linux-stable/io_uring/kbuf.c
Jens Axboe 561e4f9451 io_uring/kbuf: hold io_buffer_list reference over mmap
If we look up the kbuf, ensure that it doesn't get unregistered until
after we're done with it. Since we're inside mmap, we cannot safely use
the io_uring lock. Rely on the fact that we can lookup the buffer list
under RCU now and grab a reference to it, preventing it from being
unregistered until we're done with it. The lookup returns the
io_buffer_list directly with it referenced.

Cc: stable@vger.kernel.org # v6.4+
Fixes: 5cf4f52e6d ("io_uring: free io_buffer_list entries via RCU")
Signed-off-by: Jens Axboe <axboe@kernel.dk>
2024-04-02 19:03:27 -06:00

768 lines
19 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/namei.h>
#include <linux/poll.h>
#include <linux/io_uring.h>
#include <uapi/linux/io_uring.h>
#include "io_uring.h"
#include "opdef.h"
#include "kbuf.h"
#define IO_BUFFER_LIST_BUF_PER_PAGE (PAGE_SIZE / sizeof(struct io_uring_buf))
/* BIDs are addressed by a 16-bit field in a CQE */
#define MAX_BIDS_PER_BGID (1 << 16)
struct kmem_cache *io_buf_cachep;
struct io_provide_buf {
struct file *file;
__u64 addr;
__u32 len;
__u32 bgid;
__u32 nbufs;
__u16 bid;
};
struct io_buf_free {
struct hlist_node list;
void *mem;
size_t size;
int inuse;
};
static inline struct io_buffer_list *__io_buffer_get_list(struct io_ring_ctx *ctx,
unsigned int bgid)
{
return xa_load(&ctx->io_bl_xa, bgid);
}
static inline struct io_buffer_list *io_buffer_get_list(struct io_ring_ctx *ctx,
unsigned int bgid)
{
lockdep_assert_held(&ctx->uring_lock);
return __io_buffer_get_list(ctx, bgid);
}
static int io_buffer_add_list(struct io_ring_ctx *ctx,
struct io_buffer_list *bl, unsigned int bgid)
{
/*
* Store buffer group ID and finally mark the list as visible.
* The normal lookup doesn't care about the visibility as we're
* always under the ->uring_lock, but the RCU lookup from mmap does.
*/
bl->bgid = bgid;
atomic_set(&bl->refs, 1);
return xa_err(xa_store(&ctx->io_bl_xa, bgid, bl, GFP_KERNEL));
}
bool io_kbuf_recycle_legacy(struct io_kiocb *req, unsigned issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
struct io_buffer *buf;
io_ring_submit_lock(ctx, issue_flags);
buf = req->kbuf;
bl = io_buffer_get_list(ctx, buf->bgid);
list_add(&buf->list, &bl->buf_list);
req->flags &= ~REQ_F_BUFFER_SELECTED;
req->buf_index = buf->bgid;
io_ring_submit_unlock(ctx, issue_flags);
return true;
}
void __io_put_kbuf(struct io_kiocb *req, unsigned issue_flags)
{
/*
* We can add this buffer back to two lists:
*
* 1) The io_buffers_cache list. This one is protected by the
* ctx->uring_lock. If we already hold this lock, add back to this
* list as we can grab it from issue as well.
* 2) The io_buffers_comp list. This one is protected by the
* ctx->completion_lock.
*
* We migrate buffers from the comp_list to the issue cache list
* when we need one.
*/
if (issue_flags & IO_URING_F_UNLOCKED) {
struct io_ring_ctx *ctx = req->ctx;
spin_lock(&ctx->completion_lock);
__io_put_kbuf_list(req, &ctx->io_buffers_comp);
spin_unlock(&ctx->completion_lock);
} else {
lockdep_assert_held(&req->ctx->uring_lock);
__io_put_kbuf_list(req, &req->ctx->io_buffers_cache);
}
}
static void __user *io_provided_buffer_select(struct io_kiocb *req, size_t *len,
struct io_buffer_list *bl)
{
if (!list_empty(&bl->buf_list)) {
struct io_buffer *kbuf;
kbuf = list_first_entry(&bl->buf_list, struct io_buffer, list);
list_del(&kbuf->list);
if (*len == 0 || *len > kbuf->len)
*len = kbuf->len;
if (list_empty(&bl->buf_list))
req->flags |= REQ_F_BL_EMPTY;
req->flags |= REQ_F_BUFFER_SELECTED;
req->kbuf = kbuf;
req->buf_index = kbuf->bid;
return u64_to_user_ptr(kbuf->addr);
}
return NULL;
}
static void __user *io_ring_buffer_select(struct io_kiocb *req, size_t *len,
struct io_buffer_list *bl,
unsigned int issue_flags)
{
struct io_uring_buf_ring *br = bl->buf_ring;
__u16 tail, head = bl->head;
struct io_uring_buf *buf;
tail = smp_load_acquire(&br->tail);
if (unlikely(tail == head))
return NULL;
if (head + 1 == tail)
req->flags |= REQ_F_BL_EMPTY;
head &= bl->mask;
/* mmaped buffers are always contig */
if (bl->is_mmap || head < IO_BUFFER_LIST_BUF_PER_PAGE) {
buf = &br->bufs[head];
} else {
int off = head & (IO_BUFFER_LIST_BUF_PER_PAGE - 1);
int index = head / IO_BUFFER_LIST_BUF_PER_PAGE;
buf = page_address(bl->buf_pages[index]);
buf += off;
}
if (*len == 0 || *len > buf->len)
*len = buf->len;
req->flags |= REQ_F_BUFFER_RING;
req->buf_list = bl;
req->buf_index = buf->bid;
if (issue_flags & IO_URING_F_UNLOCKED || !io_file_can_poll(req)) {
/*
* If we came in unlocked, we have no choice but to consume the
* buffer here, otherwise nothing ensures that the buffer won't
* get used by others. This does mean it'll be pinned until the
* IO completes, coming in unlocked means we're being called from
* io-wq context and there may be further retries in async hybrid
* mode. For the locked case, the caller must call commit when
* the transfer completes (or if we get -EAGAIN and must poll of
* retry).
*/
req->buf_list = NULL;
bl->head++;
}
return u64_to_user_ptr(buf->addr);
}
void __user *io_buffer_select(struct io_kiocb *req, size_t *len,
unsigned int issue_flags)
{
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
void __user *ret = NULL;
io_ring_submit_lock(req->ctx, issue_flags);
bl = io_buffer_get_list(ctx, req->buf_index);
if (likely(bl)) {
if (bl->is_buf_ring)
ret = io_ring_buffer_select(req, len, bl, issue_flags);
else
ret = io_provided_buffer_select(req, len, bl);
}
io_ring_submit_unlock(req->ctx, issue_flags);
return ret;
}
/*
* Mark the given mapped range as free for reuse
*/
static void io_kbuf_mark_free(struct io_ring_ctx *ctx, struct io_buffer_list *bl)
{
struct io_buf_free *ibf;
hlist_for_each_entry(ibf, &ctx->io_buf_list, list) {
if (bl->buf_ring == ibf->mem) {
ibf->inuse = 0;
return;
}
}
/* can't happen... */
WARN_ON_ONCE(1);
}
static int __io_remove_buffers(struct io_ring_ctx *ctx,
struct io_buffer_list *bl, unsigned nbufs)
{
unsigned i = 0;
/* shouldn't happen */
if (!nbufs)
return 0;
if (bl->is_buf_ring) {
i = bl->buf_ring->tail - bl->head;
if (bl->is_mmap) {
/*
* io_kbuf_list_free() will free the page(s) at
* ->release() time.
*/
io_kbuf_mark_free(ctx, bl);
bl->buf_ring = NULL;
bl->is_mmap = 0;
} else if (bl->buf_nr_pages) {
int j;
for (j = 0; j < bl->buf_nr_pages; j++)
unpin_user_page(bl->buf_pages[j]);
kvfree(bl->buf_pages);
bl->buf_pages = NULL;
bl->buf_nr_pages = 0;
}
/* make sure it's seen as empty */
INIT_LIST_HEAD(&bl->buf_list);
bl->is_buf_ring = 0;
return i;
}
/* protects io_buffers_cache */
lockdep_assert_held(&ctx->uring_lock);
while (!list_empty(&bl->buf_list)) {
struct io_buffer *nxt;
nxt = list_first_entry(&bl->buf_list, struct io_buffer, list);
list_move(&nxt->list, &ctx->io_buffers_cache);
if (++i == nbufs)
return i;
cond_resched();
}
return i;
}
void io_put_bl(struct io_ring_ctx *ctx, struct io_buffer_list *bl)
{
if (atomic_dec_and_test(&bl->refs)) {
__io_remove_buffers(ctx, bl, -1U);
kfree_rcu(bl, rcu);
}
}
void io_destroy_buffers(struct io_ring_ctx *ctx)
{
struct io_buffer_list *bl;
struct list_head *item, *tmp;
struct io_buffer *buf;
unsigned long index;
xa_for_each(&ctx->io_bl_xa, index, bl) {
xa_erase(&ctx->io_bl_xa, bl->bgid);
io_put_bl(ctx, bl);
}
/*
* Move deferred locked entries to cache before pruning
*/
spin_lock(&ctx->completion_lock);
if (!list_empty(&ctx->io_buffers_comp))
list_splice_init(&ctx->io_buffers_comp, &ctx->io_buffers_cache);
spin_unlock(&ctx->completion_lock);
list_for_each_safe(item, tmp, &ctx->io_buffers_cache) {
buf = list_entry(item, struct io_buffer, list);
kmem_cache_free(io_buf_cachep, buf);
}
}
int io_remove_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
u64 tmp;
if (sqe->rw_flags || sqe->addr || sqe->len || sqe->off ||
sqe->splice_fd_in)
return -EINVAL;
tmp = READ_ONCE(sqe->fd);
if (!tmp || tmp > MAX_BIDS_PER_BGID)
return -EINVAL;
memset(p, 0, sizeof(*p));
p->nbufs = tmp;
p->bgid = READ_ONCE(sqe->buf_group);
return 0;
}
int io_remove_buffers(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
int ret = 0;
io_ring_submit_lock(ctx, issue_flags);
ret = -ENOENT;
bl = io_buffer_get_list(ctx, p->bgid);
if (bl) {
ret = -EINVAL;
/* can't use provide/remove buffers command on mapped buffers */
if (!bl->is_buf_ring)
ret = __io_remove_buffers(ctx, bl, p->nbufs);
}
io_ring_submit_unlock(ctx, issue_flags);
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
int io_provide_buffers_prep(struct io_kiocb *req, const struct io_uring_sqe *sqe)
{
unsigned long size, tmp_check;
struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
u64 tmp;
if (sqe->rw_flags || sqe->splice_fd_in)
return -EINVAL;
tmp = READ_ONCE(sqe->fd);
if (!tmp || tmp > MAX_BIDS_PER_BGID)
return -E2BIG;
p->nbufs = tmp;
p->addr = READ_ONCE(sqe->addr);
p->len = READ_ONCE(sqe->len);
if (check_mul_overflow((unsigned long)p->len, (unsigned long)p->nbufs,
&size))
return -EOVERFLOW;
if (check_add_overflow((unsigned long)p->addr, size, &tmp_check))
return -EOVERFLOW;
size = (unsigned long)p->len * p->nbufs;
if (!access_ok(u64_to_user_ptr(p->addr), size))
return -EFAULT;
p->bgid = READ_ONCE(sqe->buf_group);
tmp = READ_ONCE(sqe->off);
if (tmp > USHRT_MAX)
return -E2BIG;
if (tmp + p->nbufs > MAX_BIDS_PER_BGID)
return -EINVAL;
p->bid = tmp;
return 0;
}
#define IO_BUFFER_ALLOC_BATCH 64
static int io_refill_buffer_cache(struct io_ring_ctx *ctx)
{
struct io_buffer *bufs[IO_BUFFER_ALLOC_BATCH];
int allocated;
/*
* Completions that don't happen inline (eg not under uring_lock) will
* add to ->io_buffers_comp. If we don't have any free buffers, check
* the completion list and splice those entries first.
*/
if (!list_empty_careful(&ctx->io_buffers_comp)) {
spin_lock(&ctx->completion_lock);
if (!list_empty(&ctx->io_buffers_comp)) {
list_splice_init(&ctx->io_buffers_comp,
&ctx->io_buffers_cache);
spin_unlock(&ctx->completion_lock);
return 0;
}
spin_unlock(&ctx->completion_lock);
}
/*
* No free buffers and no completion entries either. Allocate a new
* batch of buffer entries and add those to our freelist.
*/
allocated = kmem_cache_alloc_bulk(io_buf_cachep, GFP_KERNEL_ACCOUNT,
ARRAY_SIZE(bufs), (void **) bufs);
if (unlikely(!allocated)) {
/*
* Bulk alloc is all-or-nothing. If we fail to get a batch,
* retry single alloc to be on the safe side.
*/
bufs[0] = kmem_cache_alloc(io_buf_cachep, GFP_KERNEL);
if (!bufs[0])
return -ENOMEM;
allocated = 1;
}
while (allocated)
list_add_tail(&bufs[--allocated]->list, &ctx->io_buffers_cache);
return 0;
}
static int io_add_buffers(struct io_ring_ctx *ctx, struct io_provide_buf *pbuf,
struct io_buffer_list *bl)
{
struct io_buffer *buf;
u64 addr = pbuf->addr;
int i, bid = pbuf->bid;
for (i = 0; i < pbuf->nbufs; i++) {
if (list_empty(&ctx->io_buffers_cache) &&
io_refill_buffer_cache(ctx))
break;
buf = list_first_entry(&ctx->io_buffers_cache, struct io_buffer,
list);
list_move_tail(&buf->list, &bl->buf_list);
buf->addr = addr;
buf->len = min_t(__u32, pbuf->len, MAX_RW_COUNT);
buf->bid = bid;
buf->bgid = pbuf->bgid;
addr += pbuf->len;
bid++;
cond_resched();
}
return i ? 0 : -ENOMEM;
}
int io_provide_buffers(struct io_kiocb *req, unsigned int issue_flags)
{
struct io_provide_buf *p = io_kiocb_to_cmd(req, struct io_provide_buf);
struct io_ring_ctx *ctx = req->ctx;
struct io_buffer_list *bl;
int ret = 0;
io_ring_submit_lock(ctx, issue_flags);
bl = io_buffer_get_list(ctx, p->bgid);
if (unlikely(!bl)) {
bl = kzalloc(sizeof(*bl), GFP_KERNEL_ACCOUNT);
if (!bl) {
ret = -ENOMEM;
goto err;
}
INIT_LIST_HEAD(&bl->buf_list);
ret = io_buffer_add_list(ctx, bl, p->bgid);
if (ret) {
/*
* Doesn't need rcu free as it was never visible, but
* let's keep it consistent throughout.
*/
kfree_rcu(bl, rcu);
goto err;
}
}
/* can't add buffers via this command for a mapped buffer ring */
if (bl->is_buf_ring) {
ret = -EINVAL;
goto err;
}
ret = io_add_buffers(ctx, p, bl);
err:
io_ring_submit_unlock(ctx, issue_flags);
if (ret < 0)
req_set_fail(req);
io_req_set_res(req, ret, 0);
return IOU_OK;
}
static int io_pin_pbuf_ring(struct io_uring_buf_reg *reg,
struct io_buffer_list *bl)
{
struct io_uring_buf_ring *br;
struct page **pages;
int i, nr_pages;
pages = io_pin_pages(reg->ring_addr,
flex_array_size(br, bufs, reg->ring_entries),
&nr_pages);
if (IS_ERR(pages))
return PTR_ERR(pages);
/*
* Apparently some 32-bit boxes (ARM) will return highmem pages,
* which then need to be mapped. We could support that, but it'd
* complicate the code and slowdown the common cases quite a bit.
* So just error out, returning -EINVAL just like we did on kernels
* that didn't support mapped buffer rings.
*/
for (i = 0; i < nr_pages; i++)
if (PageHighMem(pages[i]))
goto error_unpin;
br = page_address(pages[0]);
#ifdef SHM_COLOUR
/*
* On platforms that have specific aliasing requirements, SHM_COLOUR
* is set and we must guarantee that the kernel and user side align
* nicely. We cannot do that if IOU_PBUF_RING_MMAP isn't set and
* the application mmap's the provided ring buffer. Fail the request
* if we, by chance, don't end up with aligned addresses. The app
* should use IOU_PBUF_RING_MMAP instead, and liburing will handle
* this transparently.
*/
if ((reg->ring_addr | (unsigned long) br) & (SHM_COLOUR - 1))
goto error_unpin;
#endif
bl->buf_pages = pages;
bl->buf_nr_pages = nr_pages;
bl->buf_ring = br;
bl->is_buf_ring = 1;
bl->is_mmap = 0;
return 0;
error_unpin:
for (i = 0; i < nr_pages; i++)
unpin_user_page(pages[i]);
kvfree(pages);
return -EINVAL;
}
/*
* See if we have a suitable region that we can reuse, rather than allocate
* both a new io_buf_free and mem region again. We leave it on the list as
* even a reused entry will need freeing at ring release.
*/
static struct io_buf_free *io_lookup_buf_free_entry(struct io_ring_ctx *ctx,
size_t ring_size)
{
struct io_buf_free *ibf, *best = NULL;
size_t best_dist;
hlist_for_each_entry(ibf, &ctx->io_buf_list, list) {
size_t dist;
if (ibf->inuse || ibf->size < ring_size)
continue;
dist = ibf->size - ring_size;
if (!best || dist < best_dist) {
best = ibf;
if (!dist)
break;
best_dist = dist;
}
}
return best;
}
static int io_alloc_pbuf_ring(struct io_ring_ctx *ctx,
struct io_uring_buf_reg *reg,
struct io_buffer_list *bl)
{
struct io_buf_free *ibf;
size_t ring_size;
void *ptr;
ring_size = reg->ring_entries * sizeof(struct io_uring_buf_ring);
/* Reuse existing entry, if we can */
ibf = io_lookup_buf_free_entry(ctx, ring_size);
if (!ibf) {
ptr = io_mem_alloc(ring_size);
if (IS_ERR(ptr))
return PTR_ERR(ptr);
/* Allocate and store deferred free entry */
ibf = kmalloc(sizeof(*ibf), GFP_KERNEL_ACCOUNT);
if (!ibf) {
io_mem_free(ptr);
return -ENOMEM;
}
ibf->mem = ptr;
ibf->size = ring_size;
hlist_add_head(&ibf->list, &ctx->io_buf_list);
}
ibf->inuse = 1;
bl->buf_ring = ibf->mem;
bl->is_buf_ring = 1;
bl->is_mmap = 1;
return 0;
}
int io_register_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
{
struct io_uring_buf_reg reg;
struct io_buffer_list *bl, *free_bl = NULL;
int ret;
lockdep_assert_held(&ctx->uring_lock);
if (copy_from_user(&reg, arg, sizeof(reg)))
return -EFAULT;
if (reg.resv[0] || reg.resv[1] || reg.resv[2])
return -EINVAL;
if (reg.flags & ~IOU_PBUF_RING_MMAP)
return -EINVAL;
if (!(reg.flags & IOU_PBUF_RING_MMAP)) {
if (!reg.ring_addr)
return -EFAULT;
if (reg.ring_addr & ~PAGE_MASK)
return -EINVAL;
} else {
if (reg.ring_addr)
return -EINVAL;
}
if (!is_power_of_2(reg.ring_entries))
return -EINVAL;
/* cannot disambiguate full vs empty due to head/tail size */
if (reg.ring_entries >= 65536)
return -EINVAL;
bl = io_buffer_get_list(ctx, reg.bgid);
if (bl) {
/* if mapped buffer ring OR classic exists, don't allow */
if (bl->is_buf_ring || !list_empty(&bl->buf_list))
return -EEXIST;
} else {
free_bl = bl = kzalloc(sizeof(*bl), GFP_KERNEL);
if (!bl)
return -ENOMEM;
}
if (!(reg.flags & IOU_PBUF_RING_MMAP))
ret = io_pin_pbuf_ring(&reg, bl);
else
ret = io_alloc_pbuf_ring(ctx, &reg, bl);
if (!ret) {
bl->nr_entries = reg.ring_entries;
bl->mask = reg.ring_entries - 1;
io_buffer_add_list(ctx, bl, reg.bgid);
return 0;
}
kfree_rcu(free_bl, rcu);
return ret;
}
int io_unregister_pbuf_ring(struct io_ring_ctx *ctx, void __user *arg)
{
struct io_uring_buf_reg reg;
struct io_buffer_list *bl;
lockdep_assert_held(&ctx->uring_lock);
if (copy_from_user(&reg, arg, sizeof(reg)))
return -EFAULT;
if (reg.resv[0] || reg.resv[1] || reg.resv[2])
return -EINVAL;
if (reg.flags)
return -EINVAL;
bl = io_buffer_get_list(ctx, reg.bgid);
if (!bl)
return -ENOENT;
if (!bl->is_buf_ring)
return -EINVAL;
xa_erase(&ctx->io_bl_xa, bl->bgid);
io_put_bl(ctx, bl);
return 0;
}
int io_register_pbuf_status(struct io_ring_ctx *ctx, void __user *arg)
{
struct io_uring_buf_status buf_status;
struct io_buffer_list *bl;
int i;
if (copy_from_user(&buf_status, arg, sizeof(buf_status)))
return -EFAULT;
for (i = 0; i < ARRAY_SIZE(buf_status.resv); i++)
if (buf_status.resv[i])
return -EINVAL;
bl = io_buffer_get_list(ctx, buf_status.buf_group);
if (!bl)
return -ENOENT;
if (!bl->is_buf_ring)
return -EINVAL;
buf_status.head = bl->head;
if (copy_to_user(arg, &buf_status, sizeof(buf_status)))
return -EFAULT;
return 0;
}
struct io_buffer_list *io_pbuf_get_bl(struct io_ring_ctx *ctx,
unsigned long bgid)
{
struct io_buffer_list *bl;
bool ret;
/*
* We have to be a bit careful here - we're inside mmap and cannot grab
* the uring_lock. This means the buffer_list could be simultaneously
* going away, if someone is trying to be sneaky. Look it up under rcu
* so we know it's not going away, and attempt to grab a reference to
* it. If the ref is already zero, then fail the mapping. If successful,
* the caller will call io_put_bl() to drop the the reference at at the
* end. This may then safely free the buffer_list (and drop the pages)
* at that point, vm_insert_pages() would've already grabbed the
* necessary vma references.
*/
rcu_read_lock();
bl = xa_load(&ctx->io_bl_xa, bgid);
/* must be a mmap'able buffer ring and have pages */
ret = false;
if (bl && bl->is_mmap)
ret = atomic_inc_not_zero(&bl->refs);
rcu_read_unlock();
if (ret)
return bl;
return ERR_PTR(-EINVAL);
}
/*
* Called at or after ->release(), free the mmap'ed buffers that we used
* for memory mapped provided buffer rings.
*/
void io_kbuf_mmap_list_free(struct io_ring_ctx *ctx)
{
struct io_buf_free *ibf;
struct hlist_node *tmp;
hlist_for_each_entry_safe(ibf, tmp, &ctx->io_buf_list, list) {
hlist_del(&ibf->list);
io_mem_free(ibf->mem);
kfree(ibf);
}
}