgdat, item, 1, 1);
|
|
}
|
|
|
|
void inc_node_page_state(struct page *page, enum node_stat_item item)
|
|
{
|
|
mod_node_state(page_pgdat(page), item, 1, 1);
|
|
}
|
|
EXPORT_SYMBOL(inc_node_page_state);
|
|
|
|
void dec_node_page_state(struct page *page, enum node_stat_item item)
|
|
{
|
|
mod_node_state(page_pgdat(page), item, -1, -1);
|
|
}
|
|
EXPORT_SYMBOL(dec_node_page_state);
|
|
#else
|
|
/*
|
|
* Use interrupt disable to serialize counter updates
|
|
*/
|
|
void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
|
|
long delta)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__mod_zone_page_state(zone, item, delta);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(mod_zone_page_state);
|
|
|
|
void inc_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
unsigned long flags;
|
|
struct zone *zone;
|
|
|
|
zone = page_zone(page);
|
|
local_irq_save(flags);
|
|
__inc_zone_state(zone, item);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(inc_zone_page_state);
|
|
|
|
void dec_zone_page_state(struct page *page, enum zone_stat_item item)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__dec_zone_page_state(page, item);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(dec_zone_page_state);
|
|
|
|
void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__inc_node_state(pgdat, item);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(inc_node_state);
|
|
|
|
void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
|
|
long delta)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__mod_node_page_state(pgdat, item, delta);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(mod_node_page_state);
|
|
|
|
void inc_node_page_state(struct page *page, enum node_stat_item item)
|
|
{
|
|
unsigned long flags;
|
|
struct pglist_data *pgdat;
|
|
|
|
pgdat = page_pgdat(page);
|
|
local_irq_save(flags);
|
|
__inc_node_state(pgdat, item);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(inc_node_page_state);
|
|
|
|
void dec_node_page_state(struct page *page, enum node_stat_item item)
|
|
{
|
|
unsigned long flags;
|
|
|
|
local_irq_save(flags);
|
|
__dec_node_page_state(page, item);
|
|
local_irq_restore(flags);
|
|
}
|
|
EXPORT_SYMBOL(dec_node_page_state);
|
|
#endif
|
|
|
|
/*
|
|
* Fold a differential into the global counters.
|
|
* Returns the number of counters updated.
|
|
*/
|
|
static int fold_diff(int *zone_diff, int *node_diff)
|
|
{
|
|
int i;
|
|
int changes = 0;
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
|
|
if (zone_diff[i]) {
|
|
atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
|
|
changes++;
|
|
}
|
|
|
|
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
|
|
if (node_diff[i]) {
|
|
atomic_long_add(node_diff[i], &vm_node_stat[i]);
|
|
changes++;
|
|
}
|
|
return changes;
|
|
}
|
|
|
|
/*
|
|
* Update the zone counters for the current cpu.
|
|
*
|
|
* Note that refresh_cpu_vm_stats strives to only access
|
|
* node local memory. The per cpu pagesets on remote zones are placed
|
|
* in the memory local to the processor using that pageset. So the
|
|
* loop over all zones will access a series of cachelines local to
|
|
* the processor.
|
|
*
|
|
* The call to zone_page_state_add updates the cachelines with the
|
|
* statistics in the remote zone struct as well as the global cachelines
|
|
* with the global counters. These could cause remote node cache line
|
|
* bouncing and will have to be only done when necessary.
|
|
*
|
|
* The function returns the number of global counters updated.
|
|
*/
|
|
static int refresh_cpu_vm_stats(bool do_pagesets)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
struct zone *zone;
|
|
int i;
|
|
int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
|
|
int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
|
|
int changes = 0;
|
|
|
|
for_each_populated_zone(zone) {
|
|
struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
|
|
#ifdef CONFIG_NUMA
|
|
struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
|
|
#endif
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
|
|
int v;
|
|
|
|
v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
|
|
if (v) {
|
|
|
|
atomic_long_add(v, &zone->vm_stat[i]);
|
|
global_zone_diff[i] += v;
|
|
#ifdef CONFIG_NUMA
|
|
/* 3 seconds idle till flush */
|
|
__this_cpu_write(pcp->expire, 3);
|
|
#endif
|
|
}
|
|
}
|
|
#ifdef CONFIG_NUMA
|
|
|
|
if (do_pagesets) {
|
|
cond_resched();
|
|
/*
|
|
* Deal with draining the remote pageset of this
|
|
* processor
|
|
*
|
|
* Check if there are pages remaining in this pageset
|
|
* if not then there is nothing to expire.
|
|
*/
|
|
if (!__this_cpu_read(pcp->expire) ||
|
|
!__this_cpu_read(pcp->count))
|
|
continue;
|
|
|
|
/*
|
|
* We never drain zones local to this processor.
|
|
*/
|
|
if (zone_to_nid(zone) == numa_node_id()) {
|
|
__this_cpu_write(pcp->expire, 0);
|
|
continue;
|
|
}
|
|
|
|
if (__this_cpu_dec_return(pcp->expire))
|
|
continue;
|
|
|
|
if (__this_cpu_read(pcp->count)) {
|
|
drain_zone_pages(zone, this_cpu_ptr(pcp));
|
|
changes++;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
|
|
|
|
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
|
|
int v;
|
|
|
|
v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
|
|
if (v) {
|
|
atomic_long_add(v, &pgdat->vm_stat[i]);
|
|
global_node_diff[i] += v;
|
|
}
|
|
}
|
|
}
|
|
|
|
changes += fold_diff(global_zone_diff, global_node_diff);
|
|
return changes;
|
|
}
|
|
|
|
/*
|
|
* Fold the data for an offline cpu into the global array.
|
|
* There cannot be any access by the offline cpu and therefore
|
|
* synchronization is simplified.
|
|
*/
|
|
void cpu_vm_stats_fold(int cpu)
|
|
{
|
|
struct pglist_data *pgdat;
|
|
struct zone *zone;
|
|
int i;
|
|
int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
|
|
int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
|
|
|
|
for_each_populated_zone(zone) {
|
|
struct per_cpu_zonestat *pzstats;
|
|
|
|
pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
|
|
if (pzstats->vm_stat_diff[i]) {
|
|
int v;
|
|
|
|
v = pzstats->vm_stat_diff[i];
|
|
pzstats->vm_stat_diff[i] = 0;
|
|
atomic_long_add(v, &zone->vm_stat[i]);
|
|
global_zone_diff[i] += v;
|
|
}
|
|
}
|
|
#ifdef CONFIG_NUMA
|
|
for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
|
|
if (pzstats->vm_numa_event[i]) {
|
|
unsigned long v;
|
|
|
|
v = pzstats->vm_numa_event[i];
|
|
pzstats->vm_numa_event[i] = 0;
|
|
zone_numa_event_add(v, zone, i);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
for_each_online_pgdat(pgdat) {
|
|
struct per_cpu_nodestat *p;
|
|
|
|
p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
|
|
|
|
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
|
|
if (p->vm_node_stat_diff[i]) {
|
|
int v;
|
|
|
|
v = p->vm_node_stat_diff[i];
|
|
p->vm_node_stat_diff[i] = 0;
|
|
atomic_long_add(v, &pgdat->vm_stat[i]);
|
|
global_node_diff[i] += v;
|
|
}
|
|
}
|
|
|
|
fold_diff(global_zone_diff, global_node_diff);
|
|
}
|
|
|
|
/*
|
|
* this is only called if !populated_zone(zone), which implies no other users of
|
|
* pset->vm_stat_diff[] exist.
|
|
*/
|
|
void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
|
|
{
|
|
unsigned long v;
|
|
int i;
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
|
|
if (pzstats->vm_stat_diff[i]) {
|
|
v = pzstats->vm_stat_diff[i];
|
|
pzstats->vm_stat_diff[i] = 0;
|
|
zone_page_state_add(v, zone, i);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_NUMA
|
|
for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
|
|
if (pzstats->vm_numa_event[i]) {
|
|
v = pzstats->vm_numa_event[i];
|
|
pzstats->vm_numa_event[i] = 0;
|
|
zone_numa_event_add(v, zone, i);
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_NUMA
|
|
/*
|
|
* Determine the per node value of a stat item. This function
|
|
* is called frequently in a NUMA machine, so try to be as
|
|
* frugal as possible.
|
|
*/
|
|
unsigned long sum_zone_node_page_state(int node,
|
|
enum zone_stat_item item)
|
|
{
|
|
struct zone *zones = NODE_DATA(node)->node_zones;
|
|
int i;
|
|
unsigned long count = 0;
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
count += zone_page_state(zones + i, item);
|
|
|
|
return count;
|
|
}
|
|
|
|
/* Determine the per node value of a numa stat item. */
|
|
unsigned long sum_zone_numa_event_state(int node,
|
|
enum numa_stat_item item)
|
|
{
|
|
struct zone *zones = NODE_DATA(node)->node_zones;
|
|
unsigned long count = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < MAX_NR_ZONES; i++)
|
|
count += zone_numa_event_state(zones + i, item);
|
|
|
|
return count;
|
|
}
|
|
|
|
/*
|
|
* Determine the per node value of a stat item.
|
|
*/
|
|
unsigned long node_page_state_pages(struct pglist_data *pgdat,
|
|
enum node_stat_item item)
|
|
{
|
|
long x = atomic_long_read(&pgdat->vm_stat[item]);
|
|
#ifdef CONFIG_SMP
|
|
if (x < 0)
|
|
x = 0;
|
|
#endif
|
|
return x;
|
|
}
|
|
|
|
unsigned long node_page_state(struct pglist_data *pgdat,
|
|
enum node_stat_item item)
|
|
{
|
|
VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
|
|
|
|
return node_page_state_pages(pgdat, item);
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_COMPACTION
|
|
|
|
struct contig_page_info {
|
|
unsigned long free_pages;
|
|
unsigned long free_blocks_total;
|
|
unsigned long free_blocks_suitable;
|
|
};
|
|
|
|
/*
|
|
* Calculate the number of free pages in a zone, how many contiguous
|
|
* pages are free and how many are large enough to satisfy an allocation of
|
|
* the target size. Note that this function makes no attempt to estimate
|
|
* how many suitable free blocks there *might* be if MOVABLE pages were
|
|
* migrated. Calculating that is possible, but expensive and can be
|
|
* figured out from userspace
|
|
*/
|
|
static void fill_contig_page_info(struct zone *zone,
|
|
unsigned int suitable_order,
|
|
struct contig_page_info *info)
|
|
{
|
|
unsigned int order;
|
|
|
|
info->free_pages = 0;
|
|
info->free_blocks_total = 0;
|
|
info->free_blocks_suitable = 0;
|
|
|
|
for (order = 0; order <= MAX_ORDER; order++) {
|
|
unsigned long blocks;
|
|
|
|
/*
|
|
* Count number of free blocks.
|
|
*
|
|
* Access to nr_free is lockless as nr_free is used only for
|
|
* diagnostic purposes. Use data_race to avoid KCSAN warning.
|
|
*/
|
|
blocks = data_race(zone->free_area[order].nr_free);
|
|
info->free_blocks_total += blocks;
|
|
|
|
/* Count free base pages */
|
|
info->free_pages += blocks << order;
|
|
|
|
/* Count the suitable free blocks */
|
|
if (order >= suitable_order)
|
|
info->free_blocks_suitable += blocks <<
|
|
(order - suitable_order);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A fragmentation index only makes sense if an allocation of a requested
|
|
* size would fail. If that is true, the fragmentation index indicates
|
|
* whether external fragmentation or a lack of memory was the problem.
|
|
* The value can be used to determine if page reclaim or compaction
|
|
* should be used
|
|
*/
|
|
static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
|
|
{
|
|
unsigned long requested = 1UL << order;
|
|
|
|
if (WARN_ON_ONCE(order > MAX_ORDER))
|
|
return 0;
|
|
|
|
if (!info->free_blocks_total)
|
|
return 0;
|
|
|
|
/* Fragmentation index only makes sense when a request would fail */
|
|
if (info->free_blocks_suitable)
|
|
return -1000;
|
|
|
|
/*
|
|
* Index is between 0 and 1 so return within 3 decimal places
|
|
*
|
|
* 0 => allocation would fail due to lack of memory
|
|
* 1 => allocation would fail due to fragmentation
|
|
*/
|
|
return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
|
|
}
|
|
|
|
/*
|
|
* Calculates external fragmentation within a zone wrt the given order.
|
|
* It is defined as the percentage of pages found in blocks of size
|
|
* less than 1 << order. It returns values in range [0, 100].
|
|
*/
|
|
unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
|
|
{
|
|
struct contig_page_info info;
|
|
|
|
fill_contig_page_info(zone, order, &info);
|
|
if (info.free_pages == 0)
|
|
return 0;
|
|
|
|
return div_u64((info.free_pages -
|
|
(info.free_blocks_suitable << order)) * 100,
|
|
info.free_pages);
|
|
}
|
|
|
|
/* Same as __fragmentation index but allocs contig_page_info on stack */
|
|
int fragmentation_index(struct zone *zone, unsigned int order)
|
|
{
|
|
struct contig_page_info info;
|
|
|
|
fill_contig_page_info(zone, order, &info);
|
|
return __fragmentation_index(order, &info);
|
|
}
|
|
#endif
|
|
|
|
#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
|
|
defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
|
|
#ifdef CONFIG_ZONE_DMA
|
|
#define TEXT_FOR_DMA(xx) xx "_dma",
|
|
#else
|
|
#define TEXT_FOR_DMA(xx)
|
|
#endif
|
|
|
|
#ifdef CONFIG_ZONE_DMA32
|
|
#define TEXT_FOR_DMA32(xx) xx "_dma32",
|
|
#else
|
|
#define TEXT_FOR_DMA32(xx)
|
|
#endif
|
|
|
|
#ifdef CONFIG_HIGHMEM
|
|
#define TEXT_FOR_HIGHMEM(xx) xx "_high",
|
|
#else
|
|
#define TEXT_FOR_HIGHMEM(xx)
|
|
#endif
|
|
|
|
#ifdef CONFIG_ZONE_DEVICE
|
|
#define TEXT_FOR_DEVICE(xx) xx "_device",
|
|
#else
|
|
#define TEXT_FOR_DEVICE(xx)
|
|
#endif
|
|
|
|
#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
|
|
TEXT_FOR_HIGHMEM(xx) xx "_movable", \
|
|
TEXT_FOR_DEVICE(xx)
|
|
|
|
const char * const vmstat_text[] = {
|
|
/* enum zone_stat_item counters */
|
|
"nr_free_pages",
|
|
"nr_zone_inactive_anon",
|
|
"nr_zone_active_anon",
|
|
"nr_zone_inactive_file",
|
|
"nr_zone_active_file",
|
|
"nr_zone_unevictable",
|
|
"nr_zone_write_pending",
|
|
"nr_mlock",
|
|
"nr_bounce",
|
|
#if IS_ENABLED(CONFIG_ZSMALLOC)
|
|
"nr_zspages",
|
|
#endif
|
|
"nr_free_cma",
|
|
|
|
/* enum numa_stat_item counters */
|
|
#ifdef CONFIG_NUMA
|
|
"numa_hit",
|
|
"numa_miss",
|
|
"numa_foreign",
|
|
"numa_interleave",
|
|
"numa_local",
|
|
"numa_other",
|
|
#endif
|
|
|
|
/* enum node_stat_item counters */
|
|
"nr_inactive_anon",
|
|
"nr_active_anon",
|
|
"nr_inactive_file",
|
|
"nr_active_file",
|
|
"nr_unevictable",
|
|
"nr_slab_reclaimable",
|
|
"nr_slab_unreclaimable",
|
|
"nr_isolated_anon",
|
|
"nr_isolated_file",
|
|
"workingset_nodes",
|
|
"workingset_refault_anon",
|
|
"workingset_refault_file",
|
|
"workingset_activate_anon",
|
|
"workingset_activate_file",
|
|
"workingset_restore_anon",
|
|
"workingset_restore_file",
|
|
"workingset_nodereclaim",
|
|
"nr_anon_pages",
|
|
"nr_mapped",
|
|
"nr_file_pages",
|
|
"nr_dirty",
|
|
"nr_writeback",
|
|
"nr_writeback_temp",
|
|
"nr_shmem",
|
|
"nr_shmem_hugepages",
|
|
"nr_shmem_pmdmapped",
|
|
"nr_file_hugepages",
|
|
"nr_file_pmdmapped",
|
|
"nr_anon_transparent_hugepages",
|
|
"nr_vmscan_write",
|
|
"nr_vmscan_immediate_reclaim",
|
|
"nr_dirtied",
|
|
"nr_written",
|
|
"nr_throttled_written",
|
|
"nr_kernel_misc_reclaimable",
|
|
"nr_foll_pin_acquired",
|
|
"nr_foll_pin_released",
|
|
"nr_kernel_stack",
|
|
#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
|
|
"nr_shadow_call_stack",
|
|
#endif
|
|
"nr_page_table_pages",
|
|
"nr_sec_page_table_pages",
|
|
#ifdef CONFIG_SWAP
|
|
"nr_swapcached",
|
|
#endif
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
"pgpromote_success",
|
|
"pgpromote_candidate",
|
|
#endif
|
|
|
|
/* enum writeback_stat_item counters */
|
|
"nr_dirty_threshold",
|
|
"nr_dirty_background_threshold",
|
|
|
|
#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
|
|
/* enum vm_event_item counters */
|
|
"pgpgin",
|
|
"pgpgout",
|
|
"pswpin",
|
|
"pswpout",
|
|
|
|
TEXTS_FOR_ZONES("pgalloc")
|
|
TEXTS_FOR_ZONES("allocstall")
|
|
TEXTS_FOR_ZONES("pgskip")
|
|
|
|
"pgfree",
|
|
"pgactivate",
|
|
"pgdeactivate",
|
|
"pglazyfree",
|
|
|
|
"pgfault",
|
|
"pgmajfault",
|
|
"pglazyfreed",
|
|
|
|
"pgrefill",
|
|
"pgreuse",
|
|
"pgsteal_kswapd",
|
|
"pgsteal_direct",
|
|
"pgsteal_khugepaged",
|
|
"pgdemote_kswapd",
|
|
"pgdemote_direct",
|
|
"pgdemote_khugepaged",
|
|
"pgscan_kswapd",
|
|
"pgscan_direct",
|
|
"pgscan_khugepaged",
|
|
"pgscan_direct_throttle",
|
|
"pgscan_anon",
|
|
"pgscan_file",
|
|
"pgsteal_anon",
|
|
"pgsteal_file",
|
|
|
|
#ifdef CONFIG_NUMA
|
|
"zone_reclaim_failed",
|
|
#endif
|
|
"pginodesteal",
|
|
"slabs_scanned",
|
|
"kswapd_inodesteal",
|
|
"kswapd_low_wmark_hit_quickly",
|
|
"kswapd_high_wmark_hit_quickly",
|
|
"pageoutrun",
|
|
|
|
"pgrotated",
|
|
|
|
"drop_pagecache",
|
|
"drop_slab",
|
|
"oom_kill",
|
|
|
|
#ifdef CONFIG_NUMA_BALANCING
|
|
"numa_pte_updates",
|
|
"numa_huge_pte_updates",
|
|
"numa_hint_faults",
|
|
"numa_hint_faults_local",
|
|
"numa_pages_migrated",
|
|
#endif
|
|
#ifdef CONFIG_MIGRATION
|
|
"pgmigrate_success",
|
|
"pgmigrate_fail",
|
|
"thp_migration_success",
|
|
"thp_migration_fail",
|
|
"thp_migration_split",
|
|
#endif
|
|
#ifdef CONFIG_COMPACTION
|
|
"compact_migrate_scanned",
|
|
"compact_free_scanned",
|
|
"compact_isolated",
|
|
"compact_stall",
|
|
"compact_fail",
|
|
"compact_success",
|
|
"compact_daemon_wake",
|
|
"compact_daemon_migrate_scanned",
|
|
"compact_daemon_free_scanned",
|
|
#endif
|
|
|
|
#ifdef CONFIG_HUGETLB_PAGE
|
|
"htlb_buddy_alloc_success",
|
|
"htlb_buddy_alloc_fail",
|
|
#endif
|
|
#ifdef CONFIG_CMA
|
|
"cma_alloc_success",
|
|
"cma_alloc_fail",
|
|
#endif
|
|
"unevictable_pgs_culled",
|
|
"unevictable_pgs_scanned",
|
|
"unevictable_pgs_rescued",
|
|
"unevictable_pgs_mlocked",
|
|
"unevictable_pgs_munlocked",
|
|
"unevictable_pgs_cleared",
|
|
"unevictable_pgs_stranded",
|
|
|
|
#ifdef CONFIG_TRANSPARENT_HUGEPAGE
|
|
"thp_fault_alloc",
|
|
"thp_fault_fallback",
|
|
"thp_fault_fallback_charge",
|
|
"thp_collapse_alloc",
|
|
"thp_collapse_alloc_failed",
|
|
"thp_file_alloc",
|
|
"thp_file_fallback",
|
|
"thp_file_fallback_charge",
|
|
"thp_file_mapped",
|
|
"thp_split_page",
|
|
"thp_split_page_failed",
|
|
"thp_deferred_split_page",
|
|
"thp_split_pmd",
|
|
"thp_scan_exceed_none_pte",
|
|
"thp_scan_exceed_swap_pte",
|
|
"thp_scan_exceed_share_pte",
|
|
#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
|
|
"thp_split_pud",
|
|
#endif
|
|
"thp_zero_page_alloc",
|
|
"thp_zero_page_alloc_failed",
|
|
"thp_swpout",
|
|
"thp_swpout_fallback",
|
|
#endif
|
|
#ifdef CONFIG_MEMORY_BALLOON
|
|
"balloon_inflate",
|
|
"balloon_deflate",
|
|
#ifdef CONFIG_BALLOON_COMPACTION
|
|
"balloon_migrate",
|
|
#endif
|
|
#endif /* CONFIG_MEMORY_BALLOON */
|
|
#ifdef CONFIG_DEBUG_TLBFLUSH
|
|
"nr_tlb_remote_flush",
|
|
"nr_tlb_remote_flush_received",
|
|
"nr_tlb_local_flush_all",
|
|
"nr_tlb_local_flush_one",
|
|
#endif /* CONFIG_DEBUG_TLBFLUSH */
|
|
|
|
#ifdef CONFIG_SWAP
|
|
"swap_ra",
|
|
"swap_ra_hit",
|
|
#ifdef CONFIG_KSM
|
|
"ksm_swpin_copy",
|
|
#endif
|
|
#endif
|
|
#ifdef CONFIG_KSM
|
|
"cow_ksm",
|
|
#endif
|
|
#ifdef CONFIG_ZSWAP
|
|
"zswpin",
|
|
"zswpout",
|
|
#endif
|
|
#ifdef CONFIG_X86
|
|
"direct_map_level2_splits",
|
|
"direct_map_level3_splits",
|
|
#endif
|
|
#ifdef CONFIG_PER_VMA_LOCK_STATS
|
|
"vma_lock_success",
|
|
"vma_lock_abort",
|
|
"vma_lock_retry",
|
|
"vma_lock_miss",
|
|
#endif
|
|
#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
|
|
};
|
|
#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
|
|
|
|
#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
|
|
defined(CONFIG_PROC_FS)
|
|
static void *frag_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
pg_data_t *pgdat;
|
|
loff_t node = *pos;
|
|
|
|
for (pgdat = first_online_pgdat();
|
|
pgdat && node;
|
|
pgdat = next_online_pgdat(pgdat))
|
|
--node;
|
|
|
|
return pgdat;
|
|
}
|
|
|
|
static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
(*pos)++;
|
|
return next_online_pgdat(pgdat);
|
|
}
|
|
|
|
static void frag_stop(struct seq_file *m, void *arg)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Walk zones in a node and print using a callback.
|
|
* If @assert_populated is true, only use callback for zones that are populated.
|
|
*/
|
|
static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
|
|
bool assert_populated, bool nolock,
|
|
void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
|
|
{
|
|
struct zone *zone;
|
|
struct zone *node_zones = pgdat->node_zones;
|
|
unsigned long flags;
|
|
|
|
for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
|
|
if (assert_populated && !populated_zone(zone))
|
|
continue;
|
|
|
|
if (!nolock)
|
|
spin_lock_irqsave(&zone->lock, flags);
|
|
print(m, pgdat, zone);
|
|
if (!nolock)
|
|
spin_unlock_irqrestore(&zone->lock, flags);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
|
|
struct zone *zone)
|
|
{
|
|
int order;
|
|
|
|
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
|
|
for (order = 0; order <= MAX_ORDER; ++order)
|
|
/*
|
|
* Access to nr_free is lockless as nr_free is used only for
|
|
* printing purposes. Use data_race to avoid KCSAN warning.
|
|
*/
|
|
seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/*
|
|
* This walks the free areas for each zone.
|
|
*/
|
|
static int frag_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
walk_zones_in_node(m, pgdat, true, false, frag_show_print);
|
|
return 0;
|
|
}
|
|
|
|
static void pagetypeinfo_showfree_print(struct seq_file *m,
|
|
pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
int order, mtype;
|
|
|
|
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
|
|
seq_printf(m, "Node %4d, zone %8s, type %12s ",
|
|
pgdat->node_id,
|
|
zone->name,
|
|
migratetype_names[mtype]);
|
|
for (order = 0; order <= MAX_ORDER; ++order) {
|
|
unsigned long freecount = 0;
|
|
struct free_area *area;
|
|
struct list_head *curr;
|
|
bool overflow = false;
|
|
|
|
area = &(zone->free_area[order]);
|
|
|
|
list_for_each(curr, &area->free_list[mtype]) {
|
|
/*
|
|
* Cap the free_list iteration because it might
|
|
* be really large and we are under a spinlock
|
|
* so a long time spent here could trigger a
|
|
* hard lockup detector. Anyway this is a
|
|
* debugging tool so knowing there is a handful
|
|
* of pages of this order should be more than
|
|
* sufficient.
|
|
*/
|
|
if (++freecount >= 100000) {
|
|
overflow = true;
|
|
break;
|
|
}
|
|
}
|
|
seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
|
|
spin_unlock_irq(&zone->lock);
|
|
cond_resched();
|
|
spin_lock_irq(&zone->lock);
|
|
}
|
|
seq_putc(m, '\n');
|
|
}
|
|
}
|
|
|
|
/* Print out the free pages at each order for each migatetype */
|
|
static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
|
|
{
|
|
int order;
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
/* Print header */
|
|
seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
|
|
for (order = 0; order <= MAX_ORDER; ++order)
|
|
seq_printf(m, "%6d ", order);
|
|
seq_putc(m, '\n');
|
|
|
|
walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
|
|
}
|
|
|
|
static void pagetypeinfo_showblockcount_print(struct seq_file *m,
|
|
pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
int mtype;
|
|
unsigned long pfn;
|
|
unsigned long start_pfn = zone->zone_start_pfn;
|
|
unsigned long end_pfn = zone_end_pfn(zone);
|
|
unsigned long count[MIGRATE_TYPES] = { 0, };
|
|
|
|
for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
|
|
struct page *page;
|
|
|
|
page = pfn_to_online_page(pfn);
|
|
if (!page)
|
|
continue;
|
|
|
|
if (page_zone(page) != zone)
|
|
continue;
|
|
|
|
mtype = get_pageblock_migratetype(page);
|
|
|
|
if (mtype < MIGRATE_TYPES)
|
|
count[mtype]++;
|
|
}
|
|
|
|
/* Print counts */
|
|
seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
|
|
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
|
|
seq_printf(m, "%12lu ", count[mtype]);
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/* Print out the number of pageblocks for each migratetype */
|
|
static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
|
|
{
|
|
int mtype;
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
seq_printf(m, "\n%-23s", "Number of blocks type ");
|
|
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
|
|
seq_printf(m, "%12s ", migratetype_names[mtype]);
|
|
seq_putc(m, '\n');
|
|
walk_zones_in_node(m, pgdat, true, false,
|
|
pagetypeinfo_showblockcount_print);
|
|
}
|
|
|
|
/*
|
|
* Print out the number of pageblocks for each migratetype that contain pages
|
|
* of other types. This gives an indication of how well fallbacks are being
|
|
* contained by rmqueue_fallback(). It requires information from PAGE_OWNER
|
|
* to determine what is going on
|
|
*/
|
|
static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
|
|
{
|
|
#ifdef CONFIG_PAGE_OWNER
|
|
int mtype;
|
|
|
|
if (!static_branch_unlikely(&page_owner_inited))
|
|
return;
|
|
|
|
drain_all_pages(NULL);
|
|
|
|
seq_printf(m, "\n%-23s", "Number of mixed blocks ");
|
|
for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
|
|
seq_printf(m, "%12s ", migratetype_names[mtype]);
|
|
seq_putc(m, '\n');
|
|
|
|
walk_zones_in_node(m, pgdat, true, true,
|
|
pagetypeinfo_showmixedcount_print);
|
|
#endif /* CONFIG_PAGE_OWNER */
|
|
}
|
|
|
|
/*
|
|
* This prints out statistics in relation to grouping pages by mobility.
|
|
* It is expensive to collect so do not constantly read the file.
|
|
*/
|
|
static int pagetypeinfo_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
/* check memoryless node */
|
|
if (!node_state(pgdat->node_id, N_MEMORY))
|
|
return 0;
|
|
|
|
seq_printf(m, "Page block order: %d\n", pageblock_order);
|
|
seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
|
|
seq_putc(m, '\n');
|
|
pagetypeinfo_showfree(m, pgdat);
|
|
pagetypeinfo_showblockcount(m, pgdat);
|
|
pagetypeinfo_showmixedcount(m, pgdat);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations fragmentation_op = {
|
|
.start = frag_start,
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = frag_show,
|
|
};
|
|
|
|
static const struct seq_operations pagetypeinfo_op = {
|
|
.start = frag_start,
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = pagetypeinfo_show,
|
|
};
|
|
|
|
static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
int zid;
|
|
|
|
for (zid = 0; zid < MAX_NR_ZONES; zid++) {
|
|
struct zone *compare = &pgdat->node_zones[zid];
|
|
|
|
if (populated_zone(compare))
|
|
return zone == compare;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
|
|
struct zone *zone)
|
|
{
|
|
int i;
|
|
seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
|
|
if (is_zone_first_populated(pgdat, zone)) {
|
|
seq_printf(m, "\n per-node stats");
|
|
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
|
|
unsigned long pages = node_page_state_pages(pgdat, i);
|
|
|
|
if (vmstat_item_print_in_thp(i))
|
|
pages /= HPAGE_PMD_NR;
|
|
seq_printf(m, "\n %-12s %lu", node_stat_name(i),
|
|
pages);
|
|
}
|
|
}
|
|
seq_printf(m,
|
|
"\n pages free %lu"
|
|
"\n boost %lu"
|
|
"\n min %lu"
|
|
"\n low %lu"
|
|
"\n high %lu"
|
|
"\n spanned %lu"
|
|
"\n present %lu"
|
|
"\n managed %lu"
|
|
"\n cma %lu",
|
|
zone_page_state(zone, NR_FREE_PAGES),
|
|
zone->watermark_boost,
|
|
min_wmark_pages(zone),
|
|
low_wmark_pages(zone),
|
|
high_wmark_pages(zone),
|
|
zone->spanned_pages,
|
|
zone->present_pages,
|
|
zone_managed_pages(zone),
|
|
zone_cma_pages(zone));
|
|
|
|
seq_printf(m,
|
|
"\n protection: (%ld",
|
|
zone->lowmem_reserve[0]);
|
|
for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
|
|
seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
|
|
seq_putc(m, ')');
|
|
|
|
/* If unpopulated, no other information is useful */
|
|
if (!populated_zone(zone)) {
|
|
seq_putc(m, '\n');
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
|
|
seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
|
|
zone_page_state(zone, i));
|
|
|
|
#ifdef CONFIG_NUMA
|
|
for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
|
|
seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
|
|
zone_numa_event_state(zone, i));
|
|
#endif
|
|
|
|
seq_printf(m, "\n pagesets");
|
|
for_each_online_cpu(i) {
|
|
struct per_cpu_pages *pcp;
|
|
struct per_cpu_zonestat __maybe_unused *pzstats;
|
|
|
|
pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
|
|
seq_printf(m,
|
|
"\n cpu: %i"
|
|
"\n count: %i"
|
|
"\n high: %i"
|
|
"\n batch: %i",
|
|
i,
|
|
pcp->count,
|
|
pcp->high,
|
|
pcp->batch);
|
|
#ifdef CONFIG_SMP
|
|
pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
|
|
seq_printf(m, "\n vm stats threshold: %d",
|
|
pzstats->stat_threshold);
|
|
#endif
|
|
}
|
|
seq_printf(m,
|
|
"\n node_unreclaimable: %u"
|
|
"\n start_pfn: %lu",
|
|
pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
|
|
zone->zone_start_pfn);
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/*
|
|
* Output information about zones in @pgdat. All zones are printed regardless
|
|
* of whether they are populated or not: lowmem_reserve_ratio operates on the
|
|
* set of all zones and userspace would not be aware of such zones if they are
|
|
* suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
|
|
*/
|
|
static int zoneinfo_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations zoneinfo_op = {
|
|
.start = frag_start, /* iterate over all zones. The same as in
|
|
* fragmentation. */
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = zoneinfo_show,
|
|
};
|
|
|
|
#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
|
|
NR_VM_NUMA_EVENT_ITEMS + \
|
|
NR_VM_NODE_STAT_ITEMS + \
|
|
NR_VM_WRITEBACK_STAT_ITEMS + \
|
|
(IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
|
|
NR_VM_EVENT_ITEMS : 0))
|
|
|
|
static void *vmstat_start(struct seq_file *m, loff_t *pos)
|
|
{
|
|
unsigned long *v;
|
|
int i;
|
|
|
|
if (*pos >= NR_VMSTAT_ITEMS)
|
|
return NULL;
|
|
|
|
BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
|
|
fold_vm_numa_events();
|
|
v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
|
|
m->private = v;
|
|
if (!v)
|
|
return ERR_PTR(-ENOMEM);
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
|
|
v[i] = global_zone_page_state(i);
|
|
v += NR_VM_ZONE_STAT_ITEMS;
|
|
|
|
#ifdef CONFIG_NUMA
|
|
for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
|
|
v[i] = global_numa_event_state(i);
|
|
v += NR_VM_NUMA_EVENT_ITEMS;
|
|
#endif
|
|
|
|
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
|
|
v[i] = global_node_page_state_pages(i);
|
|
if (vmstat_item_print_in_thp(i))
|
|
v[i] /= HPAGE_PMD_NR;
|
|
}
|
|
v += NR_VM_NODE_STAT_ITEMS;
|
|
|
|
global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
|
|
v + NR_DIRTY_THRESHOLD);
|
|
v += NR_VM_WRITEBACK_STAT_ITEMS;
|
|
|
|
#ifdef CONFIG_VM_EVENT_COUNTERS
|
|
all_vm_events(v);
|
|
v[PGPGIN] /= 2; /* sectors -> kbytes */
|
|
v[PGPGOUT] /= 2;
|
|
#endif
|
|
return (unsigned long *)m->private + *pos;
|
|
}
|
|
|
|
static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
|
|
{
|
|
(*pos)++;
|
|
if (*pos >= NR_VMSTAT_ITEMS)
|
|
return NULL;
|
|
return (unsigned long *)m->private + *pos;
|
|
}
|
|
|
|
static int vmstat_show(struct seq_file *m, void *arg)
|
|
{
|
|
unsigned long *l = arg;
|
|
unsigned long off = l - (unsigned long *)m->private;
|
|
|
|
seq_puts(m, vmstat_text[off]);
|
|
seq_put_decimal_ull(m, " ", *l);
|
|
seq_putc(m, '\n');
|
|
|
|
if (off == NR_VMSTAT_ITEMS - 1) {
|
|
/*
|
|
* We've come to the end - add any deprecated counters to avoid
|
|
* breaking userspace which might depend on them being present.
|
|
*/
|
|
seq_puts(m, "nr_unstable 0\n");
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void vmstat_stop(struct seq_file *m, void *arg)
|
|
{
|
|
kfree(m->private);
|
|
m->private = NULL;
|
|
}
|
|
|
|
static const struct seq_operations vmstat_op = {
|
|
.start = vmstat_start,
|
|
.next = vmstat_next,
|
|
.stop = vmstat_stop,
|
|
.show = vmstat_show,
|
|
};
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
#ifdef CONFIG_SMP
|
|
static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
|
|
int sysctl_stat_interval __read_mostly = HZ;
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void refresh_vm_stats(struct work_struct *work)
|
|
{
|
|
refresh_cpu_vm_stats(true);
|
|
}
|
|
|
|
int vmstat_refresh(struct ctl_table *table, int write,
|
|
void *buffer, size_t *lenp, loff_t *ppos)
|
|
{
|
|
long val;
|
|
int err;
|
|
int i;
|
|
|
|
/*
|
|
* The regular update, every sysctl_stat_interval, may come later
|
|
* than expected: leaving a significant amount in per_cpu buckets.
|
|
* This is particularly misleading when checking a quantity of HUGE
|
|
* pages, immediately after running a test. /proc/sys/vm/stat_refresh,
|
|
* which can equally be echo'ed to or cat'ted from (by root),
|
|
* can be used to update the stats just before reading them.
|
|
*
|
|
* Oh, and since global_zone_page_state() etc. are so careful to hide
|
|
* transiently negative values, report an error here if any of
|
|
* the stats is negative, so we know to go looking for imbalance.
|
|
*/
|
|
err = schedule_on_each_cpu(refresh_vm_stats);
|
|
if (err)
|
|
return err;
|
|
for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
|
|
/*
|
|
* Skip checking stats known to go negative occasionally.
|
|
*/
|
|
switch (i) {
|
|
case NR_ZONE_WRITE_PENDING:
|
|
case NR_FREE_CMA_PAGES:
|
|
continue;
|
|
}
|
|
val = atomic_long_read(&vm_zone_stat[i]);
|
|
if (val < 0) {
|
|
pr_warn("%s: %s %ld\n",
|
|
__func__, zone_stat_name(i), val);
|
|
}
|
|
}
|
|
for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
|
|
/*
|
|
* Skip checking stats known to go negative occasionally.
|
|
*/
|
|
switch (i) {
|
|
case NR_WRITEBACK:
|
|
continue;
|
|
}
|
|
val = atomic_long_read(&vm_node_stat[i]);
|
|
if (val < 0) {
|
|
pr_warn("%s: %s %ld\n",
|
|
__func__, node_stat_name(i), val);
|
|
}
|
|
}
|
|
if (write)
|
|
*ppos += *lenp;
|
|
else
|
|
*lenp = 0;
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_PROC_FS */
|
|
|
|
static void vmstat_update(struct work_struct *w)
|
|
{
|
|
if (refresh_cpu_vm_stats(true)) {
|
|
/*
|
|
* Counters were updated so we expect more updates
|
|
* to occur in the future. Keep on running the
|
|
* update worker thread.
|
|
*/
|
|
queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
|
|
this_cpu_ptr(&vmstat_work),
|
|
round_jiffies_relative(sysctl_stat_interval));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if the diffs for a certain cpu indicate that
|
|
* an update is needed.
|
|
*/
|
|
static bool need_update(int cpu)
|
|
{
|
|
pg_data_t *last_pgdat = NULL;
|
|
struct zone *zone;
|
|
|
|
for_each_populated_zone(zone) {
|
|
struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
|
|
struct per_cpu_nodestat *n;
|
|
|
|
/*
|
|
* The fast way of checking if there are any vmstat diffs.
|
|
*/
|
|
if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
|
|
return true;
|
|
|
|
if (last_pgdat == zone->zone_pgdat)
|
|
continue;
|
|
last_pgdat = zone->zone_pgdat;
|
|
n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
|
|
if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Switch off vmstat processing and then fold all the remaining differentials
|
|
* until the diffs stay at zero. The function is used by NOHZ and can only be
|
|
* invoked when tick processing is not active.
|
|
*/
|
|
void quiet_vmstat(void)
|
|
{
|
|
if (system_state != SYSTEM_RUNNING)
|
|
return;
|
|
|
|
if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
|
|
return;
|
|
|
|
if (!need_update(smp_processor_id()))
|
|
return;
|
|
|
|
/*
|
|
* Just refresh counters and do not care about the pending delayed
|
|
* vmstat_update. It doesn't fire that often to matter and canceling
|
|
* it would be too expensive from this path.
|
|
* vmstat_shepherd will take care about that for us.
|
|
*/
|
|
refresh_cpu_vm_stats(false);
|
|
}
|
|
|
|
/*
|
|
* Shepherd worker thread that checks the
|
|
* differentials of processors that have their worker
|
|
* threads for vm statistics updates disabled because of
|
|
* inactivity.
|
|
*/
|
|
static void vmstat_shepherd(struct work_struct *w);
|
|
|
|
static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
|
|
|
|
static void vmstat_shepherd(struct work_struct *w)
|
|
{
|
|
int cpu;
|
|
|
|
cpus_read_lock();
|
|
/* Check processors whose vmstat worker threads have been disabled */
|
|
for_each_online_cpu(cpu) {
|
|
struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
|
|
|
|
if (!delayed_work_pending(dw) && need_update(cpu))
|
|
queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
|
|
|
|
cond_resched();
|
|
}
|
|
cpus_read_unlock();
|
|
|
|
schedule_delayed_work(&shepherd,
|
|
round_jiffies_relative(sysctl_stat_interval));
|
|
}
|
|
|
|
static void __init start_shepherd_timer(void)
|
|
{
|
|
int cpu;
|
|
|
|
for_each_possible_cpu(cpu)
|
|
INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
|
|
vmstat_update);
|
|
|
|
schedule_delayed_work(&shepherd,
|
|
round_jiffies_relative(sysctl_stat_interval));
|
|
}
|
|
|
|
static void __init init_cpu_node_state(void)
|
|
{
|
|
int node;
|
|
|
|
for_each_online_node(node) {
|
|
if (!cpumask_empty(cpumask_of_node(node)))
|
|
node_set_state(node, N_CPU);
|
|
}
|
|
}
|
|
|
|
static int vmstat_cpu_online(unsigned int cpu)
|
|
{
|
|
refresh_zone_stat_thresholds();
|
|
|
|
if (!node_state(cpu_to_node(cpu), N_CPU)) {
|
|
node_set_state(cpu_to_node(cpu), N_CPU);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int vmstat_cpu_down_prep(unsigned int cpu)
|
|
{
|
|
cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
|
|
return 0;
|
|
}
|
|
|
|
static int vmstat_cpu_dead(unsigned int cpu)
|
|
{
|
|
const struct cpumask *node_cpus;
|
|
int node;
|
|
|
|
node = cpu_to_node(cpu);
|
|
|
|
refresh_zone_stat_thresholds();
|
|
node_cpus = cpumask_of_node(node);
|
|
if (!cpumask_empty(node_cpus))
|
|
return 0;
|
|
|
|
node_clear_state(node, N_CPU);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
struct workqueue_struct *mm_percpu_wq;
|
|
|
|
void __init init_mm_internals(void)
|
|
{
|
|
int ret __maybe_unused;
|
|
|
|
mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
|
|
|
|
#ifdef CONFIG_SMP
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
|
|
NULL, vmstat_cpu_dead);
|
|
if (ret < 0)
|
|
pr_err("vmstat: failed to register 'dead' hotplug state\n");
|
|
|
|
ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
|
|
vmstat_cpu_online,
|
|
vmstat_cpu_down_prep);
|
|
if (ret < 0)
|
|
pr_err("vmstat: failed to register 'online' hotplug state\n");
|
|
|
|
cpus_read_lock();
|
|
init_cpu_node_state();
|
|
cpus_read_unlock();
|
|
|
|
start_shepherd_timer();
|
|
#endif
|
|
#ifdef CONFIG_PROC_FS
|
|
proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
|
|
proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
|
|
proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
|
|
proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
|
|
#endif
|
|
}
|
|
|
|
#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
|
|
|
|
/*
|
|
* Return an index indicating how much of the available free memory is
|
|
* unusable for an allocation of the requested size.
|
|
*/
|
|
static int unusable_free_index(unsigned int order,
|
|
struct contig_page_info *info)
|
|
{
|
|
/* No free memory is interpreted as all free memory is unusable */
|
|
if (info->free_pages == 0)
|
|
return 1000;
|
|
|
|
/*
|
|
* Index should be a value between 0 and 1. Return a value to 3
|
|
* decimal places.
|
|
*
|
|
* 0 => no fragmentation
|
|
* 1 => high fragmentation
|
|
*/
|
|
return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
|
|
|
|
}
|
|
|
|
static void unusable_show_print(struct seq_file *m,
|
|
pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
unsigned int order;
|
|
int index;
|
|
struct contig_page_info info;
|
|
|
|
seq_printf(m, "Node %d, zone %8s ",
|
|
pgdat->node_id,
|
|
zone->name);
|
|
for (order = 0; order <= MAX_ORDER; ++order) {
|
|
fill_contig_page_info(zone, order, &info);
|
|
index = unusable_free_index(order, &info);
|
|
seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
|
|
}
|
|
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/*
|
|
* Display unusable free space index
|
|
*
|
|
* The unusable free space index measures how much of the available free
|
|
* memory cannot be used to satisfy an allocation of a given size and is a
|
|
* value between 0 and 1. The higher the value, the more of free memory is
|
|
* unusable and by implication, the worse the external fragmentation is. This
|
|
* can be expressed as a percentage by multiplying by 100.
|
|
*/
|
|
static int unusable_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
/* check memoryless node */
|
|
if (!node_state(pgdat->node_id, N_MEMORY))
|
|
return 0;
|
|
|
|
walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations unusable_sops = {
|
|
.start = frag_start,
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = unusable_show,
|
|
};
|
|
|
|
DEFINE_SEQ_ATTRIBUTE(unusable);
|
|
|
|
static void extfrag_show_print(struct seq_file *m,
|
|
pg_data_t *pgdat, struct zone *zone)
|
|
{
|
|
unsigned int order;
|
|
int index;
|
|
|
|
/* Alloc on stack as interrupts are disabled for zone walk */
|
|
struct contig_page_info info;
|
|
|
|
seq_printf(m, "Node %d, zone %8s ",
|
|
pgdat->node_id,
|
|
zone->name);
|
|
for (order = 0; order <= MAX_ORDER; ++order) {
|
|
fill_contig_page_info(zone, order, &info);
|
|
index = __fragmentation_index(order, &info);
|
|
seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
|
|
}
|
|
|
|
seq_putc(m, '\n');
|
|
}
|
|
|
|
/*
|
|
* Display fragmentation index for orders that allocations would fail for
|
|
*/
|
|
static int extfrag_show(struct seq_file *m, void *arg)
|
|
{
|
|
pg_data_t *pgdat = (pg_data_t *)arg;
|
|
|
|
walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct seq_operations extfrag_sops = {
|
|
.start = frag_start,
|
|
.next = frag_next,
|
|
.stop = frag_stop,
|
|
.show = extfrag_show,
|
|
};
|
|
|
|
DEFINE_SEQ_ATTRIBUTE(extfrag);
|
|
|
|
static int __init extfrag_debug_init(void)
|
|
{
|
|
struct dentry *extfrag_debug_root;
|
|
|
|
extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
|
|
|
|
debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
|
|
&unusable_fops);
|
|
|
|
debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
|
|
&extfrag_fops);
|
|
|
|
return 0;
|
|
}
|
|
|
|
module_init(extfrag_debug_init);
|
|
#endif
|