Bhanu Prakash Gollapudi 99cc600cdd [SCSI] bnx2fc: Handle ABTS timeout during ulp timeout
If the IO and the corresponding ABTS are not responded by a target, cleanup the
IO and issue explicit logout when ulp timer expires while waiting for ABTS to
complete. Wait for the session to be ready before returning to the SCSI layer.
If the session is not ready let the SCSI-ml escalate the error recovery.

Signed-off-by: Bhanu Prakash Gollapudi <bprakash@broadcom.com>
Signed-off-by: James Bottomley <JBottomley@Parallels.com>
2011-10-30 13:28:55 +04:00

2035 lines
54 KiB
C

/* bnx2fc_io.c: Broadcom NetXtreme II Linux FCoE offload driver.
* IO manager and SCSI IO processing.
*
* Copyright (c) 2008 - 2011 Broadcom Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation.
*
* Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
*/
#include "bnx2fc.h"
#define RESERVE_FREE_LIST_INDEX num_possible_cpus()
static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
int bd_index);
static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req);
static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req);
static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req);
static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req);
static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
struct fcoe_fcp_rsp_payload *fcp_rsp,
u8 num_rq);
void bnx2fc_cmd_timer_set(struct bnx2fc_cmd *io_req,
unsigned int timer_msec)
{
struct bnx2fc_interface *interface = io_req->port->priv;
if (queue_delayed_work(interface->timer_work_queue,
&io_req->timeout_work,
msecs_to_jiffies(timer_msec)))
kref_get(&io_req->refcount);
}
static void bnx2fc_cmd_timeout(struct work_struct *work)
{
struct bnx2fc_cmd *io_req = container_of(work, struct bnx2fc_cmd,
timeout_work.work);
struct fc_lport *lport;
struct fc_rport_priv *rdata;
u8 cmd_type = io_req->cmd_type;
struct bnx2fc_rport *tgt = io_req->tgt;
int logo_issued;
int rc;
BNX2FC_IO_DBG(io_req, "cmd_timeout, cmd_type = %d,"
"req_flags = %lx\n", cmd_type, io_req->req_flags);
spin_lock_bh(&tgt->tgt_lock);
if (test_and_clear_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags)) {
clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
/*
* ideally we should hold the io_req until RRQ complets,
* and release io_req from timeout hold.
*/
spin_unlock_bh(&tgt->tgt_lock);
bnx2fc_send_rrq(io_req);
return;
}
if (test_and_clear_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "IO ready for reuse now\n");
goto done;
}
switch (cmd_type) {
case BNX2FC_SCSI_CMD:
if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
&io_req->req_flags)) {
/* Handle eh_abort timeout */
BNX2FC_IO_DBG(io_req, "eh_abort timed out\n");
complete(&io_req->tm_done);
} else if (test_bit(BNX2FC_FLAG_ISSUE_ABTS,
&io_req->req_flags)) {
/* Handle internally generated ABTS timeout */
BNX2FC_IO_DBG(io_req, "ABTS timed out refcnt = %d\n",
io_req->refcount.refcount.counter);
if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
&io_req->req_flags))) {
lport = io_req->port->lport;
rdata = io_req->tgt->rdata;
logo_issued = test_and_set_bit(
BNX2FC_FLAG_EXPL_LOGO,
&tgt->flags);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
/* Explicitly logo the target */
if (!logo_issued) {
BNX2FC_IO_DBG(io_req, "Explicit "
"logo - tgt flags = 0x%lx\n",
tgt->flags);
mutex_lock(&lport->disc.disc_mutex);
lport->tt.rport_logoff(rdata);
mutex_unlock(&lport->disc.disc_mutex);
}
return;
}
} else {
/* Hanlde IO timeout */
BNX2FC_IO_DBG(io_req, "IO timed out. issue ABTS\n");
if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL,
&io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "IO completed before "
" timer expiry\n");
goto done;
}
if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
&io_req->req_flags)) {
rc = bnx2fc_initiate_abts(io_req);
if (rc == SUCCESS)
goto done;
/*
* Explicitly logo the target if
* abts initiation fails
*/
lport = io_req->port->lport;
rdata = io_req->tgt->rdata;
logo_issued = test_and_set_bit(
BNX2FC_FLAG_EXPL_LOGO,
&tgt->flags);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
if (!logo_issued) {
BNX2FC_IO_DBG(io_req, "Explicit "
"logo - tgt flags = 0x%lx\n",
tgt->flags);
mutex_lock(&lport->disc.disc_mutex);
lport->tt.rport_logoff(rdata);
mutex_unlock(&lport->disc.disc_mutex);
}
return;
} else {
BNX2FC_IO_DBG(io_req, "IO already in "
"ABTS processing\n");
}
}
break;
case BNX2FC_ELS:
if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "ABTS for ELS timed out\n");
if (!test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
&io_req->req_flags)) {
lport = io_req->port->lport;
rdata = io_req->tgt->rdata;
logo_issued = test_and_set_bit(
BNX2FC_FLAG_EXPL_LOGO,
&tgt->flags);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
/* Explicitly logo the target */
if (!logo_issued) {
BNX2FC_IO_DBG(io_req, "Explicitly logo"
"(els)\n");
mutex_lock(&lport->disc.disc_mutex);
lport->tt.rport_logoff(rdata);
mutex_unlock(&lport->disc.disc_mutex);
}
return;
}
} else {
/*
* Handle ELS timeout.
* tgt_lock is used to sync compl path and timeout
* path. If els compl path is processing this IO, we
* have nothing to do here, just release the timer hold
*/
BNX2FC_IO_DBG(io_req, "ELS timed out\n");
if (test_and_set_bit(BNX2FC_FLAG_ELS_DONE,
&io_req->req_flags))
goto done;
/* Indicate the cb_func that this ELS is timed out */
set_bit(BNX2FC_FLAG_ELS_TIMEOUT, &io_req->req_flags);
if ((io_req->cb_func) && (io_req->cb_arg)) {
io_req->cb_func(io_req->cb_arg);
io_req->cb_arg = NULL;
}
}
break;
default:
printk(KERN_ERR PFX "cmd_timeout: invalid cmd_type %d\n",
cmd_type);
break;
}
done:
/* release the cmd that was held when timer was set */
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
}
static void bnx2fc_scsi_done(struct bnx2fc_cmd *io_req, int err_code)
{
/* Called with host lock held */
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
/*
* active_cmd_queue may have other command types as well,
* and during flush operation, we want to error back only
* scsi commands.
*/
if (io_req->cmd_type != BNX2FC_SCSI_CMD)
return;
BNX2FC_IO_DBG(io_req, "scsi_done. err_code = 0x%x\n", err_code);
if (test_bit(BNX2FC_FLAG_CMD_LOST, &io_req->req_flags)) {
/* Do not call scsi done for this IO */
return;
}
bnx2fc_unmap_sg_list(io_req);
io_req->sc_cmd = NULL;
if (!sc_cmd) {
printk(KERN_ERR PFX "scsi_done - sc_cmd NULL. "
"IO(0x%x) already cleaned up\n",
io_req->xid);
return;
}
sc_cmd->result = err_code << 16;
BNX2FC_IO_DBG(io_req, "sc=%p, result=0x%x, retries=%d, allowed=%d\n",
sc_cmd, host_byte(sc_cmd->result), sc_cmd->retries,
sc_cmd->allowed);
scsi_set_resid(sc_cmd, scsi_bufflen(sc_cmd));
sc_cmd->SCp.ptr = NULL;
sc_cmd->scsi_done(sc_cmd);
}
struct bnx2fc_cmd_mgr *bnx2fc_cmd_mgr_alloc(struct bnx2fc_hba *hba,
u16 min_xid, u16 max_xid)
{
struct bnx2fc_cmd_mgr *cmgr;
struct io_bdt *bdt_info;
struct bnx2fc_cmd *io_req;
size_t len;
u32 mem_size;
u16 xid;
int i;
int num_ios, num_pri_ios;
size_t bd_tbl_sz;
int arr_sz = num_possible_cpus() + 1;
if (max_xid <= min_xid || max_xid == FC_XID_UNKNOWN) {
printk(KERN_ERR PFX "cmd_mgr_alloc: Invalid min_xid 0x%x \
and max_xid 0x%x\n", min_xid, max_xid);
return NULL;
}
BNX2FC_MISC_DBG("min xid 0x%x, max xid 0x%x\n", min_xid, max_xid);
num_ios = max_xid - min_xid + 1;
len = (num_ios * (sizeof(struct bnx2fc_cmd *)));
len += sizeof(struct bnx2fc_cmd_mgr);
cmgr = kzalloc(len, GFP_KERNEL);
if (!cmgr) {
printk(KERN_ERR PFX "failed to alloc cmgr\n");
return NULL;
}
cmgr->free_list = kzalloc(sizeof(*cmgr->free_list) *
arr_sz, GFP_KERNEL);
if (!cmgr->free_list) {
printk(KERN_ERR PFX "failed to alloc free_list\n");
goto mem_err;
}
cmgr->free_list_lock = kzalloc(sizeof(*cmgr->free_list_lock) *
arr_sz, GFP_KERNEL);
if (!cmgr->free_list_lock) {
printk(KERN_ERR PFX "failed to alloc free_list_lock\n");
goto mem_err;
}
cmgr->hba = hba;
cmgr->cmds = (struct bnx2fc_cmd **)(cmgr + 1);
for (i = 0; i < arr_sz; i++) {
INIT_LIST_HEAD(&cmgr->free_list[i]);
spin_lock_init(&cmgr->free_list_lock[i]);
}
/*
* Pre-allocated pool of bnx2fc_cmds.
* Last entry in the free list array is the free list
* of slow path requests.
*/
xid = BNX2FC_MIN_XID;
num_pri_ios = num_ios - BNX2FC_ELSTM_XIDS;
for (i = 0; i < num_ios; i++) {
io_req = kzalloc(sizeof(*io_req), GFP_KERNEL);
if (!io_req) {
printk(KERN_ERR PFX "failed to alloc io_req\n");
goto mem_err;
}
INIT_LIST_HEAD(&io_req->link);
INIT_DELAYED_WORK(&io_req->timeout_work, bnx2fc_cmd_timeout);
io_req->xid = xid++;
if (i < num_pri_ios)
list_add_tail(&io_req->link,
&cmgr->free_list[io_req->xid %
num_possible_cpus()]);
else
list_add_tail(&io_req->link,
&cmgr->free_list[num_possible_cpus()]);
io_req++;
}
/* Allocate pool of io_bdts - one for each bnx2fc_cmd */
mem_size = num_ios * sizeof(struct io_bdt *);
cmgr->io_bdt_pool = kmalloc(mem_size, GFP_KERNEL);
if (!cmgr->io_bdt_pool) {
printk(KERN_ERR PFX "failed to alloc io_bdt_pool\n");
goto mem_err;
}
mem_size = sizeof(struct io_bdt);
for (i = 0; i < num_ios; i++) {
cmgr->io_bdt_pool[i] = kmalloc(mem_size, GFP_KERNEL);
if (!cmgr->io_bdt_pool[i]) {
printk(KERN_ERR PFX "failed to alloc "
"io_bdt_pool[%d]\n", i);
goto mem_err;
}
}
/* Allocate an map fcoe_bdt_ctx structures */
bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
for (i = 0; i < num_ios; i++) {
bdt_info = cmgr->io_bdt_pool[i];
bdt_info->bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
bd_tbl_sz,
&bdt_info->bd_tbl_dma,
GFP_KERNEL);
if (!bdt_info->bd_tbl) {
printk(KERN_ERR PFX "failed to alloc "
"bdt_tbl[%d]\n", i);
goto mem_err;
}
}
return cmgr;
mem_err:
bnx2fc_cmd_mgr_free(cmgr);
return NULL;
}
void bnx2fc_cmd_mgr_free(struct bnx2fc_cmd_mgr *cmgr)
{
struct io_bdt *bdt_info;
struct bnx2fc_hba *hba = cmgr->hba;
size_t bd_tbl_sz;
u16 min_xid = BNX2FC_MIN_XID;
u16 max_xid = BNX2FC_MAX_XID;
int num_ios;
int i;
num_ios = max_xid - min_xid + 1;
/* Free fcoe_bdt_ctx structures */
if (!cmgr->io_bdt_pool)
goto free_cmd_pool;
bd_tbl_sz = BNX2FC_MAX_BDS_PER_CMD * sizeof(struct fcoe_bd_ctx);
for (i = 0; i < num_ios; i++) {
bdt_info = cmgr->io_bdt_pool[i];
if (bdt_info->bd_tbl) {
dma_free_coherent(&hba->pcidev->dev, bd_tbl_sz,
bdt_info->bd_tbl,
bdt_info->bd_tbl_dma);
bdt_info->bd_tbl = NULL;
}
}
/* Destroy io_bdt pool */
for (i = 0; i < num_ios; i++) {
kfree(cmgr->io_bdt_pool[i]);
cmgr->io_bdt_pool[i] = NULL;
}
kfree(cmgr->io_bdt_pool);
cmgr->io_bdt_pool = NULL;
free_cmd_pool:
kfree(cmgr->free_list_lock);
/* Destroy cmd pool */
if (!cmgr->free_list)
goto free_cmgr;
for (i = 0; i < num_possible_cpus() + 1; i++) {
struct list_head *list;
struct list_head *tmp;
list_for_each_safe(list, tmp, &cmgr->free_list[i]) {
struct bnx2fc_cmd *io_req = (struct bnx2fc_cmd *)list;
list_del(&io_req->link);
kfree(io_req);
}
}
kfree(cmgr->free_list);
free_cmgr:
/* Free command manager itself */
kfree(cmgr);
}
struct bnx2fc_cmd *bnx2fc_elstm_alloc(struct bnx2fc_rport *tgt, int type)
{
struct fcoe_port *port = tgt->port;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
struct bnx2fc_cmd *io_req;
struct list_head *listp;
struct io_bdt *bd_tbl;
int index = RESERVE_FREE_LIST_INDEX;
u32 free_sqes;
u32 max_sqes;
u16 xid;
max_sqes = tgt->max_sqes;
switch (type) {
case BNX2FC_TASK_MGMT_CMD:
max_sqes = BNX2FC_TM_MAX_SQES;
break;
case BNX2FC_ELS:
max_sqes = BNX2FC_ELS_MAX_SQES;
break;
default:
break;
}
/*
* NOTE: Free list insertions and deletions are protected with
* cmgr lock
*/
spin_lock_bh(&cmd_mgr->free_list_lock[index]);
free_sqes = atomic_read(&tgt->free_sqes);
if ((list_empty(&(cmd_mgr->free_list[index]))) ||
(tgt->num_active_ios.counter >= max_sqes) ||
(free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
BNX2FC_TGT_DBG(tgt, "No free els_tm cmds available "
"ios(%d):sqes(%d)\n",
tgt->num_active_ios.counter, tgt->max_sqes);
if (list_empty(&(cmd_mgr->free_list[index])))
printk(KERN_ERR PFX "elstm_alloc: list_empty\n");
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
return NULL;
}
listp = (struct list_head *)
cmd_mgr->free_list[index].next;
list_del_init(listp);
io_req = (struct bnx2fc_cmd *) listp;
xid = io_req->xid;
cmd_mgr->cmds[xid] = io_req;
atomic_inc(&tgt->num_active_ios);
atomic_dec(&tgt->free_sqes);
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
INIT_LIST_HEAD(&io_req->link);
io_req->port = port;
io_req->cmd_mgr = cmd_mgr;
io_req->req_flags = 0;
io_req->cmd_type = type;
/* Bind io_bdt for this io_req */
/* Have a static link between io_req and io_bdt_pool */
bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
bd_tbl->io_req = io_req;
/* Hold the io_req against deletion */
kref_init(&io_req->refcount);
return io_req;
}
struct bnx2fc_cmd *bnx2fc_cmd_alloc(struct bnx2fc_rport *tgt)
{
struct fcoe_port *port = tgt->port;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_cmd_mgr *cmd_mgr = interface->hba->cmd_mgr;
struct bnx2fc_cmd *io_req;
struct list_head *listp;
struct io_bdt *bd_tbl;
u32 free_sqes;
u32 max_sqes;
u16 xid;
int index = get_cpu();
max_sqes = BNX2FC_SCSI_MAX_SQES;
/*
* NOTE: Free list insertions and deletions are protected with
* cmgr lock
*/
spin_lock_bh(&cmd_mgr->free_list_lock[index]);
free_sqes = atomic_read(&tgt->free_sqes);
if ((list_empty(&cmd_mgr->free_list[index])) ||
(tgt->num_active_ios.counter >= max_sqes) ||
(free_sqes + max_sqes <= BNX2FC_SQ_WQES_MAX)) {
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
put_cpu();
return NULL;
}
listp = (struct list_head *)
cmd_mgr->free_list[index].next;
list_del_init(listp);
io_req = (struct bnx2fc_cmd *) listp;
xid = io_req->xid;
cmd_mgr->cmds[xid] = io_req;
atomic_inc(&tgt->num_active_ios);
atomic_dec(&tgt->free_sqes);
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
put_cpu();
INIT_LIST_HEAD(&io_req->link);
io_req->port = port;
io_req->cmd_mgr = cmd_mgr;
io_req->req_flags = 0;
/* Bind io_bdt for this io_req */
/* Have a static link between io_req and io_bdt_pool */
bd_tbl = io_req->bd_tbl = cmd_mgr->io_bdt_pool[xid];
bd_tbl->io_req = io_req;
/* Hold the io_req against deletion */
kref_init(&io_req->refcount);
return io_req;
}
void bnx2fc_cmd_release(struct kref *ref)
{
struct bnx2fc_cmd *io_req = container_of(ref,
struct bnx2fc_cmd, refcount);
struct bnx2fc_cmd_mgr *cmd_mgr = io_req->cmd_mgr;
int index;
if (io_req->cmd_type == BNX2FC_SCSI_CMD)
index = io_req->xid % num_possible_cpus();
else
index = RESERVE_FREE_LIST_INDEX;
spin_lock_bh(&cmd_mgr->free_list_lock[index]);
if (io_req->cmd_type != BNX2FC_SCSI_CMD)
bnx2fc_free_mp_resc(io_req);
cmd_mgr->cmds[io_req->xid] = NULL;
/* Delete IO from retire queue */
list_del_init(&io_req->link);
/* Add it to the free list */
list_add(&io_req->link,
&cmd_mgr->free_list[index]);
atomic_dec(&io_req->tgt->num_active_ios);
spin_unlock_bh(&cmd_mgr->free_list_lock[index]);
}
static void bnx2fc_free_mp_resc(struct bnx2fc_cmd *io_req)
{
struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
struct bnx2fc_interface *interface = io_req->port->priv;
struct bnx2fc_hba *hba = interface->hba;
size_t sz = sizeof(struct fcoe_bd_ctx);
/* clear tm flags */
mp_req->tm_flags = 0;
if (mp_req->mp_req_bd) {
dma_free_coherent(&hba->pcidev->dev, sz,
mp_req->mp_req_bd,
mp_req->mp_req_bd_dma);
mp_req->mp_req_bd = NULL;
}
if (mp_req->mp_resp_bd) {
dma_free_coherent(&hba->pcidev->dev, sz,
mp_req->mp_resp_bd,
mp_req->mp_resp_bd_dma);
mp_req->mp_resp_bd = NULL;
}
if (mp_req->req_buf) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
mp_req->req_buf,
mp_req->req_buf_dma);
mp_req->req_buf = NULL;
}
if (mp_req->resp_buf) {
dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
mp_req->resp_buf,
mp_req->resp_buf_dma);
mp_req->resp_buf = NULL;
}
}
int bnx2fc_init_mp_req(struct bnx2fc_cmd *io_req)
{
struct bnx2fc_mp_req *mp_req;
struct fcoe_bd_ctx *mp_req_bd;
struct fcoe_bd_ctx *mp_resp_bd;
struct bnx2fc_interface *interface = io_req->port->priv;
struct bnx2fc_hba *hba = interface->hba;
dma_addr_t addr;
size_t sz;
mp_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
memset(mp_req, 0, sizeof(struct bnx2fc_mp_req));
mp_req->req_len = sizeof(struct fcp_cmnd);
io_req->data_xfer_len = mp_req->req_len;
mp_req->req_buf = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
&mp_req->req_buf_dma,
GFP_ATOMIC);
if (!mp_req->req_buf) {
printk(KERN_ERR PFX "unable to alloc MP req buffer\n");
bnx2fc_free_mp_resc(io_req);
return FAILED;
}
mp_req->resp_buf = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
&mp_req->resp_buf_dma,
GFP_ATOMIC);
if (!mp_req->resp_buf) {
printk(KERN_ERR PFX "unable to alloc TM resp buffer\n");
bnx2fc_free_mp_resc(io_req);
return FAILED;
}
memset(mp_req->req_buf, 0, PAGE_SIZE);
memset(mp_req->resp_buf, 0, PAGE_SIZE);
/* Allocate and map mp_req_bd and mp_resp_bd */
sz = sizeof(struct fcoe_bd_ctx);
mp_req->mp_req_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
&mp_req->mp_req_bd_dma,
GFP_ATOMIC);
if (!mp_req->mp_req_bd) {
printk(KERN_ERR PFX "unable to alloc MP req bd\n");
bnx2fc_free_mp_resc(io_req);
return FAILED;
}
mp_req->mp_resp_bd = dma_alloc_coherent(&hba->pcidev->dev, sz,
&mp_req->mp_resp_bd_dma,
GFP_ATOMIC);
if (!mp_req->mp_req_bd) {
printk(KERN_ERR PFX "unable to alloc MP resp bd\n");
bnx2fc_free_mp_resc(io_req);
return FAILED;
}
/* Fill bd table */
addr = mp_req->req_buf_dma;
mp_req_bd = mp_req->mp_req_bd;
mp_req_bd->buf_addr_lo = (u32)addr & 0xffffffff;
mp_req_bd->buf_addr_hi = (u32)((u64)addr >> 32);
mp_req_bd->buf_len = PAGE_SIZE;
mp_req_bd->flags = 0;
/*
* MP buffer is either a task mgmt command or an ELS.
* So the assumption is that it consumes a single bd
* entry in the bd table
*/
mp_resp_bd = mp_req->mp_resp_bd;
addr = mp_req->resp_buf_dma;
mp_resp_bd->buf_addr_lo = (u32)addr & 0xffffffff;
mp_resp_bd->buf_addr_hi = (u32)((u64)addr >> 32);
mp_resp_bd->buf_len = PAGE_SIZE;
mp_resp_bd->flags = 0;
return SUCCESS;
}
static int bnx2fc_initiate_tmf(struct scsi_cmnd *sc_cmd, u8 tm_flags)
{
struct fc_lport *lport;
struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
struct fc_rport_libfc_priv *rp = rport->dd_data;
struct fcoe_port *port;
struct bnx2fc_interface *interface;
struct bnx2fc_rport *tgt;
struct bnx2fc_cmd *io_req;
struct bnx2fc_mp_req *tm_req;
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
struct Scsi_Host *host = sc_cmd->device->host;
struct fc_frame_header *fc_hdr;
struct fcp_cmnd *fcp_cmnd;
int task_idx, index;
int rc = SUCCESS;
u16 xid;
u32 sid, did;
unsigned long start = jiffies;
lport = shost_priv(host);
port = lport_priv(lport);
interface = port->priv;
if (rport == NULL) {
printk(KERN_ERR PFX "device_reset: rport is NULL\n");
rc = FAILED;
goto tmf_err;
}
rc = fc_block_scsi_eh(sc_cmd);
if (rc)
return rc;
if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
printk(KERN_ERR PFX "device_reset: link is not ready\n");
rc = FAILED;
goto tmf_err;
}
/* rport and tgt are allocated together, so tgt should be non-NULL */
tgt = (struct bnx2fc_rport *)&rp[1];
if (!(test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags))) {
printk(KERN_ERR PFX "device_reset: tgt not offloaded\n");
rc = FAILED;
goto tmf_err;
}
retry_tmf:
io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_TASK_MGMT_CMD);
if (!io_req) {
if (time_after(jiffies, start + HZ)) {
printk(KERN_ERR PFX "tmf: Failed TMF");
rc = FAILED;
goto tmf_err;
}
msleep(20);
goto retry_tmf;
}
/* Initialize rest of io_req fields */
io_req->sc_cmd = sc_cmd;
io_req->port = port;
io_req->tgt = tgt;
tm_req = (struct bnx2fc_mp_req *)&(io_req->mp_req);
rc = bnx2fc_init_mp_req(io_req);
if (rc == FAILED) {
printk(KERN_ERR PFX "Task mgmt MP request init failed\n");
spin_lock_bh(&tgt->tgt_lock);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
goto tmf_err;
}
/* Set TM flags */
io_req->io_req_flags = 0;
tm_req->tm_flags = tm_flags;
/* Fill FCP_CMND */
bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)tm_req->req_buf);
fcp_cmnd = (struct fcp_cmnd *)tm_req->req_buf;
memset(fcp_cmnd->fc_cdb, 0, sc_cmd->cmd_len);
fcp_cmnd->fc_dl = 0;
/* Fill FC header */
fc_hdr = &(tm_req->req_fc_hdr);
sid = tgt->sid;
did = rport->port_id;
__fc_fill_fc_hdr(fc_hdr, FC_RCTL_DD_UNSOL_CMD, did, sid,
FC_TYPE_FCP, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
FC_FC_SEQ_INIT, 0);
/* Obtain exchange id */
xid = io_req->xid;
BNX2FC_TGT_DBG(tgt, "Initiate TMF - xid = 0x%x\n", xid);
task_idx = xid/BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
/* Initialize task context for this IO request */
task_page = (struct fcoe_task_ctx_entry *)
interface->hba->task_ctx[task_idx];
task = &(task_page[index]);
bnx2fc_init_mp_task(io_req, task);
sc_cmd->SCp.ptr = (char *)io_req;
/* Obtain free SQ entry */
spin_lock_bh(&tgt->tgt_lock);
bnx2fc_add_2_sq(tgt, xid);
/* Enqueue the io_req to active_tm_queue */
io_req->on_tmf_queue = 1;
list_add_tail(&io_req->link, &tgt->active_tm_queue);
init_completion(&io_req->tm_done);
io_req->wait_for_comp = 1;
/* Ring doorbell */
bnx2fc_ring_doorbell(tgt);
spin_unlock_bh(&tgt->tgt_lock);
rc = wait_for_completion_timeout(&io_req->tm_done,
BNX2FC_TM_TIMEOUT * HZ);
spin_lock_bh(&tgt->tgt_lock);
io_req->wait_for_comp = 0;
if (!(test_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags)))
set_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags);
spin_unlock_bh(&tgt->tgt_lock);
if (!rc) {
BNX2FC_TGT_DBG(tgt, "task mgmt command failed...\n");
rc = FAILED;
} else {
BNX2FC_TGT_DBG(tgt, "task mgmt command success...\n");
rc = SUCCESS;
}
tmf_err:
return rc;
}
int bnx2fc_initiate_abts(struct bnx2fc_cmd *io_req)
{
struct fc_lport *lport;
struct bnx2fc_rport *tgt = io_req->tgt;
struct fc_rport *rport = tgt->rport;
struct fc_rport_priv *rdata = tgt->rdata;
struct bnx2fc_interface *interface;
struct fcoe_port *port;
struct bnx2fc_cmd *abts_io_req;
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
struct fc_frame_header *fc_hdr;
struct bnx2fc_mp_req *abts_req;
int task_idx, index;
u32 sid, did;
u16 xid;
int rc = SUCCESS;
u32 r_a_tov = rdata->r_a_tov;
/* called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_abts\n");
port = io_req->port;
interface = port->priv;
lport = port->lport;
if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
printk(KERN_ERR PFX "initiate_abts: tgt not offloaded\n");
rc = FAILED;
goto abts_err;
}
if (rport == NULL) {
printk(KERN_ERR PFX "initiate_abts: rport is NULL\n");
rc = FAILED;
goto abts_err;
}
if (lport->state != LPORT_ST_READY || !(lport->link_up)) {
printk(KERN_ERR PFX "initiate_abts: link is not ready\n");
rc = FAILED;
goto abts_err;
}
abts_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_ABTS);
if (!abts_io_req) {
printk(KERN_ERR PFX "abts: couldnt allocate cmd\n");
rc = FAILED;
goto abts_err;
}
/* Initialize rest of io_req fields */
abts_io_req->sc_cmd = NULL;
abts_io_req->port = port;
abts_io_req->tgt = tgt;
abts_io_req->data_xfer_len = 0; /* No data transfer for ABTS */
abts_req = (struct bnx2fc_mp_req *)&(abts_io_req->mp_req);
memset(abts_req, 0, sizeof(struct bnx2fc_mp_req));
/* Fill FC header */
fc_hdr = &(abts_req->req_fc_hdr);
/* Obtain oxid and rxid for the original exchange to be aborted */
fc_hdr->fh_ox_id = htons(io_req->xid);
fc_hdr->fh_rx_id = htons(io_req->task->rxwr_txrd.var_ctx.rx_id);
sid = tgt->sid;
did = rport->port_id;
__fc_fill_fc_hdr(fc_hdr, FC_RCTL_BA_ABTS, did, sid,
FC_TYPE_BLS, FC_FC_FIRST_SEQ | FC_FC_END_SEQ |
FC_FC_SEQ_INIT, 0);
xid = abts_io_req->xid;
BNX2FC_IO_DBG(abts_io_req, "ABTS io_req\n");
task_idx = xid/BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
/* Initialize task context for this IO request */
task_page = (struct fcoe_task_ctx_entry *)
interface->hba->task_ctx[task_idx];
task = &(task_page[index]);
bnx2fc_init_mp_task(abts_io_req, task);
/*
* ABTS task is a temporary task that will be cleaned up
* irrespective of ABTS response. We need to start the timer
* for the original exchange, as the CQE is posted for the original
* IO request.
*
* Timer for ABTS is started only when it is originated by a
* TM request. For the ABTS issued as part of ULP timeout,
* scsi-ml maintains the timers.
*/
/* if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))*/
bnx2fc_cmd_timer_set(io_req, 2 * r_a_tov);
/* Obtain free SQ entry */
bnx2fc_add_2_sq(tgt, xid);
/* Ring doorbell */
bnx2fc_ring_doorbell(tgt);
abts_err:
return rc;
}
int bnx2fc_initiate_seq_cleanup(struct bnx2fc_cmd *orig_io_req, u32 offset,
enum fc_rctl r_ctl)
{
struct fc_lport *lport;
struct bnx2fc_rport *tgt = orig_io_req->tgt;
struct bnx2fc_interface *interface;
struct fcoe_port *port;
struct bnx2fc_cmd *seq_clnp_req;
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
struct bnx2fc_els_cb_arg *cb_arg = NULL;
int task_idx, index;
u16 xid;
int rc = 0;
BNX2FC_IO_DBG(orig_io_req, "bnx2fc_initiate_seq_cleanup xid = 0x%x\n",
orig_io_req->xid);
kref_get(&orig_io_req->refcount);
port = orig_io_req->port;
interface = port->priv;
lport = port->lport;
cb_arg = kzalloc(sizeof(struct bnx2fc_els_cb_arg), GFP_ATOMIC);
if (!cb_arg) {
printk(KERN_ERR PFX "Unable to alloc cb_arg for seq clnup\n");
rc = -ENOMEM;
goto cleanup_err;
}
seq_clnp_req = bnx2fc_elstm_alloc(tgt, BNX2FC_SEQ_CLEANUP);
if (!seq_clnp_req) {
printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n");
rc = -ENOMEM;
kfree(cb_arg);
goto cleanup_err;
}
/* Initialize rest of io_req fields */
seq_clnp_req->sc_cmd = NULL;
seq_clnp_req->port = port;
seq_clnp_req->tgt = tgt;
seq_clnp_req->data_xfer_len = 0; /* No data transfer for cleanup */
xid = seq_clnp_req->xid;
task_idx = xid/BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
/* Initialize task context for this IO request */
task_page = (struct fcoe_task_ctx_entry *)
interface->hba->task_ctx[task_idx];
task = &(task_page[index]);
cb_arg->aborted_io_req = orig_io_req;
cb_arg->io_req = seq_clnp_req;
cb_arg->r_ctl = r_ctl;
cb_arg->offset = offset;
seq_clnp_req->cb_arg = cb_arg;
printk(KERN_ERR PFX "call init_seq_cleanup_task\n");
bnx2fc_init_seq_cleanup_task(seq_clnp_req, task, orig_io_req, offset);
/* Obtain free SQ entry */
bnx2fc_add_2_sq(tgt, xid);
/* Ring doorbell */
bnx2fc_ring_doorbell(tgt);
cleanup_err:
return rc;
}
int bnx2fc_initiate_cleanup(struct bnx2fc_cmd *io_req)
{
struct fc_lport *lport;
struct bnx2fc_rport *tgt = io_req->tgt;
struct bnx2fc_interface *interface;
struct fcoe_port *port;
struct bnx2fc_cmd *cleanup_io_req;
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
int task_idx, index;
u16 xid, orig_xid;
int rc = 0;
/* ASSUMPTION: called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered bnx2fc_initiate_cleanup\n");
port = io_req->port;
interface = port->priv;
lport = port->lport;
cleanup_io_req = bnx2fc_elstm_alloc(tgt, BNX2FC_CLEANUP);
if (!cleanup_io_req) {
printk(KERN_ERR PFX "cleanup: couldnt allocate cmd\n");
rc = -1;
goto cleanup_err;
}
/* Initialize rest of io_req fields */
cleanup_io_req->sc_cmd = NULL;
cleanup_io_req->port = port;
cleanup_io_req->tgt = tgt;
cleanup_io_req->data_xfer_len = 0; /* No data transfer for cleanup */
xid = cleanup_io_req->xid;
task_idx = xid/BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
/* Initialize task context for this IO request */
task_page = (struct fcoe_task_ctx_entry *)
interface->hba->task_ctx[task_idx];
task = &(task_page[index]);
orig_xid = io_req->xid;
BNX2FC_IO_DBG(io_req, "CLEANUP io_req xid = 0x%x\n", xid);
bnx2fc_init_cleanup_task(cleanup_io_req, task, orig_xid);
/* Obtain free SQ entry */
bnx2fc_add_2_sq(tgt, xid);
/* Ring doorbell */
bnx2fc_ring_doorbell(tgt);
cleanup_err:
return rc;
}
/**
* bnx2fc_eh_target_reset: Reset a target
*
* @sc_cmd: SCSI command
*
* Set from SCSI host template to send task mgmt command to the target
* and wait for the response
*/
int bnx2fc_eh_target_reset(struct scsi_cmnd *sc_cmd)
{
return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_TGT_RESET);
}
/**
* bnx2fc_eh_device_reset - Reset a single LUN
*
* @sc_cmd: SCSI command
*
* Set from SCSI host template to send task mgmt command to the target
* and wait for the response
*/
int bnx2fc_eh_device_reset(struct scsi_cmnd *sc_cmd)
{
return bnx2fc_initiate_tmf(sc_cmd, FCP_TMF_LUN_RESET);
}
/**
* bnx2fc_eh_abort - eh_abort_handler api to abort an outstanding
* SCSI command
*
* @sc_cmd: SCSI_ML command pointer
*
* SCSI abort request handler
*/
int bnx2fc_eh_abort(struct scsi_cmnd *sc_cmd)
{
struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
struct fc_rport_libfc_priv *rp = rport->dd_data;
struct bnx2fc_cmd *io_req;
struct fc_lport *lport;
struct fc_rport_priv *rdata;
struct bnx2fc_rport *tgt;
int logo_issued;
int wait_cnt = 0;
int rc = FAILED;
rc = fc_block_scsi_eh(sc_cmd);
if (rc)
return rc;
lport = shost_priv(sc_cmd->device->host);
if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
printk(KERN_ERR PFX "eh_abort: link not ready\n");
return rc;
}
tgt = (struct bnx2fc_rport *)&rp[1];
BNX2FC_TGT_DBG(tgt, "Entered bnx2fc_eh_abort\n");
spin_lock_bh(&tgt->tgt_lock);
io_req = (struct bnx2fc_cmd *)sc_cmd->SCp.ptr;
if (!io_req) {
/* Command might have just completed */
printk(KERN_ERR PFX "eh_abort: io_req is NULL\n");
spin_unlock_bh(&tgt->tgt_lock);
return SUCCESS;
}
BNX2FC_IO_DBG(io_req, "eh_abort - refcnt = %d\n",
io_req->refcount.refcount.counter);
/* Hold IO request across abort processing */
kref_get(&io_req->refcount);
BUG_ON(tgt != io_req->tgt);
/* Remove the io_req from the active_q. */
/*
* Task Mgmt functions (LUN RESET & TGT RESET) will not
* issue an ABTS on this particular IO req, as the
* io_req is no longer in the active_q.
*/
if (tgt->flush_in_prog) {
printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
"flush in progress\n", io_req->xid);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return SUCCESS;
}
if (io_req->on_active_queue == 0) {
printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
"not on active_q\n", io_req->xid);
/*
* This condition can happen only due to the FW bug,
* where we do not receive cleanup response from
* the FW. Handle this case gracefully by erroring
* back the IO request to SCSI-ml
*/
bnx2fc_scsi_done(io_req, DID_ABORT);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return SUCCESS;
}
/*
* Only eh_abort processing will remove the IO from
* active_cmd_q before processing the request. this is
* done to avoid race conditions between IOs aborted
* as part of task management completion and eh_abort
* processing
*/
list_del_init(&io_req->link);
io_req->on_active_queue = 0;
/* Move IO req to retire queue */
list_add_tail(&io_req->link, &tgt->io_retire_queue);
init_completion(&io_req->tm_done);
io_req->wait_for_comp = 1;
if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
/* Cancel the current timer running on this io_req */
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release); /* drop timer hold */
set_bit(BNX2FC_FLAG_EH_ABORT, &io_req->req_flags);
rc = bnx2fc_initiate_abts(io_req);
} else {
printk(KERN_ERR PFX "eh_abort: io_req (xid = 0x%x) "
"already in abts processing\n", io_req->xid);
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release); /* drop timer hold */
bnx2fc_initiate_cleanup(io_req);
spin_unlock_bh(&tgt->tgt_lock);
wait_for_completion(&io_req->tm_done);
spin_lock_bh(&tgt->tgt_lock);
io_req->wait_for_comp = 0;
rdata = io_req->tgt->rdata;
logo_issued = test_and_set_bit(BNX2FC_FLAG_EXPL_LOGO,
&tgt->flags);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
if (!logo_issued) {
BNX2FC_IO_DBG(io_req, "Expl logo - tgt flags = 0x%lx\n",
tgt->flags);
mutex_lock(&lport->disc.disc_mutex);
lport->tt.rport_logoff(rdata);
mutex_unlock(&lport->disc.disc_mutex);
do {
msleep(BNX2FC_RELOGIN_WAIT_TIME);
/*
* If session not recovered, let SCSI-ml
* escalate error recovery.
*/
if (wait_cnt++ > BNX2FC_RELOGIN_WAIT_CNT)
return FAILED;
} while (!test_bit(BNX2FC_FLAG_SESSION_READY,
&tgt->flags));
}
return SUCCESS;
}
if (rc == FAILED) {
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return rc;
}
spin_unlock_bh(&tgt->tgt_lock);
wait_for_completion(&io_req->tm_done);
spin_lock_bh(&tgt->tgt_lock);
io_req->wait_for_comp = 0;
if (!(test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
&io_req->req_flags))) {
/* Let the scsi-ml try to recover this command */
printk(KERN_ERR PFX "abort failed, xid = 0x%x\n",
io_req->xid);
rc = FAILED;
} else {
/*
* We come here even when there was a race condition
* between timeout and abts completion, and abts
* completion happens just in time.
*/
BNX2FC_IO_DBG(io_req, "abort succeeded\n");
rc = SUCCESS;
bnx2fc_scsi_done(io_req, DID_ABORT);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
}
/* release the reference taken in eh_abort */
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return rc;
}
void bnx2fc_process_seq_cleanup_compl(struct bnx2fc_cmd *seq_clnp_req,
struct fcoe_task_ctx_entry *task,
u8 rx_state)
{
struct bnx2fc_els_cb_arg *cb_arg = seq_clnp_req->cb_arg;
struct bnx2fc_cmd *orig_io_req = cb_arg->aborted_io_req;
u32 offset = cb_arg->offset;
enum fc_rctl r_ctl = cb_arg->r_ctl;
int rc = 0;
struct bnx2fc_rport *tgt = orig_io_req->tgt;
BNX2FC_IO_DBG(orig_io_req, "Entered process_cleanup_compl xid = 0x%x"
"cmd_type = %d\n",
seq_clnp_req->xid, seq_clnp_req->cmd_type);
if (rx_state == FCOE_TASK_RX_STATE_IGNORED_SEQUENCE_CLEANUP) {
printk(KERN_ERR PFX "seq cleanup ignored - xid = 0x%x\n",
seq_clnp_req->xid);
goto free_cb_arg;
}
spin_unlock_bh(&tgt->tgt_lock);
rc = bnx2fc_send_srr(orig_io_req, offset, r_ctl);
spin_lock_bh(&tgt->tgt_lock);
if (rc)
printk(KERN_ERR PFX "clnup_compl: Unable to send SRR"
" IO will abort\n");
seq_clnp_req->cb_arg = NULL;
kref_put(&orig_io_req->refcount, bnx2fc_cmd_release);
free_cb_arg:
kfree(cb_arg);
return;
}
void bnx2fc_process_cleanup_compl(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task,
u8 num_rq)
{
BNX2FC_IO_DBG(io_req, "Entered process_cleanup_compl "
"refcnt = %d, cmd_type = %d\n",
io_req->refcount.refcount.counter, io_req->cmd_type);
bnx2fc_scsi_done(io_req, DID_ERROR);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
if (io_req->wait_for_comp)
complete(&io_req->tm_done);
}
void bnx2fc_process_abts_compl(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task,
u8 num_rq)
{
u32 r_ctl;
u32 r_a_tov = FC_DEF_R_A_TOV;
u8 issue_rrq = 0;
struct bnx2fc_rport *tgt = io_req->tgt;
BNX2FC_IO_DBG(io_req, "Entered process_abts_compl xid = 0x%x"
"refcnt = %d, cmd_type = %d\n",
io_req->xid,
io_req->refcount.refcount.counter, io_req->cmd_type);
if (test_and_set_bit(BNX2FC_FLAG_ABTS_DONE,
&io_req->req_flags)) {
BNX2FC_IO_DBG(io_req, "Timer context finished processing"
" this io\n");
return;
}
/* Do not issue RRQ as this IO is already cleanedup */
if (test_and_set_bit(BNX2FC_FLAG_IO_CLEANUP,
&io_req->req_flags))
goto io_compl;
/*
* For ABTS issued due to SCSI eh_abort_handler, timeout
* values are maintained by scsi-ml itself. Cancel timeout
* in case ABTS issued as part of task management function
* or due to FW error.
*/
if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags))
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release); /* drop timer hold */
r_ctl = (u8)task->rxwr_only.union_ctx.comp_info.abts_rsp.r_ctl;
switch (r_ctl) {
case FC_RCTL_BA_ACC:
/*
* Dont release this cmd yet. It will be relesed
* after we get RRQ response
*/
BNX2FC_IO_DBG(io_req, "ABTS response - ACC Send RRQ\n");
issue_rrq = 1;
break;
case FC_RCTL_BA_RJT:
BNX2FC_IO_DBG(io_req, "ABTS response - RJT\n");
break;
default:
printk(KERN_ERR PFX "Unknown ABTS response\n");
break;
}
if (issue_rrq) {
BNX2FC_IO_DBG(io_req, "Issue RRQ after R_A_TOV\n");
set_bit(BNX2FC_FLAG_ISSUE_RRQ, &io_req->req_flags);
}
set_bit(BNX2FC_FLAG_RETIRE_OXID, &io_req->req_flags);
bnx2fc_cmd_timer_set(io_req, r_a_tov);
io_compl:
if (io_req->wait_for_comp) {
if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
&io_req->req_flags))
complete(&io_req->tm_done);
} else {
/*
* We end up here when ABTS is issued as
* in asynchronous context, i.e., as part
* of task management completion, or
* when FW error is received or when the
* ABTS is issued when the IO is timed
* out.
*/
if (io_req->on_active_queue) {
list_del_init(&io_req->link);
io_req->on_active_queue = 0;
/* Move IO req to retire queue */
list_add_tail(&io_req->link, &tgt->io_retire_queue);
}
bnx2fc_scsi_done(io_req, DID_ERROR);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
}
}
static void bnx2fc_lun_reset_cmpl(struct bnx2fc_cmd *io_req)
{
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct bnx2fc_rport *tgt = io_req->tgt;
struct list_head *list;
struct list_head *tmp;
struct bnx2fc_cmd *cmd;
int tm_lun = sc_cmd->device->lun;
int rc = 0;
int lun;
/* called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered bnx2fc_lun_reset_cmpl\n");
/*
* Walk thru the active_ios queue and ABORT the IO
* that matches with the LUN that was reset
*/
list_for_each_safe(list, tmp, &tgt->active_cmd_queue) {
BNX2FC_TGT_DBG(tgt, "LUN RST cmpl: scan for pending IOs\n");
cmd = (struct bnx2fc_cmd *)list;
lun = cmd->sc_cmd->device->lun;
if (lun == tm_lun) {
/* Initiate ABTS on this cmd */
if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
&cmd->req_flags)) {
/* cancel the IO timeout */
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release);
/* timer hold */
rc = bnx2fc_initiate_abts(cmd);
/* abts shouldn't fail in this context */
WARN_ON(rc != SUCCESS);
} else
printk(KERN_ERR PFX "lun_rst: abts already in"
" progress for this IO 0x%x\n",
cmd->xid);
}
}
}
static void bnx2fc_tgt_reset_cmpl(struct bnx2fc_cmd *io_req)
{
struct bnx2fc_rport *tgt = io_req->tgt;
struct list_head *list;
struct list_head *tmp;
struct bnx2fc_cmd *cmd;
int rc = 0;
/* called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered bnx2fc_tgt_reset_cmpl\n");
/*
* Walk thru the active_ios queue and ABORT the IO
* that matches with the LUN that was reset
*/
list_for_each_safe(list, tmp, &tgt->active_cmd_queue) {
BNX2FC_TGT_DBG(tgt, "TGT RST cmpl: scan for pending IOs\n");
cmd = (struct bnx2fc_cmd *)list;
/* Initiate ABTS */
if (!test_and_set_bit(BNX2FC_FLAG_ISSUE_ABTS,
&cmd->req_flags)) {
/* cancel the IO timeout */
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release); /* timer hold */
rc = bnx2fc_initiate_abts(cmd);
/* abts shouldn't fail in this context */
WARN_ON(rc != SUCCESS);
} else
printk(KERN_ERR PFX "tgt_rst: abts already in progress"
" for this IO 0x%x\n", cmd->xid);
}
}
void bnx2fc_process_tm_compl(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task, u8 num_rq)
{
struct bnx2fc_mp_req *tm_req;
struct fc_frame_header *fc_hdr;
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
u64 *hdr;
u64 *temp_hdr;
void *rsp_buf;
/* Called with tgt_lock held */
BNX2FC_IO_DBG(io_req, "Entered process_tm_compl\n");
if (!(test_bit(BNX2FC_FLAG_TM_TIMEOUT, &io_req->req_flags)))
set_bit(BNX2FC_FLAG_TM_COMPL, &io_req->req_flags);
else {
/* TM has already timed out and we got
* delayed completion. Ignore completion
* processing.
*/
return;
}
tm_req = &(io_req->mp_req);
fc_hdr = &(tm_req->resp_fc_hdr);
hdr = (u64 *)fc_hdr;
temp_hdr = (u64 *)
&task->rxwr_only.union_ctx.comp_info.mp_rsp.fc_hdr;
hdr[0] = cpu_to_be64(temp_hdr[0]);
hdr[1] = cpu_to_be64(temp_hdr[1]);
hdr[2] = cpu_to_be64(temp_hdr[2]);
tm_req->resp_len =
task->rxwr_only.union_ctx.comp_info.mp_rsp.mp_payload_len;
rsp_buf = tm_req->resp_buf;
if (fc_hdr->fh_r_ctl == FC_RCTL_DD_CMD_STATUS) {
bnx2fc_parse_fcp_rsp(io_req,
(struct fcoe_fcp_rsp_payload *)
rsp_buf, num_rq);
if (io_req->fcp_rsp_code == 0) {
/* TM successful */
if (tm_req->tm_flags & FCP_TMF_LUN_RESET)
bnx2fc_lun_reset_cmpl(io_req);
else if (tm_req->tm_flags & FCP_TMF_TGT_RESET)
bnx2fc_tgt_reset_cmpl(io_req);
}
} else {
printk(KERN_ERR PFX "tmf's fc_hdr r_ctl = 0x%x\n",
fc_hdr->fh_r_ctl);
}
if (!sc_cmd->SCp.ptr) {
printk(KERN_ERR PFX "tm_compl: SCp.ptr is NULL\n");
return;
}
switch (io_req->fcp_status) {
case FC_GOOD:
if (io_req->cdb_status == 0) {
/* Good IO completion */
sc_cmd->result = DID_OK << 16;
} else {
/* Transport status is good, SCSI status not good */
sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
}
if (io_req->fcp_resid)
scsi_set_resid(sc_cmd, io_req->fcp_resid);
break;
default:
BNX2FC_IO_DBG(io_req, "process_tm_compl: fcp_status = %d\n",
io_req->fcp_status);
break;
}
sc_cmd = io_req->sc_cmd;
io_req->sc_cmd = NULL;
/* check if the io_req exists in tgt's tmf_q */
if (io_req->on_tmf_queue) {
list_del_init(&io_req->link);
io_req->on_tmf_queue = 0;
} else {
printk(KERN_ERR PFX "Command not on active_cmd_queue!\n");
return;
}
sc_cmd->SCp.ptr = NULL;
sc_cmd->scsi_done(sc_cmd);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
if (io_req->wait_for_comp) {
BNX2FC_IO_DBG(io_req, "tm_compl - wake up the waiter\n");
complete(&io_req->tm_done);
}
}
static int bnx2fc_split_bd(struct bnx2fc_cmd *io_req, u64 addr, int sg_len,
int bd_index)
{
struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
int frag_size, sg_frags;
sg_frags = 0;
while (sg_len) {
if (sg_len >= BNX2FC_BD_SPLIT_SZ)
frag_size = BNX2FC_BD_SPLIT_SZ;
else
frag_size = sg_len;
bd[bd_index + sg_frags].buf_addr_lo = addr & 0xffffffff;
bd[bd_index + sg_frags].buf_addr_hi = addr >> 32;
bd[bd_index + sg_frags].buf_len = (u16)frag_size;
bd[bd_index + sg_frags].flags = 0;
addr += (u64) frag_size;
sg_frags++;
sg_len -= frag_size;
}
return sg_frags;
}
static int bnx2fc_map_sg(struct bnx2fc_cmd *io_req)
{
struct bnx2fc_interface *interface = io_req->port->priv;
struct bnx2fc_hba *hba = interface->hba;
struct scsi_cmnd *sc = io_req->sc_cmd;
struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
struct scatterlist *sg;
int byte_count = 0;
int sg_count = 0;
int bd_count = 0;
int sg_frags;
unsigned int sg_len;
u64 addr;
int i;
sg_count = dma_map_sg(&hba->pcidev->dev, scsi_sglist(sc),
scsi_sg_count(sc), sc->sc_data_direction);
scsi_for_each_sg(sc, sg, sg_count, i) {
sg_len = sg_dma_len(sg);
addr = sg_dma_address(sg);
if (sg_len > BNX2FC_MAX_BD_LEN) {
sg_frags = bnx2fc_split_bd(io_req, addr, sg_len,
bd_count);
} else {
sg_frags = 1;
bd[bd_count].buf_addr_lo = addr & 0xffffffff;
bd[bd_count].buf_addr_hi = addr >> 32;
bd[bd_count].buf_len = (u16)sg_len;
bd[bd_count].flags = 0;
}
bd_count += sg_frags;
byte_count += sg_len;
}
if (byte_count != scsi_bufflen(sc))
printk(KERN_ERR PFX "byte_count = %d != scsi_bufflen = %d, "
"task_id = 0x%x\n", byte_count, scsi_bufflen(sc),
io_req->xid);
return bd_count;
}
static int bnx2fc_build_bd_list_from_sg(struct bnx2fc_cmd *io_req)
{
struct scsi_cmnd *sc = io_req->sc_cmd;
struct fcoe_bd_ctx *bd = io_req->bd_tbl->bd_tbl;
int bd_count;
if (scsi_sg_count(sc)) {
bd_count = bnx2fc_map_sg(io_req);
if (bd_count == 0)
return -ENOMEM;
} else {
bd_count = 0;
bd[0].buf_addr_lo = bd[0].buf_addr_hi = 0;
bd[0].buf_len = bd[0].flags = 0;
}
io_req->bd_tbl->bd_valid = bd_count;
return 0;
}
static void bnx2fc_unmap_sg_list(struct bnx2fc_cmd *io_req)
{
struct scsi_cmnd *sc = io_req->sc_cmd;
if (io_req->bd_tbl->bd_valid && sc) {
scsi_dma_unmap(sc);
io_req->bd_tbl->bd_valid = 0;
}
}
void bnx2fc_build_fcp_cmnd(struct bnx2fc_cmd *io_req,
struct fcp_cmnd *fcp_cmnd)
{
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
char tag[2];
memset(fcp_cmnd, 0, sizeof(struct fcp_cmnd));
int_to_scsilun(sc_cmd->device->lun,
(struct scsi_lun *) fcp_cmnd->fc_lun);
fcp_cmnd->fc_dl = htonl(io_req->data_xfer_len);
memcpy(fcp_cmnd->fc_cdb, sc_cmd->cmnd, sc_cmd->cmd_len);
fcp_cmnd->fc_cmdref = 0;
fcp_cmnd->fc_pri_ta = 0;
fcp_cmnd->fc_tm_flags = io_req->mp_req.tm_flags;
fcp_cmnd->fc_flags = io_req->io_req_flags;
if (scsi_populate_tag_msg(sc_cmd, tag)) {
switch (tag[0]) {
case HEAD_OF_QUEUE_TAG:
fcp_cmnd->fc_pri_ta = FCP_PTA_HEADQ;
break;
case ORDERED_QUEUE_TAG:
fcp_cmnd->fc_pri_ta = FCP_PTA_ORDERED;
break;
default:
fcp_cmnd->fc_pri_ta = FCP_PTA_SIMPLE;
break;
}
} else {
fcp_cmnd->fc_pri_ta = 0;
}
}
static void bnx2fc_parse_fcp_rsp(struct bnx2fc_cmd *io_req,
struct fcoe_fcp_rsp_payload *fcp_rsp,
u8 num_rq)
{
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct bnx2fc_rport *tgt = io_req->tgt;
u8 rsp_flags = fcp_rsp->fcp_flags.flags;
u32 rq_buff_len = 0;
int i;
unsigned char *rq_data;
unsigned char *dummy;
int fcp_sns_len = 0;
int fcp_rsp_len = 0;
io_req->fcp_status = FC_GOOD;
io_req->fcp_resid = fcp_rsp->fcp_resid;
io_req->scsi_comp_flags = rsp_flags;
CMD_SCSI_STATUS(sc_cmd) = io_req->cdb_status =
fcp_rsp->scsi_status_code;
/* Fetch fcp_rsp_info and fcp_sns_info if available */
if (num_rq) {
/*
* We do not anticipate num_rq >1, as the linux defined
* SCSI_SENSE_BUFFERSIZE is 96 bytes + 8 bytes of FCP_RSP_INFO
* 256 bytes of single rq buffer is good enough to hold this.
*/
if (rsp_flags &
FCOE_FCP_RSP_FLAGS_FCP_RSP_LEN_VALID) {
fcp_rsp_len = rq_buff_len
= fcp_rsp->fcp_rsp_len;
}
if (rsp_flags &
FCOE_FCP_RSP_FLAGS_FCP_SNS_LEN_VALID) {
fcp_sns_len = fcp_rsp->fcp_sns_len;
rq_buff_len += fcp_rsp->fcp_sns_len;
}
io_req->fcp_rsp_len = fcp_rsp_len;
io_req->fcp_sns_len = fcp_sns_len;
if (rq_buff_len > num_rq * BNX2FC_RQ_BUF_SZ) {
/* Invalid sense sense length. */
printk(KERN_ERR PFX "invalid sns length %d\n",
rq_buff_len);
/* reset rq_buff_len */
rq_buff_len = num_rq * BNX2FC_RQ_BUF_SZ;
}
rq_data = bnx2fc_get_next_rqe(tgt, 1);
if (num_rq > 1) {
/* We do not need extra sense data */
for (i = 1; i < num_rq; i++)
dummy = bnx2fc_get_next_rqe(tgt, 1);
}
/* fetch fcp_rsp_code */
if ((fcp_rsp_len == 4) || (fcp_rsp_len == 8)) {
/* Only for task management function */
io_req->fcp_rsp_code = rq_data[3];
printk(KERN_ERR PFX "fcp_rsp_code = %d\n",
io_req->fcp_rsp_code);
}
/* fetch sense data */
rq_data += fcp_rsp_len;
if (fcp_sns_len > SCSI_SENSE_BUFFERSIZE) {
printk(KERN_ERR PFX "Truncating sense buffer\n");
fcp_sns_len = SCSI_SENSE_BUFFERSIZE;
}
memset(sc_cmd->sense_buffer, 0, sizeof(sc_cmd->sense_buffer));
if (fcp_sns_len)
memcpy(sc_cmd->sense_buffer, rq_data, fcp_sns_len);
/* return RQ entries */
for (i = 0; i < num_rq; i++)
bnx2fc_return_rqe(tgt, 1);
}
}
/**
* bnx2fc_queuecommand - Queuecommand function of the scsi template
*
* @host: The Scsi_Host the command was issued to
* @sc_cmd: struct scsi_cmnd to be executed
*
* This is the IO strategy routine, called by SCSI-ML
**/
int bnx2fc_queuecommand(struct Scsi_Host *host,
struct scsi_cmnd *sc_cmd)
{
struct fc_lport *lport = shost_priv(host);
struct fc_rport *rport = starget_to_rport(scsi_target(sc_cmd->device));
struct fc_rport_libfc_priv *rp = rport->dd_data;
struct bnx2fc_rport *tgt;
struct bnx2fc_cmd *io_req;
int rc = 0;
int rval;
rval = fc_remote_port_chkready(rport);
if (rval) {
sc_cmd->result = rval;
sc_cmd->scsi_done(sc_cmd);
return 0;
}
if ((lport->state != LPORT_ST_READY) || !(lport->link_up)) {
rc = SCSI_MLQUEUE_HOST_BUSY;
goto exit_qcmd;
}
/* rport and tgt are allocated together, so tgt should be non-NULL */
tgt = (struct bnx2fc_rport *)&rp[1];
if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
/*
* Session is not offloaded yet. Let SCSI-ml retry
* the command.
*/
rc = SCSI_MLQUEUE_TARGET_BUSY;
goto exit_qcmd;
}
io_req = bnx2fc_cmd_alloc(tgt);
if (!io_req) {
rc = SCSI_MLQUEUE_HOST_BUSY;
goto exit_qcmd;
}
io_req->sc_cmd = sc_cmd;
if (bnx2fc_post_io_req(tgt, io_req)) {
printk(KERN_ERR PFX "Unable to post io_req\n");
rc = SCSI_MLQUEUE_HOST_BUSY;
goto exit_qcmd;
}
exit_qcmd:
return rc;
}
void bnx2fc_process_scsi_cmd_compl(struct bnx2fc_cmd *io_req,
struct fcoe_task_ctx_entry *task,
u8 num_rq)
{
struct fcoe_fcp_rsp_payload *fcp_rsp;
struct bnx2fc_rport *tgt = io_req->tgt;
struct scsi_cmnd *sc_cmd;
struct Scsi_Host *host;
/* scsi_cmd_cmpl is called with tgt lock held */
if (test_and_set_bit(BNX2FC_FLAG_IO_COMPL, &io_req->req_flags)) {
/* we will not receive ABTS response for this IO */
BNX2FC_IO_DBG(io_req, "Timer context finished processing "
"this scsi cmd\n");
}
/* Cancel the timeout_work, as we received IO completion */
if (cancel_delayed_work(&io_req->timeout_work))
kref_put(&io_req->refcount,
bnx2fc_cmd_release); /* drop timer hold */
sc_cmd = io_req->sc_cmd;
if (sc_cmd == NULL) {
printk(KERN_ERR PFX "scsi_cmd_compl - sc_cmd is NULL\n");
return;
}
/* Fetch fcp_rsp from task context and perform cmd completion */
fcp_rsp = (struct fcoe_fcp_rsp_payload *)
&(task->rxwr_only.union_ctx.comp_info.fcp_rsp.payload);
/* parse fcp_rsp and obtain sense data from RQ if available */
bnx2fc_parse_fcp_rsp(io_req, fcp_rsp, num_rq);
host = sc_cmd->device->host;
if (!sc_cmd->SCp.ptr) {
printk(KERN_ERR PFX "SCp.ptr is NULL\n");
return;
}
if (io_req->on_active_queue) {
list_del_init(&io_req->link);
io_req->on_active_queue = 0;
/* Move IO req to retire queue */
list_add_tail(&io_req->link, &tgt->io_retire_queue);
} else {
/* This should not happen, but could have been pulled
* by bnx2fc_flush_active_ios(), or during a race
* between command abort and (late) completion.
*/
BNX2FC_IO_DBG(io_req, "xid not on active_cmd_queue\n");
if (io_req->wait_for_comp)
if (test_and_clear_bit(BNX2FC_FLAG_EH_ABORT,
&io_req->req_flags))
complete(&io_req->tm_done);
}
bnx2fc_unmap_sg_list(io_req);
io_req->sc_cmd = NULL;
switch (io_req->fcp_status) {
case FC_GOOD:
if (io_req->cdb_status == 0) {
/* Good IO completion */
sc_cmd->result = DID_OK << 16;
} else {
/* Transport status is good, SCSI status not good */
BNX2FC_IO_DBG(io_req, "scsi_cmpl: cdb_status = %d"
" fcp_resid = 0x%x\n",
io_req->cdb_status, io_req->fcp_resid);
sc_cmd->result = (DID_OK << 16) | io_req->cdb_status;
}
if (io_req->fcp_resid)
scsi_set_resid(sc_cmd, io_req->fcp_resid);
break;
default:
printk(KERN_ERR PFX "scsi_cmd_compl: fcp_status = %d\n",
io_req->fcp_status);
break;
}
sc_cmd->SCp.ptr = NULL;
sc_cmd->scsi_done(sc_cmd);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
}
int bnx2fc_post_io_req(struct bnx2fc_rport *tgt,
struct bnx2fc_cmd *io_req)
{
struct fcoe_task_ctx_entry *task;
struct fcoe_task_ctx_entry *task_page;
struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
struct fcoe_port *port = tgt->port;
struct bnx2fc_interface *interface = port->priv;
struct bnx2fc_hba *hba = interface->hba;
struct fc_lport *lport = port->lport;
struct fcoe_dev_stats *stats;
int task_idx, index;
u16 xid;
/* Initialize rest of io_req fields */
io_req->cmd_type = BNX2FC_SCSI_CMD;
io_req->port = port;
io_req->tgt = tgt;
io_req->data_xfer_len = scsi_bufflen(sc_cmd);
sc_cmd->SCp.ptr = (char *)io_req;
stats = per_cpu_ptr(lport->dev_stats, get_cpu());
if (sc_cmd->sc_data_direction == DMA_FROM_DEVICE) {
io_req->io_req_flags = BNX2FC_READ;
stats->InputRequests++;
stats->InputBytes += io_req->data_xfer_len;
} else if (sc_cmd->sc_data_direction == DMA_TO_DEVICE) {
io_req->io_req_flags = BNX2FC_WRITE;
stats->OutputRequests++;
stats->OutputBytes += io_req->data_xfer_len;
} else {
io_req->io_req_flags = 0;
stats->ControlRequests++;
}
put_cpu();
xid = io_req->xid;
/* Build buffer descriptor list for firmware from sg list */
if (bnx2fc_build_bd_list_from_sg(io_req)) {
printk(KERN_ERR PFX "BD list creation failed\n");
spin_lock_bh(&tgt->tgt_lock);
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return -EAGAIN;
}
task_idx = xid / BNX2FC_TASKS_PER_PAGE;
index = xid % BNX2FC_TASKS_PER_PAGE;
/* Initialize task context for this IO request */
task_page = (struct fcoe_task_ctx_entry *) hba->task_ctx[task_idx];
task = &(task_page[index]);
bnx2fc_init_task(io_req, task);
spin_lock_bh(&tgt->tgt_lock);
if (tgt->flush_in_prog) {
printk(KERN_ERR PFX "Flush in progress..Host Busy\n");
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return -EAGAIN;
}
if (!test_bit(BNX2FC_FLAG_SESSION_READY, &tgt->flags)) {
printk(KERN_ERR PFX "Session not ready...post_io\n");
kref_put(&io_req->refcount, bnx2fc_cmd_release);
spin_unlock_bh(&tgt->tgt_lock);
return -EAGAIN;
}
/* Time IO req */
if (tgt->io_timeout)
bnx2fc_cmd_timer_set(io_req, BNX2FC_IO_TIMEOUT);
/* Obtain free SQ entry */
bnx2fc_add_2_sq(tgt, xid);
/* Enqueue the io_req to active_cmd_queue */
io_req->on_active_queue = 1;
/* move io_req from pending_queue to active_queue */
list_add_tail(&io_req->link, &tgt->active_cmd_queue);
/* Ring doorbell */
bnx2fc_ring_doorbell(tgt);
spin_unlock_bh(&tgt->tgt_lock);
return 0;
}