linux-stable/drivers/nvdimm/region_devs.c
Kees Cook fd86eff338 libnvdimm: Annotate struct nd_region with __counted_by
Prepare for the coming implementation by GCC and Clang of the __counted_by
attribute. Flexible array members annotated with __counted_by can have
their accesses bounds-checked at run-time checking via CONFIG_UBSAN_BOUNDS
(for array indexing) and CONFIG_FORTIFY_SOURCE (for strcpy/memcpy-family
functions).

As found with Coccinelle[1], add __counted_by for struct nd_region.
Additionally, since the element count member must be set before accessing
the annotated flexible array member, move its initialization earlier.

[1] https://github.com/kees/kernel-tools/blob/trunk/coccinelle/examples/counted_by.cocci

Cc: Dan Williams <dan.j.williams@intel.com>
Cc: Vishal Verma <vishal.l.verma@intel.com>
Cc: Dave Jiang <dave.jiang@intel.com>
Cc: Ira Weiny <ira.weiny@intel.com>
Cc: nvdimm@lists.linux.dev
Signed-off-by: Kees Cook <keescook@chromium.org>
Reviewed-by: Gustavo A. R. Silva <gustavoars@kernel.org>
Reviewed-by: Vishal Verma <vishal.l.verma@intel.com>
Reviewed-by: Dave Jiang <dave.jiang@intel.com>
Signed-off-by: Ira Weiny <ira.weiny@intel.com>
2023-09-27 10:33:47 -07:00

1274 lines
32 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
*/
#include <linux/scatterlist.h>
#include <linux/memregion.h>
#include <linux/highmem.h>
#include <linux/kstrtox.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/hash.h>
#include <linux/sort.h>
#include <linux/io.h>
#include <linux/nd.h>
#include "nd-core.h"
#include "nd.h"
/*
* For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
* irrelevant.
*/
#include <linux/io-64-nonatomic-hi-lo.h>
static DEFINE_PER_CPU(int, flush_idx);
static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
struct nd_region_data *ndrd)
{
int i, j;
dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
for (i = 0; i < (1 << ndrd->hints_shift); i++) {
struct resource *res = &nvdimm->flush_wpq[i];
unsigned long pfn = PHYS_PFN(res->start);
void __iomem *flush_page;
/* check if flush hints share a page */
for (j = 0; j < i; j++) {
struct resource *res_j = &nvdimm->flush_wpq[j];
unsigned long pfn_j = PHYS_PFN(res_j->start);
if (pfn == pfn_j)
break;
}
if (j < i)
flush_page = (void __iomem *) ((unsigned long)
ndrd_get_flush_wpq(ndrd, dimm, j)
& PAGE_MASK);
else
flush_page = devm_nvdimm_ioremap(dev,
PFN_PHYS(pfn), PAGE_SIZE);
if (!flush_page)
return -ENXIO;
ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
+ (res->start & ~PAGE_MASK));
}
return 0;
}
static int nd_region_invalidate_memregion(struct nd_region *nd_region)
{
int i, incoherent = 0;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
if (test_bit(NDD_INCOHERENT, &nvdimm->flags)) {
incoherent++;
break;
}
}
if (!incoherent)
return 0;
if (!cpu_cache_has_invalidate_memregion()) {
if (IS_ENABLED(CONFIG_NVDIMM_SECURITY_TEST)) {
dev_warn(
&nd_region->dev,
"Bypassing cpu_cache_invalidate_memergion() for testing!\n");
goto out;
} else {
dev_err(&nd_region->dev,
"Failed to synchronize CPU cache state\n");
return -ENXIO;
}
}
cpu_cache_invalidate_memregion(IORES_DESC_PERSISTENT_MEMORY);
out:
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
clear_bit(NDD_INCOHERENT, &nvdimm->flags);
}
return 0;
}
int nd_region_activate(struct nd_region *nd_region)
{
int i, j, rc, num_flush = 0;
struct nd_region_data *ndrd;
struct device *dev = &nd_region->dev;
size_t flush_data_size = sizeof(void *);
nvdimm_bus_lock(&nd_region->dev);
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
nvdimm_bus_unlock(&nd_region->dev);
return -EBUSY;
}
/* at least one null hint slot per-dimm for the "no-hint" case */
flush_data_size += sizeof(void *);
num_flush = min_not_zero(num_flush, nvdimm->num_flush);
if (!nvdimm->num_flush)
continue;
flush_data_size += nvdimm->num_flush * sizeof(void *);
}
nvdimm_bus_unlock(&nd_region->dev);
rc = nd_region_invalidate_memregion(nd_region);
if (rc)
return rc;
ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
if (!ndrd)
return -ENOMEM;
dev_set_drvdata(dev, ndrd);
if (!num_flush)
return 0;
ndrd->hints_shift = ilog2(num_flush);
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
if (rc)
return rc;
}
/*
* Clear out entries that are duplicates. This should prevent the
* extra flushings.
*/
for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
/* ignore if NULL already */
if (!ndrd_get_flush_wpq(ndrd, i, 0))
continue;
for (j = i + 1; j < nd_region->ndr_mappings; j++)
if (ndrd_get_flush_wpq(ndrd, i, 0) ==
ndrd_get_flush_wpq(ndrd, j, 0))
ndrd_set_flush_wpq(ndrd, j, 0, NULL);
}
return 0;
}
static void nd_region_release(struct device *dev)
{
struct nd_region *nd_region = to_nd_region(dev);
u16 i;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
put_device(&nvdimm->dev);
}
free_percpu(nd_region->lane);
if (!test_bit(ND_REGION_CXL, &nd_region->flags))
memregion_free(nd_region->id);
kfree(nd_region);
}
struct nd_region *to_nd_region(struct device *dev)
{
struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
WARN_ON(dev->type->release != nd_region_release);
return nd_region;
}
EXPORT_SYMBOL_GPL(to_nd_region);
struct device *nd_region_dev(struct nd_region *nd_region)
{
if (!nd_region)
return NULL;
return &nd_region->dev;
}
EXPORT_SYMBOL_GPL(nd_region_dev);
void *nd_region_provider_data(struct nd_region *nd_region)
{
return nd_region->provider_data;
}
EXPORT_SYMBOL_GPL(nd_region_provider_data);
/**
* nd_region_to_nstype() - region to an integer namespace type
* @nd_region: region-device to interrogate
*
* This is the 'nstype' attribute of a region as well, an input to the
* MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
* namespace devices with namespace drivers.
*/
int nd_region_to_nstype(struct nd_region *nd_region)
{
if (is_memory(&nd_region->dev)) {
u16 i, label;
for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
if (test_bit(NDD_LABELING, &nvdimm->flags))
label++;
}
if (label)
return ND_DEVICE_NAMESPACE_PMEM;
else
return ND_DEVICE_NAMESPACE_IO;
}
return 0;
}
EXPORT_SYMBOL(nd_region_to_nstype);
static unsigned long long region_size(struct nd_region *nd_region)
{
if (is_memory(&nd_region->dev)) {
return nd_region->ndr_size;
} else if (nd_region->ndr_mappings == 1) {
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
return nd_mapping->size;
}
return 0;
}
static ssize_t size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%llu\n", region_size(nd_region));
}
static DEVICE_ATTR_RO(size);
static ssize_t deep_flush_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
/*
* NOTE: in the nvdimm_has_flush() error case this attribute is
* not visible.
*/
return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
}
static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
const char *buf, size_t len)
{
bool flush;
int rc = kstrtobool(buf, &flush);
struct nd_region *nd_region = to_nd_region(dev);
if (rc)
return rc;
if (!flush)
return -EINVAL;
rc = nvdimm_flush(nd_region, NULL);
if (rc)
return rc;
return len;
}
static DEVICE_ATTR_RW(deep_flush);
static ssize_t mappings_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%d\n", nd_region->ndr_mappings);
}
static DEVICE_ATTR_RO(mappings);
static ssize_t nstype_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
}
static DEVICE_ATTR_RO(nstype);
static ssize_t set_cookie_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
struct nd_interleave_set *nd_set = nd_region->nd_set;
ssize_t rc = 0;
if (is_memory(dev) && nd_set)
/* pass, should be precluded by region_visible */;
else
return -ENXIO;
/*
* The cookie to show depends on which specification of the
* labels we are using. If there are not labels then default to
* the v1.1 namespace label cookie definition. To read all this
* data we need to wait for probing to settle.
*/
device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
if (nd_region->ndr_mappings) {
struct nd_mapping *nd_mapping = &nd_region->mapping[0];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
if (ndd) {
struct nd_namespace_index *nsindex;
nsindex = to_namespace_index(ndd, ndd->ns_current);
rc = sprintf(buf, "%#llx\n",
nd_region_interleave_set_cookie(nd_region,
nsindex));
}
}
nvdimm_bus_unlock(dev);
device_unlock(dev);
if (rc)
return rc;
return sprintf(buf, "%#llx\n", nd_set->cookie1);
}
static DEVICE_ATTR_RO(set_cookie);
resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
{
resource_size_t available;
int i;
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
available = 0;
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
/* if a dimm is disabled the available capacity is zero */
if (!ndd)
return 0;
available += nd_pmem_available_dpa(nd_region, nd_mapping);
}
return available;
}
resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
{
resource_size_t avail = 0;
int i;
WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
nd_region, nd_mapping));
}
return avail * nd_region->ndr_mappings;
}
static ssize_t available_size_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
unsigned long long available = 0;
/*
* Flush in-flight updates and grab a snapshot of the available
* size. Of course, this value is potentially invalidated the
* memory nvdimm_bus_lock() is dropped, but that's userspace's
* problem to not race itself.
*/
device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
available = nd_region_available_dpa(nd_region);
nvdimm_bus_unlock(dev);
device_unlock(dev);
return sprintf(buf, "%llu\n", available);
}
static DEVICE_ATTR_RO(available_size);
static ssize_t max_available_extent_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
unsigned long long available = 0;
device_lock(dev);
nvdimm_bus_lock(dev);
wait_nvdimm_bus_probe_idle(dev);
available = nd_region_allocatable_dpa(nd_region);
nvdimm_bus_unlock(dev);
device_unlock(dev);
return sprintf(buf, "%llu\n", available);
}
static DEVICE_ATTR_RO(max_available_extent);
static ssize_t init_namespaces_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region_data *ndrd = dev_get_drvdata(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (ndrd)
rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
else
rc = -ENXIO;
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(init_namespaces);
static ssize_t namespace_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->ns_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(namespace_seed);
static ssize_t btt_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->btt_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(btt_seed);
static ssize_t pfn_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->pfn_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(pfn_seed);
static ssize_t dax_seed_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
nvdimm_bus_lock(dev);
if (nd_region->dax_seed)
rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
else
rc = sprintf(buf, "\n");
nvdimm_bus_unlock(dev);
return rc;
}
static DEVICE_ATTR_RO(dax_seed);
static ssize_t read_only_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%d\n", nd_region->ro);
}
static int revalidate_read_only(struct device *dev, void *data)
{
nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
return 0;
}
static ssize_t read_only_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
bool ro;
int rc = kstrtobool(buf, &ro);
struct nd_region *nd_region = to_nd_region(dev);
if (rc)
return rc;
nd_region->ro = ro;
device_for_each_child(dev, NULL, revalidate_read_only);
return len;
}
static DEVICE_ATTR_RW(read_only);
static ssize_t align_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%#lx\n", nd_region->align);
}
static ssize_t align_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t len)
{
struct nd_region *nd_region = to_nd_region(dev);
unsigned long val, dpa;
u32 mappings, remainder;
int rc;
rc = kstrtoul(buf, 0, &val);
if (rc)
return rc;
/*
* Ensure space-align is evenly divisible by the region
* interleave-width because the kernel typically has no facility
* to determine which DIMM(s), dimm-physical-addresses, would
* contribute to the tail capacity in system-physical-address
* space for the namespace.
*/
mappings = max_t(u32, 1, nd_region->ndr_mappings);
dpa = div_u64_rem(val, mappings, &remainder);
if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
|| val > region_size(nd_region) || remainder)
return -EINVAL;
/*
* Given that space allocation consults this value multiple
* times ensure it does not change for the duration of the
* allocation.
*/
nvdimm_bus_lock(dev);
nd_region->align = val;
nvdimm_bus_unlock(dev);
return len;
}
static DEVICE_ATTR_RW(align);
static ssize_t region_badblocks_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
ssize_t rc;
device_lock(dev);
if (dev->driver)
rc = badblocks_show(&nd_region->bb, buf, 0);
else
rc = -ENXIO;
device_unlock(dev);
return rc;
}
static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
static ssize_t resource_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
return sprintf(buf, "%#llx\n", nd_region->ndr_start);
}
static DEVICE_ATTR_ADMIN_RO(resource);
static ssize_t persistence_domain_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct nd_region *nd_region = to_nd_region(dev);
if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
return sprintf(buf, "cpu_cache\n");
else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
return sprintf(buf, "memory_controller\n");
else
return sprintf(buf, "\n");
}
static DEVICE_ATTR_RO(persistence_domain);
static struct attribute *nd_region_attributes[] = {
&dev_attr_size.attr,
&dev_attr_align.attr,
&dev_attr_nstype.attr,
&dev_attr_mappings.attr,
&dev_attr_btt_seed.attr,
&dev_attr_pfn_seed.attr,
&dev_attr_dax_seed.attr,
&dev_attr_deep_flush.attr,
&dev_attr_read_only.attr,
&dev_attr_set_cookie.attr,
&dev_attr_available_size.attr,
&dev_attr_max_available_extent.attr,
&dev_attr_namespace_seed.attr,
&dev_attr_init_namespaces.attr,
&dev_attr_badblocks.attr,
&dev_attr_resource.attr,
&dev_attr_persistence_domain.attr,
NULL,
};
static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, typeof(*dev), kobj);
struct nd_region *nd_region = to_nd_region(dev);
struct nd_interleave_set *nd_set = nd_region->nd_set;
int type = nd_region_to_nstype(nd_region);
if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
return 0;
if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
return 0;
if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
return 0;
if (a == &dev_attr_resource.attr && !is_memory(dev))
return 0;
if (a == &dev_attr_deep_flush.attr) {
int has_flush = nvdimm_has_flush(nd_region);
if (has_flush == 1)
return a->mode;
else if (has_flush == 0)
return 0444;
else
return 0;
}
if (a == &dev_attr_persistence_domain.attr) {
if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
| BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
return 0;
return a->mode;
}
if (a == &dev_attr_align.attr)
return a->mode;
if (a != &dev_attr_set_cookie.attr
&& a != &dev_attr_available_size.attr)
return a->mode;
if (type == ND_DEVICE_NAMESPACE_PMEM &&
a == &dev_attr_available_size.attr)
return a->mode;
else if (is_memory(dev) && nd_set)
return a->mode;
return 0;
}
static ssize_t mappingN(struct device *dev, char *buf, int n)
{
struct nd_region *nd_region = to_nd_region(dev);
struct nd_mapping *nd_mapping;
struct nvdimm *nvdimm;
if (n >= nd_region->ndr_mappings)
return -ENXIO;
nd_mapping = &nd_region->mapping[n];
nvdimm = nd_mapping->nvdimm;
return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
nd_mapping->start, nd_mapping->size,
nd_mapping->position);
}
#define REGION_MAPPING(idx) \
static ssize_t mapping##idx##_show(struct device *dev, \
struct device_attribute *attr, char *buf) \
{ \
return mappingN(dev, buf, idx); \
} \
static DEVICE_ATTR_RO(mapping##idx)
/*
* 32 should be enough for a while, even in the presence of socket
* interleave a 32-way interleave set is a degenerate case.
*/
REGION_MAPPING(0);
REGION_MAPPING(1);
REGION_MAPPING(2);
REGION_MAPPING(3);
REGION_MAPPING(4);
REGION_MAPPING(5);
REGION_MAPPING(6);
REGION_MAPPING(7);
REGION_MAPPING(8);
REGION_MAPPING(9);
REGION_MAPPING(10);
REGION_MAPPING(11);
REGION_MAPPING(12);
REGION_MAPPING(13);
REGION_MAPPING(14);
REGION_MAPPING(15);
REGION_MAPPING(16);
REGION_MAPPING(17);
REGION_MAPPING(18);
REGION_MAPPING(19);
REGION_MAPPING(20);
REGION_MAPPING(21);
REGION_MAPPING(22);
REGION_MAPPING(23);
REGION_MAPPING(24);
REGION_MAPPING(25);
REGION_MAPPING(26);
REGION_MAPPING(27);
REGION_MAPPING(28);
REGION_MAPPING(29);
REGION_MAPPING(30);
REGION_MAPPING(31);
static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
{
struct device *dev = container_of(kobj, struct device, kobj);
struct nd_region *nd_region = to_nd_region(dev);
if (n < nd_region->ndr_mappings)
return a->mode;
return 0;
}
static struct attribute *mapping_attributes[] = {
&dev_attr_mapping0.attr,
&dev_attr_mapping1.attr,
&dev_attr_mapping2.attr,
&dev_attr_mapping3.attr,
&dev_attr_mapping4.attr,
&dev_attr_mapping5.attr,
&dev_attr_mapping6.attr,
&dev_attr_mapping7.attr,
&dev_attr_mapping8.attr,
&dev_attr_mapping9.attr,
&dev_attr_mapping10.attr,
&dev_attr_mapping11.attr,
&dev_attr_mapping12.attr,
&dev_attr_mapping13.attr,
&dev_attr_mapping14.attr,
&dev_attr_mapping15.attr,
&dev_attr_mapping16.attr,
&dev_attr_mapping17.attr,
&dev_attr_mapping18.attr,
&dev_attr_mapping19.attr,
&dev_attr_mapping20.attr,
&dev_attr_mapping21.attr,
&dev_attr_mapping22.attr,
&dev_attr_mapping23.attr,
&dev_attr_mapping24.attr,
&dev_attr_mapping25.attr,
&dev_attr_mapping26.attr,
&dev_attr_mapping27.attr,
&dev_attr_mapping28.attr,
&dev_attr_mapping29.attr,
&dev_attr_mapping30.attr,
&dev_attr_mapping31.attr,
NULL,
};
static const struct attribute_group nd_mapping_attribute_group = {
.is_visible = mapping_visible,
.attrs = mapping_attributes,
};
static const struct attribute_group nd_region_attribute_group = {
.attrs = nd_region_attributes,
.is_visible = region_visible,
};
static const struct attribute_group *nd_region_attribute_groups[] = {
&nd_device_attribute_group,
&nd_region_attribute_group,
&nd_numa_attribute_group,
&nd_mapping_attribute_group,
NULL,
};
static const struct device_type nd_pmem_device_type = {
.name = "nd_pmem",
.release = nd_region_release,
.groups = nd_region_attribute_groups,
};
static const struct device_type nd_volatile_device_type = {
.name = "nd_volatile",
.release = nd_region_release,
.groups = nd_region_attribute_groups,
};
bool is_nd_pmem(const struct device *dev)
{
return dev ? dev->type == &nd_pmem_device_type : false;
}
bool is_nd_volatile(const struct device *dev)
{
return dev ? dev->type == &nd_volatile_device_type : false;
}
u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
struct nd_namespace_index *nsindex)
{
struct nd_interleave_set *nd_set = nd_region->nd_set;
if (!nd_set)
return 0;
if (nsindex && __le16_to_cpu(nsindex->major) == 1
&& __le16_to_cpu(nsindex->minor) == 1)
return nd_set->cookie1;
return nd_set->cookie2;
}
u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
{
struct nd_interleave_set *nd_set = nd_region->nd_set;
if (nd_set)
return nd_set->altcookie;
return 0;
}
void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
{
struct nd_label_ent *label_ent, *e;
lockdep_assert_held(&nd_mapping->lock);
list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
list_del(&label_ent->list);
kfree(label_ent);
}
}
/*
* When a namespace is activated create new seeds for the next
* namespace, or namespace-personality to be configured.
*/
void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
{
nvdimm_bus_lock(dev);
if (nd_region->ns_seed == dev) {
nd_region_create_ns_seed(nd_region);
} else if (is_nd_btt(dev)) {
struct nd_btt *nd_btt = to_nd_btt(dev);
if (nd_region->btt_seed == dev)
nd_region_create_btt_seed(nd_region);
if (nd_region->ns_seed == &nd_btt->ndns->dev)
nd_region_create_ns_seed(nd_region);
} else if (is_nd_pfn(dev)) {
struct nd_pfn *nd_pfn = to_nd_pfn(dev);
if (nd_region->pfn_seed == dev)
nd_region_create_pfn_seed(nd_region);
if (nd_region->ns_seed == &nd_pfn->ndns->dev)
nd_region_create_ns_seed(nd_region);
} else if (is_nd_dax(dev)) {
struct nd_dax *nd_dax = to_nd_dax(dev);
if (nd_region->dax_seed == dev)
nd_region_create_dax_seed(nd_region);
if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
nd_region_create_ns_seed(nd_region);
}
nvdimm_bus_unlock(dev);
}
/**
* nd_region_acquire_lane - allocate and lock a lane
* @nd_region: region id and number of lanes possible
*
* A lane correlates to a BLK-data-window and/or a log slot in the BTT.
* We optimize for the common case where there are 256 lanes, one
* per-cpu. For larger systems we need to lock to share lanes. For now
* this implementation assumes the cost of maintaining an allocator for
* free lanes is on the order of the lock hold time, so it implements a
* static lane = cpu % num_lanes mapping.
*
* In the case of a BTT instance on top of a BLK namespace a lane may be
* acquired recursively. We lock on the first instance.
*
* In the case of a BTT instance on top of PMEM, we only acquire a lane
* for the BTT metadata updates.
*/
unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
{
unsigned int cpu, lane;
migrate_disable();
cpu = smp_processor_id();
if (nd_region->num_lanes < nr_cpu_ids) {
struct nd_percpu_lane *ndl_lock, *ndl_count;
lane = cpu % nd_region->num_lanes;
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
if (ndl_count->count++ == 0)
spin_lock(&ndl_lock->lock);
} else
lane = cpu;
return lane;
}
EXPORT_SYMBOL(nd_region_acquire_lane);
void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
{
if (nd_region->num_lanes < nr_cpu_ids) {
unsigned int cpu = smp_processor_id();
struct nd_percpu_lane *ndl_lock, *ndl_count;
ndl_count = per_cpu_ptr(nd_region->lane, cpu);
ndl_lock = per_cpu_ptr(nd_region->lane, lane);
if (--ndl_count->count == 0)
spin_unlock(&ndl_lock->lock);
}
migrate_enable();
}
EXPORT_SYMBOL(nd_region_release_lane);
/*
* PowerPC requires this alignment for memremap_pages(). All other archs
* should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
*/
#define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
static unsigned long default_align(struct nd_region *nd_region)
{
unsigned long align;
u32 remainder;
int mappings;
align = MEMREMAP_COMPAT_ALIGN_MAX;
if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
align = PAGE_SIZE;
mappings = max_t(u16, 1, nd_region->ndr_mappings);
div_u64_rem(align, mappings, &remainder);
if (remainder)
align *= mappings;
return align;
}
static struct lock_class_key nvdimm_region_key;
static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc,
const struct device_type *dev_type, const char *caller)
{
struct nd_region *nd_region;
struct device *dev;
unsigned int i;
int ro = 0;
for (i = 0; i < ndr_desc->num_mappings; i++) {
struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
struct nvdimm *nvdimm = mapping->nvdimm;
if ((mapping->start | mapping->size) % PAGE_SIZE) {
dev_err(&nvdimm_bus->dev,
"%s: %s mapping%d is not %ld aligned\n",
caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
return NULL;
}
if (test_bit(NDD_UNARMED, &nvdimm->flags))
ro = 1;
}
nd_region =
kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
GFP_KERNEL);
if (!nd_region)
return NULL;
nd_region->ndr_mappings = ndr_desc->num_mappings;
/* CXL pre-assigns memregion ids before creating nvdimm regions */
if (test_bit(ND_REGION_CXL, &ndr_desc->flags)) {
nd_region->id = ndr_desc->memregion;
} else {
nd_region->id = memregion_alloc(GFP_KERNEL);
if (nd_region->id < 0)
goto err_id;
}
nd_region->lane = alloc_percpu(struct nd_percpu_lane);
if (!nd_region->lane)
goto err_percpu;
for (i = 0; i < nr_cpu_ids; i++) {
struct nd_percpu_lane *ndl;
ndl = per_cpu_ptr(nd_region->lane, i);
spin_lock_init(&ndl->lock);
ndl->count = 0;
}
for (i = 0; i < ndr_desc->num_mappings; i++) {
struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
struct nvdimm *nvdimm = mapping->nvdimm;
nd_region->mapping[i].nvdimm = nvdimm;
nd_region->mapping[i].start = mapping->start;
nd_region->mapping[i].size = mapping->size;
nd_region->mapping[i].position = mapping->position;
INIT_LIST_HEAD(&nd_region->mapping[i].labels);
mutex_init(&nd_region->mapping[i].lock);
get_device(&nvdimm->dev);
}
nd_region->provider_data = ndr_desc->provider_data;
nd_region->nd_set = ndr_desc->nd_set;
nd_region->num_lanes = ndr_desc->num_lanes;
nd_region->flags = ndr_desc->flags;
nd_region->ro = ro;
nd_region->numa_node = ndr_desc->numa_node;
nd_region->target_node = ndr_desc->target_node;
ida_init(&nd_region->ns_ida);
ida_init(&nd_region->btt_ida);
ida_init(&nd_region->pfn_ida);
ida_init(&nd_region->dax_ida);
dev = &nd_region->dev;
dev_set_name(dev, "region%d", nd_region->id);
dev->parent = &nvdimm_bus->dev;
dev->type = dev_type;
dev->groups = ndr_desc->attr_groups;
dev->of_node = ndr_desc->of_node;
nd_region->ndr_size = resource_size(ndr_desc->res);
nd_region->ndr_start = ndr_desc->res->start;
nd_region->align = default_align(nd_region);
if (ndr_desc->flush)
nd_region->flush = ndr_desc->flush;
else
nd_region->flush = NULL;
device_initialize(dev);
lockdep_set_class(&dev->mutex, &nvdimm_region_key);
nd_device_register(dev);
return nd_region;
err_percpu:
if (!test_bit(ND_REGION_CXL, &ndr_desc->flags))
memregion_free(nd_region->id);
err_id:
kfree(nd_region);
return NULL;
}
struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc)
{
ndr_desc->num_lanes = ND_MAX_LANES;
return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
struct nd_region_desc *ndr_desc)
{
ndr_desc->num_lanes = ND_MAX_LANES;
return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
__func__);
}
EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
void nvdimm_region_delete(struct nd_region *nd_region)
{
if (nd_region)
nd_device_unregister(&nd_region->dev, ND_SYNC);
}
EXPORT_SYMBOL_GPL(nvdimm_region_delete);
int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
{
int rc = 0;
if (!nd_region->flush)
rc = generic_nvdimm_flush(nd_region);
else {
if (nd_region->flush(nd_region, bio))
rc = -EIO;
}
return rc;
}
/**
* generic_nvdimm_flush() - flush any posted write queues between the cpu and pmem media
* @nd_region: interleaved pmem region
*/
int generic_nvdimm_flush(struct nd_region *nd_region)
{
struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
int i, idx;
/*
* Try to encourage some diversity in flush hint addresses
* across cpus assuming a limited number of flush hints.
*/
idx = this_cpu_read(flush_idx);
idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
/*
* The pmem_wmb() is needed to 'sfence' all
* previous writes such that they are architecturally visible for
* the platform buffer flush. Note that we've already arranged for pmem
* writes to avoid the cache via memcpy_flushcache(). The final
* wmb() ensures ordering for the NVDIMM flush write.
*/
pmem_wmb();
for (i = 0; i < nd_region->ndr_mappings; i++)
if (ndrd_get_flush_wpq(ndrd, i, 0))
writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
wmb();
return 0;
}
EXPORT_SYMBOL_GPL(nvdimm_flush);
/**
* nvdimm_has_flush - determine write flushing requirements
* @nd_region: interleaved pmem region
*
* Returns 1 if writes require flushing
* Returns 0 if writes do not require flushing
* Returns -ENXIO if flushing capability can not be determined
*/
int nvdimm_has_flush(struct nd_region *nd_region)
{
int i;
/* no nvdimm or pmem api == flushing capability unknown */
if (nd_region->ndr_mappings == 0
|| !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
return -ENXIO;
/* Test if an explicit flush function is defined */
if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
return 1;
/* Test if any flush hints for the region are available */
for (i = 0; i < nd_region->ndr_mappings; i++) {
struct nd_mapping *nd_mapping = &nd_region->mapping[i];
struct nvdimm *nvdimm = nd_mapping->nvdimm;
/* flush hints present / available */
if (nvdimm->num_flush)
return 1;
}
/*
* The platform defines dimm devices without hints nor explicit flush,
* assume platform persistence mechanism like ADR
*/
return 0;
}
EXPORT_SYMBOL_GPL(nvdimm_has_flush);
int nvdimm_has_cache(struct nd_region *nd_region)
{
return is_nd_pmem(&nd_region->dev) &&
!test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
}
EXPORT_SYMBOL_GPL(nvdimm_has_cache);
bool is_nvdimm_sync(struct nd_region *nd_region)
{
if (is_nd_volatile(&nd_region->dev))
return true;
return is_nd_pmem(&nd_region->dev) &&
!test_bit(ND_REGION_ASYNC, &nd_region->flags);
}
EXPORT_SYMBOL_GPL(is_nvdimm_sync);
struct conflict_context {
struct nd_region *nd_region;
resource_size_t start, size;
};
static int region_conflict(struct device *dev, void *data)
{
struct nd_region *nd_region;
struct conflict_context *ctx = data;
resource_size_t res_end, region_end, region_start;
if (!is_memory(dev))
return 0;
nd_region = to_nd_region(dev);
if (nd_region == ctx->nd_region)
return 0;
res_end = ctx->start + ctx->size;
region_start = nd_region->ndr_start;
region_end = region_start + nd_region->ndr_size;
if (ctx->start >= region_start && ctx->start < region_end)
return -EBUSY;
if (res_end > region_start && res_end <= region_end)
return -EBUSY;
return 0;
}
int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
resource_size_t size)
{
struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
struct conflict_context ctx = {
.nd_region = nd_region,
.start = start,
.size = size,
};
return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
}
MODULE_IMPORT_NS(DEVMEM);