mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2024-12-29 17:25:38 +00:00
978c4486cc
Syzbot reported [1] crash that happens for following tracing scenario:
- create tracepoint perf event with attr.inherit=1, attach it to the
process and set bpf program to it
- attached process forks -> chid creates inherited event
the new child event shares the parent's bpf program and tp_event
(hence prog_array) which is global for tracepoint
- exit both process and its child -> release both events
- first perf_event_detach_bpf_prog call will release tp_event->prog_array
and second perf_event_detach_bpf_prog will crash, because
tp_event->prog_array is NULL
The fix makes sure the perf_event_detach_bpf_prog checks prog_array
is valid before it tries to remove the bpf program from it.
[1] https://lore.kernel.org/bpf/Z1MR6dCIKajNS6nU@krava/T/#m91dbf0688221ec7a7fc95e896a7ef9ff93b0b8ad
Fixes: 0ee288e69d
("bpf,perf: Fix perf_event_detach_bpf_prog error handling")
Reported-by: syzbot+2e0d2840414ce817aaac@syzkaller.appspotmail.com
Signed-off-by: Jiri Olsa <jolsa@kernel.org>
Signed-off-by: Andrii Nakryiko <andrii@kernel.org>
Link: https://lore.kernel.org/bpf/20241208142507.1207698-1-jolsa@kernel.org
3558 lines
92 KiB
C
3558 lines
92 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
|
|
* Copyright (c) 2016 Facebook
|
|
*/
|
|
#include <linux/kernel.h>
|
|
#include <linux/types.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/bpf_verifier.h>
|
|
#include <linux/bpf_perf_event.h>
|
|
#include <linux/btf.h>
|
|
#include <linux/filter.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/kprobes.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/syscalls.h>
|
|
#include <linux/error-injection.h>
|
|
#include <linux/btf_ids.h>
|
|
#include <linux/bpf_lsm.h>
|
|
#include <linux/fprobe.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/key.h>
|
|
#include <linux/verification.h>
|
|
#include <linux/namei.h>
|
|
|
|
#include <net/bpf_sk_storage.h>
|
|
|
|
#include <uapi/linux/bpf.h>
|
|
#include <uapi/linux/btf.h>
|
|
|
|
#include <asm/tlb.h>
|
|
|
|
#include "trace_probe.h"
|
|
#include "trace.h"
|
|
|
|
#define CREATE_TRACE_POINTS
|
|
#include "bpf_trace.h"
|
|
|
|
#define bpf_event_rcu_dereference(p) \
|
|
rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
|
|
|
|
#define MAX_UPROBE_MULTI_CNT (1U << 20)
|
|
#define MAX_KPROBE_MULTI_CNT (1U << 20)
|
|
|
|
#ifdef CONFIG_MODULES
|
|
struct bpf_trace_module {
|
|
struct module *module;
|
|
struct list_head list;
|
|
};
|
|
|
|
static LIST_HEAD(bpf_trace_modules);
|
|
static DEFINE_MUTEX(bpf_module_mutex);
|
|
|
|
static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
|
|
{
|
|
struct bpf_raw_event_map *btp, *ret = NULL;
|
|
struct bpf_trace_module *btm;
|
|
unsigned int i;
|
|
|
|
mutex_lock(&bpf_module_mutex);
|
|
list_for_each_entry(btm, &bpf_trace_modules, list) {
|
|
for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
|
|
btp = &btm->module->bpf_raw_events[i];
|
|
if (!strcmp(btp->tp->name, name)) {
|
|
if (try_module_get(btm->module))
|
|
ret = btp;
|
|
goto out;
|
|
}
|
|
}
|
|
}
|
|
out:
|
|
mutex_unlock(&bpf_module_mutex);
|
|
return ret;
|
|
}
|
|
#else
|
|
static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
|
|
{
|
|
return NULL;
|
|
}
|
|
#endif /* CONFIG_MODULES */
|
|
|
|
u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
|
|
u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
|
|
|
|
static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
|
|
u64 flags, const struct btf **btf,
|
|
s32 *btf_id);
|
|
static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
|
|
static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
|
|
|
|
static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
|
|
static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
|
|
|
|
/**
|
|
* trace_call_bpf - invoke BPF program
|
|
* @call: tracepoint event
|
|
* @ctx: opaque context pointer
|
|
*
|
|
* kprobe handlers execute BPF programs via this helper.
|
|
* Can be used from static tracepoints in the future.
|
|
*
|
|
* Return: BPF programs always return an integer which is interpreted by
|
|
* kprobe handler as:
|
|
* 0 - return from kprobe (event is filtered out)
|
|
* 1 - store kprobe event into ring buffer
|
|
* Other values are reserved and currently alias to 1
|
|
*/
|
|
unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
|
|
{
|
|
unsigned int ret;
|
|
|
|
cant_sleep();
|
|
|
|
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
|
|
/*
|
|
* since some bpf program is already running on this cpu,
|
|
* don't call into another bpf program (same or different)
|
|
* and don't send kprobe event into ring-buffer,
|
|
* so return zero here
|
|
*/
|
|
rcu_read_lock();
|
|
bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
|
|
rcu_read_unlock();
|
|
ret = 0;
|
|
goto out;
|
|
}
|
|
|
|
/*
|
|
* Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
|
|
* to all call sites, we did a bpf_prog_array_valid() there to check
|
|
* whether call->prog_array is empty or not, which is
|
|
* a heuristic to speed up execution.
|
|
*
|
|
* If bpf_prog_array_valid() fetched prog_array was
|
|
* non-NULL, we go into trace_call_bpf() and do the actual
|
|
* proper rcu_dereference() under RCU lock.
|
|
* If it turns out that prog_array is NULL then, we bail out.
|
|
* For the opposite, if the bpf_prog_array_valid() fetched pointer
|
|
* was NULL, you'll skip the prog_array with the risk of missing
|
|
* out of events when it was updated in between this and the
|
|
* rcu_dereference() which is accepted risk.
|
|
*/
|
|
rcu_read_lock();
|
|
ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
|
|
ctx, bpf_prog_run);
|
|
rcu_read_unlock();
|
|
|
|
out:
|
|
__this_cpu_dec(bpf_prog_active);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
|
|
BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
|
|
{
|
|
regs_set_return_value(regs, rc);
|
|
override_function_with_return(regs);
|
|
return 0;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_override_return_proto = {
|
|
.func = bpf_override_return,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
#endif
|
|
|
|
static __always_inline int
|
|
bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
|
|
{
|
|
int ret;
|
|
|
|
ret = copy_from_user_nofault(dst, unsafe_ptr, size);
|
|
if (unlikely(ret < 0))
|
|
memset(dst, 0, size);
|
|
return ret;
|
|
}
|
|
|
|
BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
|
|
const void __user *, unsafe_ptr)
|
|
{
|
|
return bpf_probe_read_user_common(dst, size, unsafe_ptr);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_probe_read_user_proto = {
|
|
.func = bpf_probe_read_user,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static __always_inline int
|
|
bpf_probe_read_user_str_common(void *dst, u32 size,
|
|
const void __user *unsafe_ptr)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* NB: We rely on strncpy_from_user() not copying junk past the NUL
|
|
* terminator into `dst`.
|
|
*
|
|
* strncpy_from_user() does long-sized strides in the fast path. If the
|
|
* strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
|
|
* then there could be junk after the NUL in `dst`. If user takes `dst`
|
|
* and keys a hash map with it, then semantically identical strings can
|
|
* occupy multiple entries in the map.
|
|
*/
|
|
ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
|
|
if (unlikely(ret < 0))
|
|
memset(dst, 0, size);
|
|
return ret;
|
|
}
|
|
|
|
BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
|
|
const void __user *, unsafe_ptr)
|
|
{
|
|
return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_probe_read_user_str_proto = {
|
|
.func = bpf_probe_read_user_str,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
|
|
const void *, unsafe_ptr)
|
|
{
|
|
return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_probe_read_kernel_proto = {
|
|
.func = bpf_probe_read_kernel,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static __always_inline int
|
|
bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
|
|
{
|
|
int ret;
|
|
|
|
/*
|
|
* The strncpy_from_kernel_nofault() call will likely not fill the
|
|
* entire buffer, but that's okay in this circumstance as we're probing
|
|
* arbitrary memory anyway similar to bpf_probe_read_*() and might
|
|
* as well probe the stack. Thus, memory is explicitly cleared
|
|
* only in error case, so that improper users ignoring return
|
|
* code altogether don't copy garbage; otherwise length of string
|
|
* is returned that can be used for bpf_perf_event_output() et al.
|
|
*/
|
|
ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
|
|
if (unlikely(ret < 0))
|
|
memset(dst, 0, size);
|
|
return ret;
|
|
}
|
|
|
|
BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
|
|
const void *, unsafe_ptr)
|
|
{
|
|
return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
|
|
.func = bpf_probe_read_kernel_str,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
|
|
BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
|
|
const void *, unsafe_ptr)
|
|
{
|
|
if ((unsigned long)unsafe_ptr < TASK_SIZE) {
|
|
return bpf_probe_read_user_common(dst, size,
|
|
(__force void __user *)unsafe_ptr);
|
|
}
|
|
return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_probe_read_compat_proto = {
|
|
.func = bpf_probe_read_compat,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
|
|
const void *, unsafe_ptr)
|
|
{
|
|
if ((unsigned long)unsafe_ptr < TASK_SIZE) {
|
|
return bpf_probe_read_user_str_common(dst, size,
|
|
(__force void __user *)unsafe_ptr);
|
|
}
|
|
return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
|
|
.func = bpf_probe_read_compat_str,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
#endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
|
|
|
|
BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
|
|
u32, size)
|
|
{
|
|
/*
|
|
* Ensure we're in user context which is safe for the helper to
|
|
* run. This helper has no business in a kthread.
|
|
*
|
|
* access_ok() should prevent writing to non-user memory, but in
|
|
* some situations (nommu, temporary switch, etc) access_ok() does
|
|
* not provide enough validation, hence the check on KERNEL_DS.
|
|
*
|
|
* nmi_uaccess_okay() ensures the probe is not run in an interim
|
|
* state, when the task or mm are switched. This is specifically
|
|
* required to prevent the use of temporary mm.
|
|
*/
|
|
|
|
if (unlikely(in_interrupt() ||
|
|
current->flags & (PF_KTHREAD | PF_EXITING)))
|
|
return -EPERM;
|
|
if (unlikely(!nmi_uaccess_okay()))
|
|
return -EPERM;
|
|
|
|
return copy_to_user_nofault(unsafe_ptr, src, size);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_probe_write_user_proto = {
|
|
.func = bpf_probe_write_user,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_ANYTHING,
|
|
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg3_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
|
|
{
|
|
if (!capable(CAP_SYS_ADMIN))
|
|
return NULL;
|
|
|
|
pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
|
|
current->comm, task_pid_nr(current));
|
|
|
|
return &bpf_probe_write_user_proto;
|
|
}
|
|
|
|
#define MAX_TRACE_PRINTK_VARARGS 3
|
|
#define BPF_TRACE_PRINTK_SIZE 1024
|
|
|
|
BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
|
|
u64, arg2, u64, arg3)
|
|
{
|
|
u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
|
|
struct bpf_bprintf_data data = {
|
|
.get_bin_args = true,
|
|
.get_buf = true,
|
|
};
|
|
int ret;
|
|
|
|
ret = bpf_bprintf_prepare(fmt, fmt_size, args,
|
|
MAX_TRACE_PRINTK_VARARGS, &data);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
|
|
|
|
trace_bpf_trace_printk(data.buf);
|
|
|
|
bpf_bprintf_cleanup(&data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_trace_printk_proto = {
|
|
.func = bpf_trace_printk,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static void __set_printk_clr_event(void)
|
|
{
|
|
/*
|
|
* This program might be calling bpf_trace_printk,
|
|
* so enable the associated bpf_trace/bpf_trace_printk event.
|
|
* Repeat this each time as it is possible a user has
|
|
* disabled bpf_trace_printk events. By loading a program
|
|
* calling bpf_trace_printk() however the user has expressed
|
|
* the intent to see such events.
|
|
*/
|
|
if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
|
|
pr_warn_ratelimited("could not enable bpf_trace_printk events");
|
|
}
|
|
|
|
const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
|
|
{
|
|
__set_printk_clr_event();
|
|
return &bpf_trace_printk_proto;
|
|
}
|
|
|
|
BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
|
|
u32, data_len)
|
|
{
|
|
struct bpf_bprintf_data data = {
|
|
.get_bin_args = true,
|
|
.get_buf = true,
|
|
};
|
|
int ret, num_args;
|
|
|
|
if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
|
|
(data_len && !args))
|
|
return -EINVAL;
|
|
num_args = data_len / 8;
|
|
|
|
ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
|
|
|
|
trace_bpf_trace_printk(data.buf);
|
|
|
|
bpf_bprintf_cleanup(&data);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_trace_vprintk_proto = {
|
|
.func = bpf_trace_vprintk,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
.arg3_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
|
|
.arg4_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
|
|
{
|
|
__set_printk_clr_event();
|
|
return &bpf_trace_vprintk_proto;
|
|
}
|
|
|
|
BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
|
|
const void *, args, u32, data_len)
|
|
{
|
|
struct bpf_bprintf_data data = {
|
|
.get_bin_args = true,
|
|
};
|
|
int err, num_args;
|
|
|
|
if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
|
|
(data_len && !args))
|
|
return -EINVAL;
|
|
num_args = data_len / 8;
|
|
|
|
err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
|
|
if (err < 0)
|
|
return err;
|
|
|
|
seq_bprintf(m, fmt, data.bin_args);
|
|
|
|
bpf_bprintf_cleanup(&data);
|
|
|
|
return seq_has_overflowed(m) ? -EOVERFLOW : 0;
|
|
}
|
|
|
|
BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
|
|
|
|
static const struct bpf_func_proto bpf_seq_printf_proto = {
|
|
.func = bpf_seq_printf,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_BTF_ID,
|
|
.arg1_btf_id = &btf_seq_file_ids[0],
|
|
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg3_type = ARG_CONST_SIZE,
|
|
.arg4_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
|
|
{
|
|
return seq_write(m, data, len) ? -EOVERFLOW : 0;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_seq_write_proto = {
|
|
.func = bpf_seq_write,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_BTF_ID,
|
|
.arg1_btf_id = &btf_seq_file_ids[0],
|
|
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
|
|
u32, btf_ptr_size, u64, flags)
|
|
{
|
|
const struct btf *btf;
|
|
s32 btf_id;
|
|
int ret;
|
|
|
|
ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
|
|
.func = bpf_seq_printf_btf,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_BTF_ID,
|
|
.arg1_btf_id = &btf_seq_file_ids[0],
|
|
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static __always_inline int
|
|
get_map_perf_counter(struct bpf_map *map, u64 flags,
|
|
u64 *value, u64 *enabled, u64 *running)
|
|
{
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
unsigned int cpu = smp_processor_id();
|
|
u64 index = flags & BPF_F_INDEX_MASK;
|
|
struct bpf_event_entry *ee;
|
|
|
|
if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
|
|
return -EINVAL;
|
|
if (index == BPF_F_CURRENT_CPU)
|
|
index = cpu;
|
|
if (unlikely(index >= array->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
ee = READ_ONCE(array->ptrs[index]);
|
|
if (!ee)
|
|
return -ENOENT;
|
|
|
|
return perf_event_read_local(ee->event, value, enabled, running);
|
|
}
|
|
|
|
BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
|
|
{
|
|
u64 value = 0;
|
|
int err;
|
|
|
|
err = get_map_perf_counter(map, flags, &value, NULL, NULL);
|
|
/*
|
|
* this api is ugly since we miss [-22..-2] range of valid
|
|
* counter values, but that's uapi
|
|
*/
|
|
if (err)
|
|
return err;
|
|
return value;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_read_proto = {
|
|
.func = bpf_perf_event_read,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
|
|
struct bpf_perf_event_value *, buf, u32, size)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
|
|
goto clear;
|
|
err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
|
|
&buf->running);
|
|
if (unlikely(err))
|
|
goto clear;
|
|
return 0;
|
|
clear:
|
|
memset(buf, 0, size);
|
|
return err;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
|
|
.func = bpf_perf_event_read_value,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_CONST_MAP_PTR,
|
|
.arg2_type = ARG_ANYTHING,
|
|
.arg3_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg4_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
static __always_inline u64
|
|
__bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
|
|
u64 flags, struct perf_sample_data *sd)
|
|
{
|
|
struct bpf_array *array = container_of(map, struct bpf_array, map);
|
|
unsigned int cpu = smp_processor_id();
|
|
u64 index = flags & BPF_F_INDEX_MASK;
|
|
struct bpf_event_entry *ee;
|
|
struct perf_event *event;
|
|
|
|
if (index == BPF_F_CURRENT_CPU)
|
|
index = cpu;
|
|
if (unlikely(index >= array->map.max_entries))
|
|
return -E2BIG;
|
|
|
|
ee = READ_ONCE(array->ptrs[index]);
|
|
if (!ee)
|
|
return -ENOENT;
|
|
|
|
event = ee->event;
|
|
if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
|
|
event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(event->oncpu != cpu))
|
|
return -EOPNOTSUPP;
|
|
|
|
return perf_event_output(event, sd, regs);
|
|
}
|
|
|
|
/*
|
|
* Support executing tracepoints in normal, irq, and nmi context that each call
|
|
* bpf_perf_event_output
|
|
*/
|
|
struct bpf_trace_sample_data {
|
|
struct perf_sample_data sds[3];
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
|
|
static DEFINE_PER_CPU(int, bpf_trace_nest_level);
|
|
BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
|
|
u64, flags, void *, data, u64, size)
|
|
{
|
|
struct bpf_trace_sample_data *sds;
|
|
struct perf_raw_record raw = {
|
|
.frag = {
|
|
.size = size,
|
|
.data = data,
|
|
},
|
|
};
|
|
struct perf_sample_data *sd;
|
|
int nest_level, err;
|
|
|
|
preempt_disable();
|
|
sds = this_cpu_ptr(&bpf_trace_sds);
|
|
nest_level = this_cpu_inc_return(bpf_trace_nest_level);
|
|
|
|
if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
|
|
err = -EBUSY;
|
|
goto out;
|
|
}
|
|
|
|
sd = &sds->sds[nest_level - 1];
|
|
|
|
if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
|
|
err = -EINVAL;
|
|
goto out;
|
|
}
|
|
|
|
perf_sample_data_init(sd, 0, 0);
|
|
perf_sample_save_raw_data(sd, &raw);
|
|
|
|
err = __bpf_perf_event_output(regs, map, flags, sd);
|
|
out:
|
|
this_cpu_dec(bpf_trace_nest_level);
|
|
preempt_enable();
|
|
return err;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto = {
|
|
.func = bpf_perf_event_output,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
|
|
struct bpf_nested_pt_regs {
|
|
struct pt_regs regs[3];
|
|
};
|
|
static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
|
|
static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
|
|
|
|
u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
|
|
void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
|
|
{
|
|
struct perf_raw_frag frag = {
|
|
.copy = ctx_copy,
|
|
.size = ctx_size,
|
|
.data = ctx,
|
|
};
|
|
struct perf_raw_record raw = {
|
|
.frag = {
|
|
{
|
|
.next = ctx_size ? &frag : NULL,
|
|
},
|
|
.size = meta_size,
|
|
.data = meta,
|
|
},
|
|
};
|
|
struct perf_sample_data *sd;
|
|
struct pt_regs *regs;
|
|
int nest_level;
|
|
u64 ret;
|
|
|
|
preempt_disable();
|
|
nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
|
|
|
|
if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
|
|
ret = -EBUSY;
|
|
goto out;
|
|
}
|
|
sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
|
|
regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
perf_sample_data_init(sd, 0, 0);
|
|
perf_sample_save_raw_data(sd, &raw);
|
|
|
|
ret = __bpf_perf_event_output(regs, map, flags, sd);
|
|
out:
|
|
this_cpu_dec(bpf_event_output_nest_level);
|
|
preempt_enable();
|
|
return ret;
|
|
}
|
|
|
|
BPF_CALL_0(bpf_get_current_task)
|
|
{
|
|
return (long) current;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_current_task_proto = {
|
|
.func = bpf_get_current_task,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
};
|
|
|
|
BPF_CALL_0(bpf_get_current_task_btf)
|
|
{
|
|
return (unsigned long) current;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_get_current_task_btf_proto = {
|
|
.func = bpf_get_current_task_btf,
|
|
.gpl_only = true,
|
|
.ret_type = RET_PTR_TO_BTF_ID_TRUSTED,
|
|
.ret_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
|
|
};
|
|
|
|
BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
|
|
{
|
|
return (unsigned long) task_pt_regs(task);
|
|
}
|
|
|
|
BTF_ID_LIST(bpf_task_pt_regs_ids)
|
|
BTF_ID(struct, pt_regs)
|
|
|
|
const struct bpf_func_proto bpf_task_pt_regs_proto = {
|
|
.func = bpf_task_pt_regs,
|
|
.gpl_only = true,
|
|
.arg1_type = ARG_PTR_TO_BTF_ID,
|
|
.arg1_btf_id = &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
|
|
.ret_type = RET_PTR_TO_BTF_ID,
|
|
.ret_btf_id = &bpf_task_pt_regs_ids[0],
|
|
};
|
|
|
|
struct send_signal_irq_work {
|
|
struct irq_work irq_work;
|
|
struct task_struct *task;
|
|
u32 sig;
|
|
enum pid_type type;
|
|
bool has_siginfo;
|
|
struct kernel_siginfo info;
|
|
};
|
|
|
|
static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
|
|
|
|
static void do_bpf_send_signal(struct irq_work *entry)
|
|
{
|
|
struct send_signal_irq_work *work;
|
|
struct kernel_siginfo *siginfo;
|
|
|
|
work = container_of(entry, struct send_signal_irq_work, irq_work);
|
|
siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
|
|
|
|
group_send_sig_info(work->sig, siginfo, work->task, work->type);
|
|
put_task_struct(work->task);
|
|
}
|
|
|
|
static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
|
|
{
|
|
struct send_signal_irq_work *work = NULL;
|
|
struct kernel_siginfo info;
|
|
struct kernel_siginfo *siginfo;
|
|
|
|
if (!task) {
|
|
task = current;
|
|
siginfo = SEND_SIG_PRIV;
|
|
} else {
|
|
clear_siginfo(&info);
|
|
info.si_signo = sig;
|
|
info.si_errno = 0;
|
|
info.si_code = SI_KERNEL;
|
|
info.si_pid = 0;
|
|
info.si_uid = 0;
|
|
info.si_value.sival_ptr = (void *)(unsigned long)value;
|
|
siginfo = &info;
|
|
}
|
|
|
|
/* Similar to bpf_probe_write_user, task needs to be
|
|
* in a sound condition and kernel memory access be
|
|
* permitted in order to send signal to the current
|
|
* task.
|
|
*/
|
|
if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
|
|
return -EPERM;
|
|
if (unlikely(!nmi_uaccess_okay()))
|
|
return -EPERM;
|
|
/* Task should not be pid=1 to avoid kernel panic. */
|
|
if (unlikely(is_global_init(task)))
|
|
return -EPERM;
|
|
|
|
if (irqs_disabled()) {
|
|
/* Do an early check on signal validity. Otherwise,
|
|
* the error is lost in deferred irq_work.
|
|
*/
|
|
if (unlikely(!valid_signal(sig)))
|
|
return -EINVAL;
|
|
|
|
work = this_cpu_ptr(&send_signal_work);
|
|
if (irq_work_is_busy(&work->irq_work))
|
|
return -EBUSY;
|
|
|
|
/* Add the current task, which is the target of sending signal,
|
|
* to the irq_work. The current task may change when queued
|
|
* irq works get executed.
|
|
*/
|
|
work->task = get_task_struct(task);
|
|
work->has_siginfo = siginfo == &info;
|
|
if (work->has_siginfo)
|
|
copy_siginfo(&work->info, &info);
|
|
work->sig = sig;
|
|
work->type = type;
|
|
irq_work_queue(&work->irq_work);
|
|
return 0;
|
|
}
|
|
|
|
return group_send_sig_info(sig, siginfo, task, type);
|
|
}
|
|
|
|
BPF_CALL_1(bpf_send_signal, u32, sig)
|
|
{
|
|
return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_send_signal_proto = {
|
|
.func = bpf_send_signal,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_send_signal_thread, u32, sig)
|
|
{
|
|
return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_send_signal_thread_proto = {
|
|
.func = bpf_send_signal_thread,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
|
|
{
|
|
struct path copy;
|
|
long len;
|
|
char *p;
|
|
|
|
if (!sz)
|
|
return 0;
|
|
|
|
/*
|
|
* The path pointer is verified as trusted and safe to use,
|
|
* but let's double check it's valid anyway to workaround
|
|
* potentially broken verifier.
|
|
*/
|
|
len = copy_from_kernel_nofault(©, path, sizeof(*path));
|
|
if (len < 0)
|
|
return len;
|
|
|
|
p = d_path(©, buf, sz);
|
|
if (IS_ERR(p)) {
|
|
len = PTR_ERR(p);
|
|
} else {
|
|
len = buf + sz - p;
|
|
memmove(buf, p, len);
|
|
}
|
|
|
|
return len;
|
|
}
|
|
|
|
BTF_SET_START(btf_allowlist_d_path)
|
|
#ifdef CONFIG_SECURITY
|
|
BTF_ID(func, security_file_permission)
|
|
BTF_ID(func, security_inode_getattr)
|
|
BTF_ID(func, security_file_open)
|
|
#endif
|
|
#ifdef CONFIG_SECURITY_PATH
|
|
BTF_ID(func, security_path_truncate)
|
|
#endif
|
|
BTF_ID(func, vfs_truncate)
|
|
BTF_ID(func, vfs_fallocate)
|
|
BTF_ID(func, dentry_open)
|
|
BTF_ID(func, vfs_getattr)
|
|
BTF_ID(func, filp_close)
|
|
BTF_SET_END(btf_allowlist_d_path)
|
|
|
|
static bool bpf_d_path_allowed(const struct bpf_prog *prog)
|
|
{
|
|
if (prog->type == BPF_PROG_TYPE_TRACING &&
|
|
prog->expected_attach_type == BPF_TRACE_ITER)
|
|
return true;
|
|
|
|
if (prog->type == BPF_PROG_TYPE_LSM)
|
|
return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
|
|
|
|
return btf_id_set_contains(&btf_allowlist_d_path,
|
|
prog->aux->attach_btf_id);
|
|
}
|
|
|
|
BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
|
|
|
|
static const struct bpf_func_proto bpf_d_path_proto = {
|
|
.func = bpf_d_path,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_BTF_ID,
|
|
.arg1_btf_id = &bpf_d_path_btf_ids[0],
|
|
.arg2_type = ARG_PTR_TO_MEM,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.allowed = bpf_d_path_allowed,
|
|
};
|
|
|
|
#define BTF_F_ALL (BTF_F_COMPACT | BTF_F_NONAME | \
|
|
BTF_F_PTR_RAW | BTF_F_ZERO)
|
|
|
|
static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
|
|
u64 flags, const struct btf **btf,
|
|
s32 *btf_id)
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
if (unlikely(flags & ~(BTF_F_ALL)))
|
|
return -EINVAL;
|
|
|
|
if (btf_ptr_size != sizeof(struct btf_ptr))
|
|
return -EINVAL;
|
|
|
|
*btf = bpf_get_btf_vmlinux();
|
|
|
|
if (IS_ERR_OR_NULL(*btf))
|
|
return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
|
|
|
|
if (ptr->type_id > 0)
|
|
*btf_id = ptr->type_id;
|
|
else
|
|
return -EINVAL;
|
|
|
|
if (*btf_id > 0)
|
|
t = btf_type_by_id(*btf, *btf_id);
|
|
if (*btf_id <= 0 || !t)
|
|
return -ENOENT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
|
|
u32, btf_ptr_size, u64, flags)
|
|
{
|
|
const struct btf *btf;
|
|
s32 btf_id;
|
|
int ret;
|
|
|
|
ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
|
|
flags);
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_snprintf_btf_proto = {
|
|
.func = bpf_snprintf_btf,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
.arg3_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg4_type = ARG_CONST_SIZE,
|
|
.arg5_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
|
|
{
|
|
/* This helper call is inlined by verifier. */
|
|
return ((u64 *)ctx)[-2];
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
|
|
.func = bpf_get_func_ip_tracing,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
#ifdef CONFIG_X86_KERNEL_IBT
|
|
static unsigned long get_entry_ip(unsigned long fentry_ip)
|
|
{
|
|
u32 instr;
|
|
|
|
/* We want to be extra safe in case entry ip is on the page edge,
|
|
* but otherwise we need to avoid get_kernel_nofault()'s overhead.
|
|
*/
|
|
if ((fentry_ip & ~PAGE_MASK) < ENDBR_INSN_SIZE) {
|
|
if (get_kernel_nofault(instr, (u32 *)(fentry_ip - ENDBR_INSN_SIZE)))
|
|
return fentry_ip;
|
|
} else {
|
|
instr = *(u32 *)(fentry_ip - ENDBR_INSN_SIZE);
|
|
}
|
|
if (is_endbr(instr))
|
|
fentry_ip -= ENDBR_INSN_SIZE;
|
|
return fentry_ip;
|
|
}
|
|
#else
|
|
#define get_entry_ip(fentry_ip) fentry_ip
|
|
#endif
|
|
|
|
BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
|
|
{
|
|
struct bpf_trace_run_ctx *run_ctx __maybe_unused;
|
|
struct kprobe *kp;
|
|
|
|
#ifdef CONFIG_UPROBES
|
|
run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
|
|
if (run_ctx->is_uprobe)
|
|
return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
|
|
#endif
|
|
|
|
kp = kprobe_running();
|
|
|
|
if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
|
|
return 0;
|
|
|
|
return get_entry_ip((uintptr_t)kp->addr);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
|
|
.func = bpf_get_func_ip_kprobe,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
|
|
{
|
|
return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
|
|
.func = bpf_get_func_ip_kprobe_multi,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
|
|
{
|
|
return bpf_kprobe_multi_cookie(current->bpf_ctx);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
|
|
.func = bpf_get_attach_cookie_kprobe_multi,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
|
|
{
|
|
return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
|
|
.func = bpf_get_func_ip_uprobe_multi,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
|
|
{
|
|
return bpf_uprobe_multi_cookie(current->bpf_ctx);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
|
|
.func = bpf_get_attach_cookie_uprobe_multi,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
|
|
{
|
|
struct bpf_trace_run_ctx *run_ctx;
|
|
|
|
run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
|
|
return run_ctx->bpf_cookie;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
|
|
.func = bpf_get_attach_cookie_trace,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
|
|
{
|
|
return ctx->event->bpf_cookie;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
|
|
.func = bpf_get_attach_cookie_pe,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
|
|
{
|
|
struct bpf_trace_run_ctx *run_ctx;
|
|
|
|
run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
|
|
return run_ctx->bpf_cookie;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
|
|
.func = bpf_get_attach_cookie_tracing,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
|
|
{
|
|
static const u32 br_entry_size = sizeof(struct perf_branch_entry);
|
|
u32 entry_cnt = size / br_entry_size;
|
|
|
|
entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
|
|
|
|
if (unlikely(flags))
|
|
return -EINVAL;
|
|
|
|
if (!entry_cnt)
|
|
return -ENOENT;
|
|
|
|
return entry_cnt * br_entry_size;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
|
|
.func = bpf_get_branch_snapshot,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg2_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
|
|
{
|
|
/* This helper call is inlined by verifier. */
|
|
u64 nr_args = ((u64 *)ctx)[-1];
|
|
|
|
if ((u64) n >= nr_args)
|
|
return -EINVAL;
|
|
*value = ((u64 *)ctx)[n];
|
|
return 0;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_func_arg_proto = {
|
|
.func = get_func_arg,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_ANYTHING,
|
|
.arg3_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
|
|
.arg3_size = sizeof(u64),
|
|
};
|
|
|
|
BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
|
|
{
|
|
/* This helper call is inlined by verifier. */
|
|
u64 nr_args = ((u64 *)ctx)[-1];
|
|
|
|
*value = ((u64 *)ctx)[nr_args];
|
|
return 0;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_func_ret_proto = {
|
|
.func = get_func_ret,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
|
|
.arg2_size = sizeof(u64),
|
|
};
|
|
|
|
BPF_CALL_1(get_func_arg_cnt, void *, ctx)
|
|
{
|
|
/* This helper call is inlined by verifier. */
|
|
return ((u64 *)ctx)[-1];
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
|
|
.func = get_func_arg_cnt,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
};
|
|
|
|
#ifdef CONFIG_KEYS
|
|
__bpf_kfunc_start_defs();
|
|
|
|
/**
|
|
* bpf_lookup_user_key - lookup a key by its serial
|
|
* @serial: key handle serial number
|
|
* @flags: lookup-specific flags
|
|
*
|
|
* Search a key with a given *serial* and the provided *flags*.
|
|
* If found, increment the reference count of the key by one, and
|
|
* return it in the bpf_key structure.
|
|
*
|
|
* The bpf_key structure must be passed to bpf_key_put() when done
|
|
* with it, so that the key reference count is decremented and the
|
|
* bpf_key structure is freed.
|
|
*
|
|
* Permission checks are deferred to the time the key is used by
|
|
* one of the available key-specific kfuncs.
|
|
*
|
|
* Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
|
|
* special keyring (e.g. session keyring), if it doesn't yet exist.
|
|
* Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
|
|
* for the key construction, and to retrieve uninstantiated keys (keys
|
|
* without data attached to them).
|
|
*
|
|
* Return: a bpf_key pointer with a valid key pointer if the key is found, a
|
|
* NULL pointer otherwise.
|
|
*/
|
|
__bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
|
|
{
|
|
key_ref_t key_ref;
|
|
struct bpf_key *bkey;
|
|
|
|
if (flags & ~KEY_LOOKUP_ALL)
|
|
return NULL;
|
|
|
|
/*
|
|
* Permission check is deferred until the key is used, as the
|
|
* intent of the caller is unknown here.
|
|
*/
|
|
key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
|
|
if (IS_ERR(key_ref))
|
|
return NULL;
|
|
|
|
bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
|
|
if (!bkey) {
|
|
key_put(key_ref_to_ptr(key_ref));
|
|
return NULL;
|
|
}
|
|
|
|
bkey->key = key_ref_to_ptr(key_ref);
|
|
bkey->has_ref = true;
|
|
|
|
return bkey;
|
|
}
|
|
|
|
/**
|
|
* bpf_lookup_system_key - lookup a key by a system-defined ID
|
|
* @id: key ID
|
|
*
|
|
* Obtain a bpf_key structure with a key pointer set to the passed key ID.
|
|
* The key pointer is marked as invalid, to prevent bpf_key_put() from
|
|
* attempting to decrement the key reference count on that pointer. The key
|
|
* pointer set in such way is currently understood only by
|
|
* verify_pkcs7_signature().
|
|
*
|
|
* Set *id* to one of the values defined in include/linux/verification.h:
|
|
* 0 for the primary keyring (immutable keyring of system keys);
|
|
* VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
|
|
* (where keys can be added only if they are vouched for by existing keys
|
|
* in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
|
|
* keyring (primarily used by the integrity subsystem to verify a kexec'ed
|
|
* kerned image and, possibly, the initramfs signature).
|
|
*
|
|
* Return: a bpf_key pointer with an invalid key pointer set from the
|
|
* pre-determined ID on success, a NULL pointer otherwise
|
|
*/
|
|
__bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
|
|
{
|
|
struct bpf_key *bkey;
|
|
|
|
if (system_keyring_id_check(id) < 0)
|
|
return NULL;
|
|
|
|
bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
|
|
if (!bkey)
|
|
return NULL;
|
|
|
|
bkey->key = (struct key *)(unsigned long)id;
|
|
bkey->has_ref = false;
|
|
|
|
return bkey;
|
|
}
|
|
|
|
/**
|
|
* bpf_key_put - decrement key reference count if key is valid and free bpf_key
|
|
* @bkey: bpf_key structure
|
|
*
|
|
* Decrement the reference count of the key inside *bkey*, if the pointer
|
|
* is valid, and free *bkey*.
|
|
*/
|
|
__bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
|
|
{
|
|
if (bkey->has_ref)
|
|
key_put(bkey->key);
|
|
|
|
kfree(bkey);
|
|
}
|
|
|
|
#ifdef CONFIG_SYSTEM_DATA_VERIFICATION
|
|
/**
|
|
* bpf_verify_pkcs7_signature - verify a PKCS#7 signature
|
|
* @data_p: data to verify
|
|
* @sig_p: signature of the data
|
|
* @trusted_keyring: keyring with keys trusted for signature verification
|
|
*
|
|
* Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
|
|
* with keys in a keyring referenced by *trusted_keyring*.
|
|
*
|
|
* Return: 0 on success, a negative value on error.
|
|
*/
|
|
__bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
|
|
struct bpf_dynptr *sig_p,
|
|
struct bpf_key *trusted_keyring)
|
|
{
|
|
struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
|
|
struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
|
|
const void *data, *sig;
|
|
u32 data_len, sig_len;
|
|
int ret;
|
|
|
|
if (trusted_keyring->has_ref) {
|
|
/*
|
|
* Do the permission check deferred in bpf_lookup_user_key().
|
|
* See bpf_lookup_user_key() for more details.
|
|
*
|
|
* A call to key_task_permission() here would be redundant, as
|
|
* it is already done by keyring_search() called by
|
|
* find_asymmetric_key().
|
|
*/
|
|
ret = key_validate(trusted_keyring->key);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
data_len = __bpf_dynptr_size(data_ptr);
|
|
data = __bpf_dynptr_data(data_ptr, data_len);
|
|
sig_len = __bpf_dynptr_size(sig_ptr);
|
|
sig = __bpf_dynptr_data(sig_ptr, sig_len);
|
|
|
|
return verify_pkcs7_signature(data, data_len, sig, sig_len,
|
|
trusted_keyring->key,
|
|
VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
|
|
NULL);
|
|
}
|
|
#endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
BTF_KFUNCS_START(key_sig_kfunc_set)
|
|
BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
|
|
BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
|
|
BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
|
|
#ifdef CONFIG_SYSTEM_DATA_VERIFICATION
|
|
BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
|
|
#endif
|
|
BTF_KFUNCS_END(key_sig_kfunc_set)
|
|
|
|
static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
|
|
.owner = THIS_MODULE,
|
|
.set = &key_sig_kfunc_set,
|
|
};
|
|
|
|
static int __init bpf_key_sig_kfuncs_init(void)
|
|
{
|
|
return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
|
|
&bpf_key_sig_kfunc_set);
|
|
}
|
|
|
|
late_initcall(bpf_key_sig_kfuncs_init);
|
|
#endif /* CONFIG_KEYS */
|
|
|
|
static const struct bpf_func_proto *
|
|
bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_map_lookup_elem:
|
|
return &bpf_map_lookup_elem_proto;
|
|
case BPF_FUNC_map_update_elem:
|
|
return &bpf_map_update_elem_proto;
|
|
case BPF_FUNC_map_delete_elem:
|
|
return &bpf_map_delete_elem_proto;
|
|
case BPF_FUNC_map_push_elem:
|
|
return &bpf_map_push_elem_proto;
|
|
case BPF_FUNC_map_pop_elem:
|
|
return &bpf_map_pop_elem_proto;
|
|
case BPF_FUNC_map_peek_elem:
|
|
return &bpf_map_peek_elem_proto;
|
|
case BPF_FUNC_map_lookup_percpu_elem:
|
|
return &bpf_map_lookup_percpu_elem_proto;
|
|
case BPF_FUNC_ktime_get_ns:
|
|
return &bpf_ktime_get_ns_proto;
|
|
case BPF_FUNC_ktime_get_boot_ns:
|
|
return &bpf_ktime_get_boot_ns_proto;
|
|
case BPF_FUNC_tail_call:
|
|
return &bpf_tail_call_proto;
|
|
case BPF_FUNC_get_current_task:
|
|
return &bpf_get_current_task_proto;
|
|
case BPF_FUNC_get_current_task_btf:
|
|
return &bpf_get_current_task_btf_proto;
|
|
case BPF_FUNC_task_pt_regs:
|
|
return &bpf_task_pt_regs_proto;
|
|
case BPF_FUNC_get_current_uid_gid:
|
|
return &bpf_get_current_uid_gid_proto;
|
|
case BPF_FUNC_get_current_comm:
|
|
return &bpf_get_current_comm_proto;
|
|
case BPF_FUNC_trace_printk:
|
|
return bpf_get_trace_printk_proto();
|
|
case BPF_FUNC_get_smp_processor_id:
|
|
return &bpf_get_smp_processor_id_proto;
|
|
case BPF_FUNC_get_numa_node_id:
|
|
return &bpf_get_numa_node_id_proto;
|
|
case BPF_FUNC_perf_event_read:
|
|
return &bpf_perf_event_read_proto;
|
|
case BPF_FUNC_get_prandom_u32:
|
|
return &bpf_get_prandom_u32_proto;
|
|
case BPF_FUNC_probe_write_user:
|
|
return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
|
|
NULL : bpf_get_probe_write_proto();
|
|
case BPF_FUNC_probe_read_user:
|
|
return &bpf_probe_read_user_proto;
|
|
case BPF_FUNC_probe_read_kernel:
|
|
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
|
|
NULL : &bpf_probe_read_kernel_proto;
|
|
case BPF_FUNC_probe_read_user_str:
|
|
return &bpf_probe_read_user_str_proto;
|
|
case BPF_FUNC_probe_read_kernel_str:
|
|
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
|
|
NULL : &bpf_probe_read_kernel_str_proto;
|
|
#ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
|
|
case BPF_FUNC_probe_read:
|
|
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
|
|
NULL : &bpf_probe_read_compat_proto;
|
|
case BPF_FUNC_probe_read_str:
|
|
return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
|
|
NULL : &bpf_probe_read_compat_str_proto;
|
|
#endif
|
|
#ifdef CONFIG_CGROUPS
|
|
case BPF_FUNC_cgrp_storage_get:
|
|
return &bpf_cgrp_storage_get_proto;
|
|
case BPF_FUNC_cgrp_storage_delete:
|
|
return &bpf_cgrp_storage_delete_proto;
|
|
case BPF_FUNC_current_task_under_cgroup:
|
|
return &bpf_current_task_under_cgroup_proto;
|
|
#endif
|
|
case BPF_FUNC_send_signal:
|
|
return &bpf_send_signal_proto;
|
|
case BPF_FUNC_send_signal_thread:
|
|
return &bpf_send_signal_thread_proto;
|
|
case BPF_FUNC_perf_event_read_value:
|
|
return &bpf_perf_event_read_value_proto;
|
|
case BPF_FUNC_ringbuf_output:
|
|
return &bpf_ringbuf_output_proto;
|
|
case BPF_FUNC_ringbuf_reserve:
|
|
return &bpf_ringbuf_reserve_proto;
|
|
case BPF_FUNC_ringbuf_submit:
|
|
return &bpf_ringbuf_submit_proto;
|
|
case BPF_FUNC_ringbuf_discard:
|
|
return &bpf_ringbuf_discard_proto;
|
|
case BPF_FUNC_ringbuf_query:
|
|
return &bpf_ringbuf_query_proto;
|
|
case BPF_FUNC_jiffies64:
|
|
return &bpf_jiffies64_proto;
|
|
case BPF_FUNC_get_task_stack:
|
|
return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
|
|
: &bpf_get_task_stack_proto;
|
|
case BPF_FUNC_copy_from_user:
|
|
return &bpf_copy_from_user_proto;
|
|
case BPF_FUNC_copy_from_user_task:
|
|
return &bpf_copy_from_user_task_proto;
|
|
case BPF_FUNC_snprintf_btf:
|
|
return &bpf_snprintf_btf_proto;
|
|
case BPF_FUNC_per_cpu_ptr:
|
|
return &bpf_per_cpu_ptr_proto;
|
|
case BPF_FUNC_this_cpu_ptr:
|
|
return &bpf_this_cpu_ptr_proto;
|
|
case BPF_FUNC_task_storage_get:
|
|
if (bpf_prog_check_recur(prog))
|
|
return &bpf_task_storage_get_recur_proto;
|
|
return &bpf_task_storage_get_proto;
|
|
case BPF_FUNC_task_storage_delete:
|
|
if (bpf_prog_check_recur(prog))
|
|
return &bpf_task_storage_delete_recur_proto;
|
|
return &bpf_task_storage_delete_proto;
|
|
case BPF_FUNC_for_each_map_elem:
|
|
return &bpf_for_each_map_elem_proto;
|
|
case BPF_FUNC_snprintf:
|
|
return &bpf_snprintf_proto;
|
|
case BPF_FUNC_get_func_ip:
|
|
return &bpf_get_func_ip_proto_tracing;
|
|
case BPF_FUNC_get_branch_snapshot:
|
|
return &bpf_get_branch_snapshot_proto;
|
|
case BPF_FUNC_find_vma:
|
|
return &bpf_find_vma_proto;
|
|
case BPF_FUNC_trace_vprintk:
|
|
return bpf_get_trace_vprintk_proto();
|
|
default:
|
|
return bpf_base_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
static bool is_kprobe_multi(const struct bpf_prog *prog)
|
|
{
|
|
return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
|
|
prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
|
|
}
|
|
|
|
static inline bool is_kprobe_session(const struct bpf_prog *prog)
|
|
{
|
|
return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
|
|
}
|
|
|
|
static inline bool is_uprobe_multi(const struct bpf_prog *prog)
|
|
{
|
|
return prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI ||
|
|
prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
|
|
}
|
|
|
|
static inline bool is_uprobe_session(const struct bpf_prog *prog)
|
|
{
|
|
return prog->expected_attach_type == BPF_TRACE_UPROBE_SESSION;
|
|
}
|
|
|
|
static const struct bpf_func_proto *
|
|
kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto;
|
|
case BPF_FUNC_get_stack:
|
|
return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
|
|
#ifdef CONFIG_BPF_KPROBE_OVERRIDE
|
|
case BPF_FUNC_override_return:
|
|
return &bpf_override_return_proto;
|
|
#endif
|
|
case BPF_FUNC_get_func_ip:
|
|
if (is_kprobe_multi(prog))
|
|
return &bpf_get_func_ip_proto_kprobe_multi;
|
|
if (is_uprobe_multi(prog))
|
|
return &bpf_get_func_ip_proto_uprobe_multi;
|
|
return &bpf_get_func_ip_proto_kprobe;
|
|
case BPF_FUNC_get_attach_cookie:
|
|
if (is_kprobe_multi(prog))
|
|
return &bpf_get_attach_cookie_proto_kmulti;
|
|
if (is_uprobe_multi(prog))
|
|
return &bpf_get_attach_cookie_proto_umulti;
|
|
return &bpf_get_attach_cookie_proto_trace;
|
|
default:
|
|
return bpf_tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
/* bpf+kprobe programs can access fields of 'struct pt_regs' */
|
|
static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
if (off < 0 || off >= sizeof(struct pt_regs))
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0)
|
|
return false;
|
|
/*
|
|
* Assertion for 32 bit to make sure last 8 byte access
|
|
* (BPF_DW) to the last 4 byte member is disallowed.
|
|
*/
|
|
if (off + size > sizeof(struct pt_regs))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
const struct bpf_verifier_ops kprobe_verifier_ops = {
|
|
.get_func_proto = kprobe_prog_func_proto,
|
|
.is_valid_access = kprobe_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops kprobe_prog_ops = {
|
|
};
|
|
|
|
BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
|
|
u64, flags, void *, data, u64, size)
|
|
{
|
|
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
|
|
|
|
/*
|
|
* r1 points to perf tracepoint buffer where first 8 bytes are hidden
|
|
* from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
|
|
* from there and call the same bpf_perf_event_output() helper inline.
|
|
*/
|
|
return ____bpf_perf_event_output(regs, map, flags, data, size);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
|
|
.func = bpf_perf_event_output_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
|
|
u64, flags)
|
|
{
|
|
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
|
|
|
|
/*
|
|
* Same comment as in bpf_perf_event_output_tp(), only that this time
|
|
* the other helper's function body cannot be inlined due to being
|
|
* external, thus we need to call raw helper function.
|
|
*/
|
|
return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
|
|
flags, 0, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
|
|
.func = bpf_get_stackid_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
|
|
u64, flags)
|
|
{
|
|
struct pt_regs *regs = *(struct pt_regs **)tp_buff;
|
|
|
|
return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
|
|
(unsigned long) size, flags, 0);
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stack_proto_tp = {
|
|
.func = bpf_get_stack_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto_tp;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto_tp;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto_tp;
|
|
case BPF_FUNC_get_attach_cookie:
|
|
return &bpf_get_attach_cookie_proto_trace;
|
|
default:
|
|
return bpf_tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0)
|
|
return false;
|
|
|
|
BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
|
|
return true;
|
|
}
|
|
|
|
const struct bpf_verifier_ops tracepoint_verifier_ops = {
|
|
.get_func_proto = tp_prog_func_proto,
|
|
.is_valid_access = tp_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops tracepoint_prog_ops = {
|
|
};
|
|
|
|
BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
|
|
struct bpf_perf_event_value *, buf, u32, size)
|
|
{
|
|
int err = -EINVAL;
|
|
|
|
if (unlikely(size != sizeof(struct bpf_perf_event_value)))
|
|
goto clear;
|
|
err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
|
|
&buf->running);
|
|
if (unlikely(err))
|
|
goto clear;
|
|
return 0;
|
|
clear:
|
|
memset(buf, 0, size);
|
|
return err;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
|
|
.func = bpf_perf_prog_read_value,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_UNINIT_MEM,
|
|
.arg3_type = ARG_CONST_SIZE,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
|
|
void *, buf, u32, size, u64, flags)
|
|
{
|
|
static const u32 br_entry_size = sizeof(struct perf_branch_entry);
|
|
struct perf_branch_stack *br_stack = ctx->data->br_stack;
|
|
u32 to_copy;
|
|
|
|
if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
|
|
return -EINVAL;
|
|
|
|
if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
|
|
return -ENOENT;
|
|
|
|
if (unlikely(!br_stack))
|
|
return -ENOENT;
|
|
|
|
if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
|
|
return br_stack->nr * br_entry_size;
|
|
|
|
if (!buf || (size % br_entry_size != 0))
|
|
return -EINVAL;
|
|
|
|
to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
|
|
memcpy(buf, br_stack->entries, to_copy);
|
|
|
|
return to_copy;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_read_branch_records_proto = {
|
|
.func = bpf_read_branch_records,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_MEM_OR_NULL,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto_tp;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto_pe;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto_pe;
|
|
case BPF_FUNC_perf_prog_read_value:
|
|
return &bpf_perf_prog_read_value_proto;
|
|
case BPF_FUNC_read_branch_records:
|
|
return &bpf_read_branch_records_proto;
|
|
case BPF_FUNC_get_attach_cookie:
|
|
return &bpf_get_attach_cookie_proto_pe;
|
|
default:
|
|
return bpf_tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
|
|
* to avoid potential recursive reuse issue when/if tracepoints are added
|
|
* inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
|
|
*
|
|
* Since raw tracepoints run despite bpf_prog_active, support concurrent usage
|
|
* in normal, irq, and nmi context.
|
|
*/
|
|
struct bpf_raw_tp_regs {
|
|
struct pt_regs regs[3];
|
|
};
|
|
static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
|
|
static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
|
|
static struct pt_regs *get_bpf_raw_tp_regs(void)
|
|
{
|
|
struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
|
|
int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
|
|
|
|
if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
|
|
this_cpu_dec(bpf_raw_tp_nest_level);
|
|
return ERR_PTR(-EBUSY);
|
|
}
|
|
|
|
return &tp_regs->regs[nest_level - 1];
|
|
}
|
|
|
|
static void put_bpf_raw_tp_regs(void)
|
|
{
|
|
this_cpu_dec(bpf_raw_tp_nest_level);
|
|
}
|
|
|
|
BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
|
|
struct bpf_map *, map, u64, flags, void *, data, u64, size)
|
|
{
|
|
struct pt_regs *regs = get_bpf_raw_tp_regs();
|
|
int ret;
|
|
|
|
if (IS_ERR(regs))
|
|
return PTR_ERR(regs);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
ret = ____bpf_perf_event_output(regs, map, flags, data, size);
|
|
|
|
put_bpf_raw_tp_regs();
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
|
|
.func = bpf_perf_event_output_raw_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg5_type = ARG_CONST_SIZE_OR_ZERO,
|
|
};
|
|
|
|
extern const struct bpf_func_proto bpf_skb_output_proto;
|
|
extern const struct bpf_func_proto bpf_xdp_output_proto;
|
|
extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
|
|
|
|
BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
|
|
struct bpf_map *, map, u64, flags)
|
|
{
|
|
struct pt_regs *regs = get_bpf_raw_tp_regs();
|
|
int ret;
|
|
|
|
if (IS_ERR(regs))
|
|
return PTR_ERR(regs);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
|
|
ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
|
|
flags, 0, 0);
|
|
put_bpf_raw_tp_regs();
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
|
|
.func = bpf_get_stackid_raw_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_CONST_MAP_PTR,
|
|
.arg3_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
|
|
void *, buf, u32, size, u64, flags)
|
|
{
|
|
struct pt_regs *regs = get_bpf_raw_tp_regs();
|
|
int ret;
|
|
|
|
if (IS_ERR(regs))
|
|
return PTR_ERR(regs);
|
|
|
|
perf_fetch_caller_regs(regs);
|
|
ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
|
|
(unsigned long) size, flags, 0);
|
|
put_bpf_raw_tp_regs();
|
|
return ret;
|
|
}
|
|
|
|
static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
|
|
.func = bpf_get_stack_raw_tp,
|
|
.gpl_only = true,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_CTX,
|
|
.arg2_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg3_type = ARG_CONST_SIZE_OR_ZERO,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
static const struct bpf_func_proto *
|
|
raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
switch (func_id) {
|
|
case BPF_FUNC_perf_event_output:
|
|
return &bpf_perf_event_output_proto_raw_tp;
|
|
case BPF_FUNC_get_stackid:
|
|
return &bpf_get_stackid_proto_raw_tp;
|
|
case BPF_FUNC_get_stack:
|
|
return &bpf_get_stack_proto_raw_tp;
|
|
case BPF_FUNC_get_attach_cookie:
|
|
return &bpf_get_attach_cookie_proto_tracing;
|
|
default:
|
|
return bpf_tracing_func_proto(func_id, prog);
|
|
}
|
|
}
|
|
|
|
const struct bpf_func_proto *
|
|
tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
|
|
{
|
|
const struct bpf_func_proto *fn;
|
|
|
|
switch (func_id) {
|
|
#ifdef CONFIG_NET
|
|
case BPF_FUNC_skb_output:
|
|
return &bpf_skb_output_proto;
|
|
case BPF_FUNC_xdp_output:
|
|
return &bpf_xdp_output_proto;
|
|
case BPF_FUNC_skc_to_tcp6_sock:
|
|
return &bpf_skc_to_tcp6_sock_proto;
|
|
case BPF_FUNC_skc_to_tcp_sock:
|
|
return &bpf_skc_to_tcp_sock_proto;
|
|
case BPF_FUNC_skc_to_tcp_timewait_sock:
|
|
return &bpf_skc_to_tcp_timewait_sock_proto;
|
|
case BPF_FUNC_skc_to_tcp_request_sock:
|
|
return &bpf_skc_to_tcp_request_sock_proto;
|
|
case BPF_FUNC_skc_to_udp6_sock:
|
|
return &bpf_skc_to_udp6_sock_proto;
|
|
case BPF_FUNC_skc_to_unix_sock:
|
|
return &bpf_skc_to_unix_sock_proto;
|
|
case BPF_FUNC_skc_to_mptcp_sock:
|
|
return &bpf_skc_to_mptcp_sock_proto;
|
|
case BPF_FUNC_sk_storage_get:
|
|
return &bpf_sk_storage_get_tracing_proto;
|
|
case BPF_FUNC_sk_storage_delete:
|
|
return &bpf_sk_storage_delete_tracing_proto;
|
|
case BPF_FUNC_sock_from_file:
|
|
return &bpf_sock_from_file_proto;
|
|
case BPF_FUNC_get_socket_cookie:
|
|
return &bpf_get_socket_ptr_cookie_proto;
|
|
case BPF_FUNC_xdp_get_buff_len:
|
|
return &bpf_xdp_get_buff_len_trace_proto;
|
|
#endif
|
|
case BPF_FUNC_seq_printf:
|
|
return prog->expected_attach_type == BPF_TRACE_ITER ?
|
|
&bpf_seq_printf_proto :
|
|
NULL;
|
|
case BPF_FUNC_seq_write:
|
|
return prog->expected_attach_type == BPF_TRACE_ITER ?
|
|
&bpf_seq_write_proto :
|
|
NULL;
|
|
case BPF_FUNC_seq_printf_btf:
|
|
return prog->expected_attach_type == BPF_TRACE_ITER ?
|
|
&bpf_seq_printf_btf_proto :
|
|
NULL;
|
|
case BPF_FUNC_d_path:
|
|
return &bpf_d_path_proto;
|
|
case BPF_FUNC_get_func_arg:
|
|
return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
|
|
case BPF_FUNC_get_func_ret:
|
|
return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
|
|
case BPF_FUNC_get_func_arg_cnt:
|
|
return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
|
|
case BPF_FUNC_get_attach_cookie:
|
|
if (prog->type == BPF_PROG_TYPE_TRACING &&
|
|
prog->expected_attach_type == BPF_TRACE_RAW_TP)
|
|
return &bpf_get_attach_cookie_proto_tracing;
|
|
return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
|
|
default:
|
|
fn = raw_tp_prog_func_proto(func_id, prog);
|
|
if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
|
|
fn = bpf_iter_get_func_proto(func_id, prog);
|
|
return fn;
|
|
}
|
|
}
|
|
|
|
static bool raw_tp_prog_is_valid_access(int off, int size,
|
|
enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
return bpf_tracing_ctx_access(off, size, type);
|
|
}
|
|
|
|
static bool tracing_prog_is_valid_access(int off, int size,
|
|
enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
|
|
}
|
|
|
|
int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
|
|
const union bpf_attr *kattr,
|
|
union bpf_attr __user *uattr)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
|
|
.get_func_proto = raw_tp_prog_func_proto,
|
|
.is_valid_access = raw_tp_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops raw_tracepoint_prog_ops = {
|
|
#ifdef CONFIG_NET
|
|
.test_run = bpf_prog_test_run_raw_tp,
|
|
#endif
|
|
};
|
|
|
|
const struct bpf_verifier_ops tracing_verifier_ops = {
|
|
.get_func_proto = tracing_prog_func_proto,
|
|
.is_valid_access = tracing_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops tracing_prog_ops = {
|
|
.test_run = bpf_prog_test_run_tracing,
|
|
};
|
|
|
|
static bool raw_tp_writable_prog_is_valid_access(int off, int size,
|
|
enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
if (off == 0) {
|
|
if (size != sizeof(u64) || type != BPF_READ)
|
|
return false;
|
|
info->reg_type = PTR_TO_TP_BUFFER;
|
|
}
|
|
return raw_tp_prog_is_valid_access(off, size, type, prog, info);
|
|
}
|
|
|
|
const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
|
|
.get_func_proto = raw_tp_prog_func_proto,
|
|
.is_valid_access = raw_tp_writable_prog_is_valid_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
|
|
};
|
|
|
|
static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
const int size_u64 = sizeof(u64);
|
|
|
|
if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
|
|
return false;
|
|
if (type != BPF_READ)
|
|
return false;
|
|
if (off % size != 0) {
|
|
if (sizeof(unsigned long) != 4)
|
|
return false;
|
|
if (size != 8)
|
|
return false;
|
|
if (off % size != 4)
|
|
return false;
|
|
}
|
|
|
|
switch (off) {
|
|
case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
|
|
bpf_ctx_record_field_size(info, size_u64);
|
|
if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
|
|
return false;
|
|
break;
|
|
case bpf_ctx_range(struct bpf_perf_event_data, addr):
|
|
bpf_ctx_record_field_size(info, size_u64);
|
|
if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
|
|
return false;
|
|
break;
|
|
default:
|
|
if (size != sizeof(long))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
|
|
const struct bpf_insn *si,
|
|
struct bpf_insn *insn_buf,
|
|
struct bpf_prog *prog, u32 *target_size)
|
|
{
|
|
struct bpf_insn *insn = insn_buf;
|
|
|
|
switch (si->off) {
|
|
case offsetof(struct bpf_perf_event_data, sample_period):
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
|
|
data), si->dst_reg, si->src_reg,
|
|
offsetof(struct bpf_perf_event_data_kern, data));
|
|
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
|
|
bpf_target_off(struct perf_sample_data, period, 8,
|
|
target_size));
|
|
break;
|
|
case offsetof(struct bpf_perf_event_data, addr):
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
|
|
data), si->dst_reg, si->src_reg,
|
|
offsetof(struct bpf_perf_event_data_kern, data));
|
|
*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
|
|
bpf_target_off(struct perf_sample_data, addr, 8,
|
|
target_size));
|
|
break;
|
|
default:
|
|
*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
|
|
regs), si->dst_reg, si->src_reg,
|
|
offsetof(struct bpf_perf_event_data_kern, regs));
|
|
*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
|
|
si->off);
|
|
break;
|
|
}
|
|
|
|
return insn - insn_buf;
|
|
}
|
|
|
|
const struct bpf_verifier_ops perf_event_verifier_ops = {
|
|
.get_func_proto = pe_prog_func_proto,
|
|
.is_valid_access = pe_prog_is_valid_access,
|
|
.convert_ctx_access = pe_prog_convert_ctx_access,
|
|
};
|
|
|
|
const struct bpf_prog_ops perf_event_prog_ops = {
|
|
};
|
|
|
|
static DEFINE_MUTEX(bpf_event_mutex);
|
|
|
|
#define BPF_TRACE_MAX_PROGS 64
|
|
|
|
int perf_event_attach_bpf_prog(struct perf_event *event,
|
|
struct bpf_prog *prog,
|
|
u64 bpf_cookie)
|
|
{
|
|
struct bpf_prog_array *old_array;
|
|
struct bpf_prog_array *new_array;
|
|
int ret = -EEXIST;
|
|
|
|
/*
|
|
* Kprobe override only works if they are on the function entry,
|
|
* and only if they are on the opt-in list.
|
|
*/
|
|
if (prog->kprobe_override &&
|
|
(!trace_kprobe_on_func_entry(event->tp_event) ||
|
|
!trace_kprobe_error_injectable(event->tp_event)))
|
|
return -EINVAL;
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
|
|
if (event->prog)
|
|
goto unlock;
|
|
|
|
old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
|
|
if (old_array &&
|
|
bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
|
|
ret = -E2BIG;
|
|
goto unlock;
|
|
}
|
|
|
|
ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
|
|
if (ret < 0)
|
|
goto unlock;
|
|
|
|
/* set the new array to event->tp_event and set event->prog */
|
|
event->prog = prog;
|
|
event->bpf_cookie = bpf_cookie;
|
|
rcu_assign_pointer(event->tp_event->prog_array, new_array);
|
|
bpf_prog_array_free_sleepable(old_array);
|
|
|
|
unlock:
|
|
mutex_unlock(&bpf_event_mutex);
|
|
return ret;
|
|
}
|
|
|
|
void perf_event_detach_bpf_prog(struct perf_event *event)
|
|
{
|
|
struct bpf_prog_array *old_array;
|
|
struct bpf_prog_array *new_array;
|
|
int ret;
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
|
|
if (!event->prog)
|
|
goto unlock;
|
|
|
|
old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
|
|
if (!old_array)
|
|
goto put;
|
|
|
|
ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
|
|
if (ret < 0) {
|
|
bpf_prog_array_delete_safe(old_array, event->prog);
|
|
} else {
|
|
rcu_assign_pointer(event->tp_event->prog_array, new_array);
|
|
bpf_prog_array_free_sleepable(old_array);
|
|
}
|
|
|
|
put:
|
|
/*
|
|
* It could be that the bpf_prog is not sleepable (and will be freed
|
|
* via normal RCU), but is called from a point that supports sleepable
|
|
* programs and uses tasks-trace-RCU.
|
|
*/
|
|
synchronize_rcu_tasks_trace();
|
|
|
|
bpf_prog_put(event->prog);
|
|
event->prog = NULL;
|
|
|
|
unlock:
|
|
mutex_unlock(&bpf_event_mutex);
|
|
}
|
|
|
|
int perf_event_query_prog_array(struct perf_event *event, void __user *info)
|
|
{
|
|
struct perf_event_query_bpf __user *uquery = info;
|
|
struct perf_event_query_bpf query = {};
|
|
struct bpf_prog_array *progs;
|
|
u32 *ids, prog_cnt, ids_len;
|
|
int ret;
|
|
|
|
if (!perfmon_capable())
|
|
return -EPERM;
|
|
if (event->attr.type != PERF_TYPE_TRACEPOINT)
|
|
return -EINVAL;
|
|
if (copy_from_user(&query, uquery, sizeof(query)))
|
|
return -EFAULT;
|
|
|
|
ids_len = query.ids_len;
|
|
if (ids_len > BPF_TRACE_MAX_PROGS)
|
|
return -E2BIG;
|
|
ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
|
|
if (!ids)
|
|
return -ENOMEM;
|
|
/*
|
|
* The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
|
|
* is required when user only wants to check for uquery->prog_cnt.
|
|
* There is no need to check for it since the case is handled
|
|
* gracefully in bpf_prog_array_copy_info.
|
|
*/
|
|
|
|
mutex_lock(&bpf_event_mutex);
|
|
progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
|
|
ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
|
|
mutex_unlock(&bpf_event_mutex);
|
|
|
|
if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
|
|
copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
|
|
ret = -EFAULT;
|
|
|
|
kfree(ids);
|
|
return ret;
|
|
}
|
|
|
|
extern struct bpf_raw_event_map __start__bpf_raw_tp[];
|
|
extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
|
|
|
|
struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
|
|
{
|
|
struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
|
|
|
|
for (; btp < __stop__bpf_raw_tp; btp++) {
|
|
if (!strcmp(btp->tp->name, name))
|
|
return btp;
|
|
}
|
|
|
|
return bpf_get_raw_tracepoint_module(name);
|
|
}
|
|
|
|
void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
|
|
{
|
|
struct module *mod;
|
|
|
|
preempt_disable();
|
|
mod = __module_address((unsigned long)btp);
|
|
module_put(mod);
|
|
preempt_enable();
|
|
}
|
|
|
|
static __always_inline
|
|
void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
|
|
{
|
|
struct bpf_prog *prog = link->link.prog;
|
|
struct bpf_run_ctx *old_run_ctx;
|
|
struct bpf_trace_run_ctx run_ctx;
|
|
|
|
cant_sleep();
|
|
if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
|
|
bpf_prog_inc_misses_counter(prog);
|
|
goto out;
|
|
}
|
|
|
|
run_ctx.bpf_cookie = link->cookie;
|
|
old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
|
|
|
|
rcu_read_lock();
|
|
(void) bpf_prog_run(prog, args);
|
|
rcu_read_unlock();
|
|
|
|
bpf_reset_run_ctx(old_run_ctx);
|
|
out:
|
|
this_cpu_dec(*(prog->active));
|
|
}
|
|
|
|
#define UNPACK(...) __VA_ARGS__
|
|
#define REPEAT_1(FN, DL, X, ...) FN(X)
|
|
#define REPEAT_2(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_3(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_4(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_5(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_6(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_7(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_8(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_9(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_10(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_11(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
|
|
#define REPEAT_12(FN, DL, X, ...) FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
|
|
#define REPEAT(X, FN, DL, ...) REPEAT_##X(FN, DL, __VA_ARGS__)
|
|
|
|
#define SARG(X) u64 arg##X
|
|
#define COPY(X) args[X] = arg##X
|
|
|
|
#define __DL_COM (,)
|
|
#define __DL_SEM (;)
|
|
|
|
#define __SEQ_0_11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
|
|
|
|
#define BPF_TRACE_DEFN_x(x) \
|
|
void bpf_trace_run##x(struct bpf_raw_tp_link *link, \
|
|
REPEAT(x, SARG, __DL_COM, __SEQ_0_11)) \
|
|
{ \
|
|
u64 args[x]; \
|
|
REPEAT(x, COPY, __DL_SEM, __SEQ_0_11); \
|
|
__bpf_trace_run(link, args); \
|
|
} \
|
|
EXPORT_SYMBOL_GPL(bpf_trace_run##x)
|
|
BPF_TRACE_DEFN_x(1);
|
|
BPF_TRACE_DEFN_x(2);
|
|
BPF_TRACE_DEFN_x(3);
|
|
BPF_TRACE_DEFN_x(4);
|
|
BPF_TRACE_DEFN_x(5);
|
|
BPF_TRACE_DEFN_x(6);
|
|
BPF_TRACE_DEFN_x(7);
|
|
BPF_TRACE_DEFN_x(8);
|
|
BPF_TRACE_DEFN_x(9);
|
|
BPF_TRACE_DEFN_x(10);
|
|
BPF_TRACE_DEFN_x(11);
|
|
BPF_TRACE_DEFN_x(12);
|
|
|
|
int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
|
|
{
|
|
struct tracepoint *tp = btp->tp;
|
|
struct bpf_prog *prog = link->link.prog;
|
|
|
|
/*
|
|
* check that program doesn't access arguments beyond what's
|
|
* available in this tracepoint
|
|
*/
|
|
if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
|
|
return -EINVAL;
|
|
|
|
if (prog->aux->max_tp_access > btp->writable_size)
|
|
return -EINVAL;
|
|
|
|
return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
|
|
}
|
|
|
|
int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
|
|
{
|
|
return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
|
|
}
|
|
|
|
int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
|
|
u32 *fd_type, const char **buf,
|
|
u64 *probe_offset, u64 *probe_addr,
|
|
unsigned long *missed)
|
|
{
|
|
bool is_tracepoint, is_syscall_tp;
|
|
struct bpf_prog *prog;
|
|
int flags, err = 0;
|
|
|
|
prog = event->prog;
|
|
if (!prog)
|
|
return -ENOENT;
|
|
|
|
/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
|
|
if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
|
|
return -EOPNOTSUPP;
|
|
|
|
*prog_id = prog->aux->id;
|
|
flags = event->tp_event->flags;
|
|
is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
|
|
is_syscall_tp = is_syscall_trace_event(event->tp_event);
|
|
|
|
if (is_tracepoint || is_syscall_tp) {
|
|
*buf = is_tracepoint ? event->tp_event->tp->name
|
|
: event->tp_event->name;
|
|
/* We allow NULL pointer for tracepoint */
|
|
if (fd_type)
|
|
*fd_type = BPF_FD_TYPE_TRACEPOINT;
|
|
if (probe_offset)
|
|
*probe_offset = 0x0;
|
|
if (probe_addr)
|
|
*probe_addr = 0x0;
|
|
} else {
|
|
/* kprobe/uprobe */
|
|
err = -EOPNOTSUPP;
|
|
#ifdef CONFIG_KPROBE_EVENTS
|
|
if (flags & TRACE_EVENT_FL_KPROBE)
|
|
err = bpf_get_kprobe_info(event, fd_type, buf,
|
|
probe_offset, probe_addr, missed,
|
|
event->attr.type == PERF_TYPE_TRACEPOINT);
|
|
#endif
|
|
#ifdef CONFIG_UPROBE_EVENTS
|
|
if (flags & TRACE_EVENT_FL_UPROBE)
|
|
err = bpf_get_uprobe_info(event, fd_type, buf,
|
|
probe_offset, probe_addr,
|
|
event->attr.type == PERF_TYPE_TRACEPOINT);
|
|
#endif
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static int __init send_signal_irq_work_init(void)
|
|
{
|
|
int cpu;
|
|
struct send_signal_irq_work *work;
|
|
|
|
for_each_possible_cpu(cpu) {
|
|
work = per_cpu_ptr(&send_signal_work, cpu);
|
|
init_irq_work(&work->irq_work, do_bpf_send_signal);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
subsys_initcall(send_signal_irq_work_init);
|
|
|
|
#ifdef CONFIG_MODULES
|
|
static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
|
|
void *module)
|
|
{
|
|
struct bpf_trace_module *btm, *tmp;
|
|
struct module *mod = module;
|
|
int ret = 0;
|
|
|
|
if (mod->num_bpf_raw_events == 0 ||
|
|
(op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
|
|
goto out;
|
|
|
|
mutex_lock(&bpf_module_mutex);
|
|
|
|
switch (op) {
|
|
case MODULE_STATE_COMING:
|
|
btm = kzalloc(sizeof(*btm), GFP_KERNEL);
|
|
if (btm) {
|
|
btm->module = module;
|
|
list_add(&btm->list, &bpf_trace_modules);
|
|
} else {
|
|
ret = -ENOMEM;
|
|
}
|
|
break;
|
|
case MODULE_STATE_GOING:
|
|
list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
|
|
if (btm->module == module) {
|
|
list_del(&btm->list);
|
|
kfree(btm);
|
|
break;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
mutex_unlock(&bpf_module_mutex);
|
|
|
|
out:
|
|
return notifier_from_errno(ret);
|
|
}
|
|
|
|
static struct notifier_block bpf_module_nb = {
|
|
.notifier_call = bpf_event_notify,
|
|
};
|
|
|
|
static int __init bpf_event_init(void)
|
|
{
|
|
register_module_notifier(&bpf_module_nb);
|
|
return 0;
|
|
}
|
|
|
|
fs_initcall(bpf_event_init);
|
|
#endif /* CONFIG_MODULES */
|
|
|
|
struct bpf_session_run_ctx {
|
|
struct bpf_run_ctx run_ctx;
|
|
bool is_return;
|
|
void *data;
|
|
};
|
|
|
|
#ifdef CONFIG_FPROBE
|
|
struct bpf_kprobe_multi_link {
|
|
struct bpf_link link;
|
|
struct fprobe fp;
|
|
unsigned long *addrs;
|
|
u64 *cookies;
|
|
u32 cnt;
|
|
u32 mods_cnt;
|
|
struct module **mods;
|
|
u32 flags;
|
|
};
|
|
|
|
struct bpf_kprobe_multi_run_ctx {
|
|
struct bpf_session_run_ctx session_ctx;
|
|
struct bpf_kprobe_multi_link *link;
|
|
unsigned long entry_ip;
|
|
};
|
|
|
|
struct user_syms {
|
|
const char **syms;
|
|
char *buf;
|
|
};
|
|
|
|
static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
|
|
{
|
|
unsigned long __user usymbol;
|
|
const char **syms = NULL;
|
|
char *buf = NULL, *p;
|
|
int err = -ENOMEM;
|
|
unsigned int i;
|
|
|
|
syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
|
|
if (!syms)
|
|
goto error;
|
|
|
|
buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
|
|
if (!buf)
|
|
goto error;
|
|
|
|
for (p = buf, i = 0; i < cnt; i++) {
|
|
if (__get_user(usymbol, usyms + i)) {
|
|
err = -EFAULT;
|
|
goto error;
|
|
}
|
|
err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
|
|
if (err == KSYM_NAME_LEN)
|
|
err = -E2BIG;
|
|
if (err < 0)
|
|
goto error;
|
|
syms[i] = p;
|
|
p += err + 1;
|
|
}
|
|
|
|
us->syms = syms;
|
|
us->buf = buf;
|
|
return 0;
|
|
|
|
error:
|
|
if (err) {
|
|
kvfree(syms);
|
|
kvfree(buf);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < cnt; i++)
|
|
module_put(mods[i]);
|
|
}
|
|
|
|
static void free_user_syms(struct user_syms *us)
|
|
{
|
|
kvfree(us->syms);
|
|
kvfree(us->buf);
|
|
}
|
|
|
|
static void bpf_kprobe_multi_link_release(struct bpf_link *link)
|
|
{
|
|
struct bpf_kprobe_multi_link *kmulti_link;
|
|
|
|
kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
|
|
unregister_fprobe(&kmulti_link->fp);
|
|
kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
|
|
}
|
|
|
|
static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
|
|
{
|
|
struct bpf_kprobe_multi_link *kmulti_link;
|
|
|
|
kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
|
|
kvfree(kmulti_link->addrs);
|
|
kvfree(kmulti_link->cookies);
|
|
kfree(kmulti_link->mods);
|
|
kfree(kmulti_link);
|
|
}
|
|
|
|
static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
|
|
struct bpf_link_info *info)
|
|
{
|
|
u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
|
|
u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
|
|
struct bpf_kprobe_multi_link *kmulti_link;
|
|
u32 ucount = info->kprobe_multi.count;
|
|
int err = 0, i;
|
|
|
|
if (!uaddrs ^ !ucount)
|
|
return -EINVAL;
|
|
if (ucookies && !ucount)
|
|
return -EINVAL;
|
|
|
|
kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
|
|
info->kprobe_multi.count = kmulti_link->cnt;
|
|
info->kprobe_multi.flags = kmulti_link->flags;
|
|
info->kprobe_multi.missed = kmulti_link->fp.nmissed;
|
|
|
|
if (!uaddrs)
|
|
return 0;
|
|
if (ucount < kmulti_link->cnt)
|
|
err = -ENOSPC;
|
|
else
|
|
ucount = kmulti_link->cnt;
|
|
|
|
if (ucookies) {
|
|
if (kmulti_link->cookies) {
|
|
if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
|
|
return -EFAULT;
|
|
} else {
|
|
for (i = 0; i < ucount; i++) {
|
|
if (put_user(0, ucookies + i))
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (kallsyms_show_value(current_cred())) {
|
|
if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
|
|
return -EFAULT;
|
|
} else {
|
|
for (i = 0; i < ucount; i++) {
|
|
if (put_user(0, uaddrs + i))
|
|
return -EFAULT;
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
|
|
.release = bpf_kprobe_multi_link_release,
|
|
.dealloc_deferred = bpf_kprobe_multi_link_dealloc,
|
|
.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
|
|
};
|
|
|
|
static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
|
|
{
|
|
const struct bpf_kprobe_multi_link *link = priv;
|
|
unsigned long *addr_a = a, *addr_b = b;
|
|
u64 *cookie_a, *cookie_b;
|
|
|
|
cookie_a = link->cookies + (addr_a - link->addrs);
|
|
cookie_b = link->cookies + (addr_b - link->addrs);
|
|
|
|
/* swap addr_a/addr_b and cookie_a/cookie_b values */
|
|
swap(*addr_a, *addr_b);
|
|
swap(*cookie_a, *cookie_b);
|
|
}
|
|
|
|
static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
|
|
{
|
|
const unsigned long *addr_a = a, *addr_b = b;
|
|
|
|
if (*addr_a == *addr_b)
|
|
return 0;
|
|
return *addr_a < *addr_b ? -1 : 1;
|
|
}
|
|
|
|
static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
|
|
{
|
|
return bpf_kprobe_multi_addrs_cmp(a, b);
|
|
}
|
|
|
|
static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
|
|
{
|
|
struct bpf_kprobe_multi_run_ctx *run_ctx;
|
|
struct bpf_kprobe_multi_link *link;
|
|
u64 *cookie, entry_ip;
|
|
unsigned long *addr;
|
|
|
|
if (WARN_ON_ONCE(!ctx))
|
|
return 0;
|
|
run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
|
|
session_ctx.run_ctx);
|
|
link = run_ctx->link;
|
|
if (!link->cookies)
|
|
return 0;
|
|
entry_ip = run_ctx->entry_ip;
|
|
addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
|
|
bpf_kprobe_multi_addrs_cmp);
|
|
if (!addr)
|
|
return 0;
|
|
cookie = link->cookies + (addr - link->addrs);
|
|
return *cookie;
|
|
}
|
|
|
|
static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
|
|
{
|
|
struct bpf_kprobe_multi_run_ctx *run_ctx;
|
|
|
|
run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
|
|
session_ctx.run_ctx);
|
|
return run_ctx->entry_ip;
|
|
}
|
|
|
|
static int
|
|
kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
|
|
unsigned long entry_ip, struct pt_regs *regs,
|
|
bool is_return, void *data)
|
|
{
|
|
struct bpf_kprobe_multi_run_ctx run_ctx = {
|
|
.session_ctx = {
|
|
.is_return = is_return,
|
|
.data = data,
|
|
},
|
|
.link = link,
|
|
.entry_ip = entry_ip,
|
|
};
|
|
struct bpf_run_ctx *old_run_ctx;
|
|
int err;
|
|
|
|
if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
|
|
bpf_prog_inc_misses_counter(link->link.prog);
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
migrate_disable();
|
|
rcu_read_lock();
|
|
old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
|
|
err = bpf_prog_run(link->link.prog, regs);
|
|
bpf_reset_run_ctx(old_run_ctx);
|
|
rcu_read_unlock();
|
|
migrate_enable();
|
|
|
|
out:
|
|
__this_cpu_dec(bpf_prog_active);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
|
|
unsigned long ret_ip, struct pt_regs *regs,
|
|
void *data)
|
|
{
|
|
struct bpf_kprobe_multi_link *link;
|
|
int err;
|
|
|
|
link = container_of(fp, struct bpf_kprobe_multi_link, fp);
|
|
err = kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, false, data);
|
|
return is_kprobe_session(link->link.prog) ? err : 0;
|
|
}
|
|
|
|
static void
|
|
kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
|
|
unsigned long ret_ip, struct pt_regs *regs,
|
|
void *data)
|
|
{
|
|
struct bpf_kprobe_multi_link *link;
|
|
|
|
link = container_of(fp, struct bpf_kprobe_multi_link, fp);
|
|
kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, true, data);
|
|
}
|
|
|
|
static int symbols_cmp_r(const void *a, const void *b, const void *priv)
|
|
{
|
|
const char **str_a = (const char **) a;
|
|
const char **str_b = (const char **) b;
|
|
|
|
return strcmp(*str_a, *str_b);
|
|
}
|
|
|
|
struct multi_symbols_sort {
|
|
const char **funcs;
|
|
u64 *cookies;
|
|
};
|
|
|
|
static void symbols_swap_r(void *a, void *b, int size, const void *priv)
|
|
{
|
|
const struct multi_symbols_sort *data = priv;
|
|
const char **name_a = a, **name_b = b;
|
|
|
|
swap(*name_a, *name_b);
|
|
|
|
/* If defined, swap also related cookies. */
|
|
if (data->cookies) {
|
|
u64 *cookie_a, *cookie_b;
|
|
|
|
cookie_a = data->cookies + (name_a - data->funcs);
|
|
cookie_b = data->cookies + (name_b - data->funcs);
|
|
swap(*cookie_a, *cookie_b);
|
|
}
|
|
}
|
|
|
|
struct modules_array {
|
|
struct module **mods;
|
|
int mods_cnt;
|
|
int mods_cap;
|
|
};
|
|
|
|
static int add_module(struct modules_array *arr, struct module *mod)
|
|
{
|
|
struct module **mods;
|
|
|
|
if (arr->mods_cnt == arr->mods_cap) {
|
|
arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
|
|
mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
|
|
if (!mods)
|
|
return -ENOMEM;
|
|
arr->mods = mods;
|
|
}
|
|
|
|
arr->mods[arr->mods_cnt] = mod;
|
|
arr->mods_cnt++;
|
|
return 0;
|
|
}
|
|
|
|
static bool has_module(struct modules_array *arr, struct module *mod)
|
|
{
|
|
int i;
|
|
|
|
for (i = arr->mods_cnt - 1; i >= 0; i--) {
|
|
if (arr->mods[i] == mod)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
|
|
{
|
|
struct modules_array arr = {};
|
|
u32 i, err = 0;
|
|
|
|
for (i = 0; i < addrs_cnt; i++) {
|
|
struct module *mod;
|
|
|
|
preempt_disable();
|
|
mod = __module_address(addrs[i]);
|
|
/* Either no module or we it's already stored */
|
|
if (!mod || has_module(&arr, mod)) {
|
|
preempt_enable();
|
|
continue;
|
|
}
|
|
if (!try_module_get(mod))
|
|
err = -EINVAL;
|
|
preempt_enable();
|
|
if (err)
|
|
break;
|
|
err = add_module(&arr, mod);
|
|
if (err) {
|
|
module_put(mod);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* We return either err < 0 in case of error, ... */
|
|
if (err) {
|
|
kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
|
|
kfree(arr.mods);
|
|
return err;
|
|
}
|
|
|
|
/* or number of modules found if everything is ok. */
|
|
*mods = arr.mods;
|
|
return arr.mods_cnt;
|
|
}
|
|
|
|
static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
if (!within_error_injection_list(addrs[i]))
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
|
|
{
|
|
struct bpf_kprobe_multi_link *link = NULL;
|
|
struct bpf_link_primer link_primer;
|
|
void __user *ucookies;
|
|
unsigned long *addrs;
|
|
u32 flags, cnt, size;
|
|
void __user *uaddrs;
|
|
u64 *cookies = NULL;
|
|
void __user *usyms;
|
|
int err;
|
|
|
|
/* no support for 32bit archs yet */
|
|
if (sizeof(u64) != sizeof(void *))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!is_kprobe_multi(prog))
|
|
return -EINVAL;
|
|
|
|
flags = attr->link_create.kprobe_multi.flags;
|
|
if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
|
|
return -EINVAL;
|
|
|
|
uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
|
|
usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
|
|
if (!!uaddrs == !!usyms)
|
|
return -EINVAL;
|
|
|
|
cnt = attr->link_create.kprobe_multi.cnt;
|
|
if (!cnt)
|
|
return -EINVAL;
|
|
if (cnt > MAX_KPROBE_MULTI_CNT)
|
|
return -E2BIG;
|
|
|
|
size = cnt * sizeof(*addrs);
|
|
addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
|
|
if (!addrs)
|
|
return -ENOMEM;
|
|
|
|
ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
|
|
if (ucookies) {
|
|
cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
|
|
if (!cookies) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
if (copy_from_user(cookies, ucookies, size)) {
|
|
err = -EFAULT;
|
|
goto error;
|
|
}
|
|
}
|
|
|
|
if (uaddrs) {
|
|
if (copy_from_user(addrs, uaddrs, size)) {
|
|
err = -EFAULT;
|
|
goto error;
|
|
}
|
|
} else {
|
|
struct multi_symbols_sort data = {
|
|
.cookies = cookies,
|
|
};
|
|
struct user_syms us;
|
|
|
|
err = copy_user_syms(&us, usyms, cnt);
|
|
if (err)
|
|
goto error;
|
|
|
|
if (cookies)
|
|
data.funcs = us.syms;
|
|
|
|
sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
|
|
symbols_swap_r, &data);
|
|
|
|
err = ftrace_lookup_symbols(us.syms, cnt, addrs);
|
|
free_user_syms(&us);
|
|
if (err)
|
|
goto error;
|
|
}
|
|
|
|
if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
|
|
err = -EINVAL;
|
|
goto error;
|
|
}
|
|
|
|
link = kzalloc(sizeof(*link), GFP_KERNEL);
|
|
if (!link) {
|
|
err = -ENOMEM;
|
|
goto error;
|
|
}
|
|
|
|
bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
|
|
&bpf_kprobe_multi_link_lops, prog);
|
|
|
|
err = bpf_link_prime(&link->link, &link_primer);
|
|
if (err)
|
|
goto error;
|
|
|
|
if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
|
|
link->fp.entry_handler = kprobe_multi_link_handler;
|
|
if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
|
|
link->fp.exit_handler = kprobe_multi_link_exit_handler;
|
|
if (is_kprobe_session(prog))
|
|
link->fp.entry_data_size = sizeof(u64);
|
|
|
|
link->addrs = addrs;
|
|
link->cookies = cookies;
|
|
link->cnt = cnt;
|
|
link->flags = flags;
|
|
|
|
if (cookies) {
|
|
/*
|
|
* Sorting addresses will trigger sorting cookies as well
|
|
* (check bpf_kprobe_multi_cookie_swap). This way we can
|
|
* find cookie based on the address in bpf_get_attach_cookie
|
|
* helper.
|
|
*/
|
|
sort_r(addrs, cnt, sizeof(*addrs),
|
|
bpf_kprobe_multi_cookie_cmp,
|
|
bpf_kprobe_multi_cookie_swap,
|
|
link);
|
|
}
|
|
|
|
err = get_modules_for_addrs(&link->mods, addrs, cnt);
|
|
if (err < 0) {
|
|
bpf_link_cleanup(&link_primer);
|
|
return err;
|
|
}
|
|
link->mods_cnt = err;
|
|
|
|
err = register_fprobe_ips(&link->fp, addrs, cnt);
|
|
if (err) {
|
|
kprobe_multi_put_modules(link->mods, link->mods_cnt);
|
|
bpf_link_cleanup(&link_primer);
|
|
return err;
|
|
}
|
|
|
|
return bpf_link_settle(&link_primer);
|
|
|
|
error:
|
|
kfree(link);
|
|
kvfree(addrs);
|
|
kvfree(cookies);
|
|
return err;
|
|
}
|
|
#else /* !CONFIG_FPROBE */
|
|
int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_UPROBES
|
|
struct bpf_uprobe_multi_link;
|
|
|
|
struct bpf_uprobe {
|
|
struct bpf_uprobe_multi_link *link;
|
|
loff_t offset;
|
|
unsigned long ref_ctr_offset;
|
|
u64 cookie;
|
|
struct uprobe *uprobe;
|
|
struct uprobe_consumer consumer;
|
|
bool session;
|
|
};
|
|
|
|
struct bpf_uprobe_multi_link {
|
|
struct path path;
|
|
struct bpf_link link;
|
|
u32 cnt;
|
|
u32 flags;
|
|
struct bpf_uprobe *uprobes;
|
|
struct task_struct *task;
|
|
};
|
|
|
|
struct bpf_uprobe_multi_run_ctx {
|
|
struct bpf_session_run_ctx session_ctx;
|
|
unsigned long entry_ip;
|
|
struct bpf_uprobe *uprobe;
|
|
};
|
|
|
|
static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
|
|
{
|
|
u32 i;
|
|
|
|
for (i = 0; i < cnt; i++)
|
|
uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
|
|
|
|
if (cnt)
|
|
uprobe_unregister_sync();
|
|
}
|
|
|
|
static void bpf_uprobe_multi_link_release(struct bpf_link *link)
|
|
{
|
|
struct bpf_uprobe_multi_link *umulti_link;
|
|
|
|
umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
|
|
bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
|
|
if (umulti_link->task)
|
|
put_task_struct(umulti_link->task);
|
|
path_put(&umulti_link->path);
|
|
}
|
|
|
|
static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
|
|
{
|
|
struct bpf_uprobe_multi_link *umulti_link;
|
|
|
|
umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
|
|
kvfree(umulti_link->uprobes);
|
|
kfree(umulti_link);
|
|
}
|
|
|
|
static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
|
|
struct bpf_link_info *info)
|
|
{
|
|
u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
|
|
u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
|
|
u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
|
|
u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
|
|
u32 upath_size = info->uprobe_multi.path_size;
|
|
struct bpf_uprobe_multi_link *umulti_link;
|
|
u32 ucount = info->uprobe_multi.count;
|
|
int err = 0, i;
|
|
char *p, *buf;
|
|
long left = 0;
|
|
|
|
if (!upath ^ !upath_size)
|
|
return -EINVAL;
|
|
|
|
if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
|
|
return -EINVAL;
|
|
|
|
umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
|
|
info->uprobe_multi.count = umulti_link->cnt;
|
|
info->uprobe_multi.flags = umulti_link->flags;
|
|
info->uprobe_multi.pid = umulti_link->task ?
|
|
task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
|
|
|
|
upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
|
|
buf = kmalloc(upath_size, GFP_KERNEL);
|
|
if (!buf)
|
|
return -ENOMEM;
|
|
p = d_path(&umulti_link->path, buf, upath_size);
|
|
if (IS_ERR(p)) {
|
|
kfree(buf);
|
|
return PTR_ERR(p);
|
|
}
|
|
upath_size = buf + upath_size - p;
|
|
|
|
if (upath)
|
|
left = copy_to_user(upath, p, upath_size);
|
|
kfree(buf);
|
|
if (left)
|
|
return -EFAULT;
|
|
info->uprobe_multi.path_size = upath_size;
|
|
|
|
if (!uoffsets && !ucookies && !uref_ctr_offsets)
|
|
return 0;
|
|
|
|
if (ucount < umulti_link->cnt)
|
|
err = -ENOSPC;
|
|
else
|
|
ucount = umulti_link->cnt;
|
|
|
|
for (i = 0; i < ucount; i++) {
|
|
if (uoffsets &&
|
|
put_user(umulti_link->uprobes[i].offset, uoffsets + i))
|
|
return -EFAULT;
|
|
if (uref_ctr_offsets &&
|
|
put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
|
|
return -EFAULT;
|
|
if (ucookies &&
|
|
put_user(umulti_link->uprobes[i].cookie, ucookies + i))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
|
|
.release = bpf_uprobe_multi_link_release,
|
|
.dealloc_deferred = bpf_uprobe_multi_link_dealloc,
|
|
.fill_link_info = bpf_uprobe_multi_link_fill_link_info,
|
|
};
|
|
|
|
static int uprobe_prog_run(struct bpf_uprobe *uprobe,
|
|
unsigned long entry_ip,
|
|
struct pt_regs *regs,
|
|
bool is_return, void *data)
|
|
{
|
|
struct bpf_uprobe_multi_link *link = uprobe->link;
|
|
struct bpf_uprobe_multi_run_ctx run_ctx = {
|
|
.session_ctx = {
|
|
.is_return = is_return,
|
|
.data = data,
|
|
},
|
|
.entry_ip = entry_ip,
|
|
.uprobe = uprobe,
|
|
};
|
|
struct bpf_prog *prog = link->link.prog;
|
|
bool sleepable = prog->sleepable;
|
|
struct bpf_run_ctx *old_run_ctx;
|
|
int err;
|
|
|
|
if (link->task && !same_thread_group(current, link->task))
|
|
return 0;
|
|
|
|
if (sleepable)
|
|
rcu_read_lock_trace();
|
|
else
|
|
rcu_read_lock();
|
|
|
|
migrate_disable();
|
|
|
|
old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
|
|
err = bpf_prog_run(link->link.prog, regs);
|
|
bpf_reset_run_ctx(old_run_ctx);
|
|
|
|
migrate_enable();
|
|
|
|
if (sleepable)
|
|
rcu_read_unlock_trace();
|
|
else
|
|
rcu_read_unlock();
|
|
return err;
|
|
}
|
|
|
|
static bool
|
|
uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
|
|
{
|
|
struct bpf_uprobe *uprobe;
|
|
|
|
uprobe = container_of(con, struct bpf_uprobe, consumer);
|
|
return uprobe->link->task->mm == mm;
|
|
}
|
|
|
|
static int
|
|
uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs,
|
|
__u64 *data)
|
|
{
|
|
struct bpf_uprobe *uprobe;
|
|
int ret;
|
|
|
|
uprobe = container_of(con, struct bpf_uprobe, consumer);
|
|
ret = uprobe_prog_run(uprobe, instruction_pointer(regs), regs, false, data);
|
|
if (uprobe->session)
|
|
return ret ? UPROBE_HANDLER_IGNORE : 0;
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs,
|
|
__u64 *data)
|
|
{
|
|
struct bpf_uprobe *uprobe;
|
|
|
|
uprobe = container_of(con, struct bpf_uprobe, consumer);
|
|
uprobe_prog_run(uprobe, func, regs, true, data);
|
|
return 0;
|
|
}
|
|
|
|
static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
|
|
{
|
|
struct bpf_uprobe_multi_run_ctx *run_ctx;
|
|
|
|
run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
|
|
session_ctx.run_ctx);
|
|
return run_ctx->entry_ip;
|
|
}
|
|
|
|
static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
|
|
{
|
|
struct bpf_uprobe_multi_run_ctx *run_ctx;
|
|
|
|
run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx,
|
|
session_ctx.run_ctx);
|
|
return run_ctx->uprobe->cookie;
|
|
}
|
|
|
|
int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
|
|
{
|
|
struct bpf_uprobe_multi_link *link = NULL;
|
|
unsigned long __user *uref_ctr_offsets;
|
|
struct bpf_link_primer link_primer;
|
|
struct bpf_uprobe *uprobes = NULL;
|
|
struct task_struct *task = NULL;
|
|
unsigned long __user *uoffsets;
|
|
u64 __user *ucookies;
|
|
void __user *upath;
|
|
u32 flags, cnt, i;
|
|
struct path path;
|
|
char *name;
|
|
pid_t pid;
|
|
int err;
|
|
|
|
/* no support for 32bit archs yet */
|
|
if (sizeof(u64) != sizeof(void *))
|
|
return -EOPNOTSUPP;
|
|
|
|
if (!is_uprobe_multi(prog))
|
|
return -EINVAL;
|
|
|
|
flags = attr->link_create.uprobe_multi.flags;
|
|
if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* path, offsets and cnt are mandatory,
|
|
* ref_ctr_offsets and cookies are optional
|
|
*/
|
|
upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
|
|
uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
|
|
cnt = attr->link_create.uprobe_multi.cnt;
|
|
pid = attr->link_create.uprobe_multi.pid;
|
|
|
|
if (!upath || !uoffsets || !cnt || pid < 0)
|
|
return -EINVAL;
|
|
if (cnt > MAX_UPROBE_MULTI_CNT)
|
|
return -E2BIG;
|
|
|
|
uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
|
|
ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
|
|
|
|
name = strndup_user(upath, PATH_MAX);
|
|
if (IS_ERR(name)) {
|
|
err = PTR_ERR(name);
|
|
return err;
|
|
}
|
|
|
|
err = kern_path(name, LOOKUP_FOLLOW, &path);
|
|
kfree(name);
|
|
if (err)
|
|
return err;
|
|
|
|
if (!d_is_reg(path.dentry)) {
|
|
err = -EBADF;
|
|
goto error_path_put;
|
|
}
|
|
|
|
if (pid) {
|
|
task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
|
|
if (!task) {
|
|
err = -ESRCH;
|
|
goto error_path_put;
|
|
}
|
|
}
|
|
|
|
err = -ENOMEM;
|
|
|
|
link = kzalloc(sizeof(*link), GFP_KERNEL);
|
|
uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
|
|
|
|
if (!uprobes || !link)
|
|
goto error_free;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
if (__get_user(uprobes[i].offset, uoffsets + i)) {
|
|
err = -EFAULT;
|
|
goto error_free;
|
|
}
|
|
if (uprobes[i].offset < 0) {
|
|
err = -EINVAL;
|
|
goto error_free;
|
|
}
|
|
if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
|
|
err = -EFAULT;
|
|
goto error_free;
|
|
}
|
|
if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
|
|
err = -EFAULT;
|
|
goto error_free;
|
|
}
|
|
|
|
uprobes[i].link = link;
|
|
|
|
if (!(flags & BPF_F_UPROBE_MULTI_RETURN))
|
|
uprobes[i].consumer.handler = uprobe_multi_link_handler;
|
|
if (flags & BPF_F_UPROBE_MULTI_RETURN || is_uprobe_session(prog))
|
|
uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
|
|
if (is_uprobe_session(prog))
|
|
uprobes[i].session = true;
|
|
if (pid)
|
|
uprobes[i].consumer.filter = uprobe_multi_link_filter;
|
|
}
|
|
|
|
link->cnt = cnt;
|
|
link->uprobes = uprobes;
|
|
link->path = path;
|
|
link->task = task;
|
|
link->flags = flags;
|
|
|
|
bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
|
|
&bpf_uprobe_multi_link_lops, prog);
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
|
|
uprobes[i].offset,
|
|
uprobes[i].ref_ctr_offset,
|
|
&uprobes[i].consumer);
|
|
if (IS_ERR(uprobes[i].uprobe)) {
|
|
err = PTR_ERR(uprobes[i].uprobe);
|
|
link->cnt = i;
|
|
goto error_unregister;
|
|
}
|
|
}
|
|
|
|
err = bpf_link_prime(&link->link, &link_primer);
|
|
if (err)
|
|
goto error_unregister;
|
|
|
|
return bpf_link_settle(&link_primer);
|
|
|
|
error_unregister:
|
|
bpf_uprobe_unregister(uprobes, link->cnt);
|
|
|
|
error_free:
|
|
kvfree(uprobes);
|
|
kfree(link);
|
|
if (task)
|
|
put_task_struct(task);
|
|
error_path_put:
|
|
path_put(&path);
|
|
return err;
|
|
}
|
|
#else /* !CONFIG_UPROBES */
|
|
int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
|
|
{
|
|
return -EOPNOTSUPP;
|
|
}
|
|
static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
|
|
{
|
|
return 0;
|
|
}
|
|
#endif /* CONFIG_UPROBES */
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
__bpf_kfunc bool bpf_session_is_return(void)
|
|
{
|
|
struct bpf_session_run_ctx *session_ctx;
|
|
|
|
session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
|
|
return session_ctx->is_return;
|
|
}
|
|
|
|
__bpf_kfunc __u64 *bpf_session_cookie(void)
|
|
{
|
|
struct bpf_session_run_ctx *session_ctx;
|
|
|
|
session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
|
|
return session_ctx->data;
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|
|
|
|
BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
|
|
BTF_ID_FLAGS(func, bpf_session_is_return)
|
|
BTF_ID_FLAGS(func, bpf_session_cookie)
|
|
BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
|
|
|
|
static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
|
|
{
|
|
if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
|
|
return 0;
|
|
|
|
if (!is_kprobe_session(prog) && !is_uprobe_session(prog))
|
|
return -EACCES;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
|
|
.owner = THIS_MODULE,
|
|
.set = &kprobe_multi_kfunc_set_ids,
|
|
.filter = bpf_kprobe_multi_filter,
|
|
};
|
|
|
|
static int __init bpf_kprobe_multi_kfuncs_init(void)
|
|
{
|
|
return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
|
|
}
|
|
|
|
late_initcall(bpf_kprobe_multi_kfuncs_init);
|
|
|
|
__bpf_kfunc_start_defs();
|
|
|
|
__bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
|
|
u64 value)
|
|
{
|
|
if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
|
|
return -EINVAL;
|
|
|
|
return bpf_send_signal_common(sig, type, task, value);
|
|
}
|
|
|
|
__bpf_kfunc_end_defs();
|