linux-stable/drivers/spmi/spmi-pmic-arb.c
Linus Torvalds e70140ba0d Get rid of 'remove_new' relic from platform driver struct
The continual trickle of small conversion patches is grating on me, and
is really not helping.  Just get rid of the 'remove_new' member
function, which is just an alias for the plain 'remove', and had a
comment to that effect:

  /*
   * .remove_new() is a relic from a prototype conversion of .remove().
   * New drivers are supposed to implement .remove(). Once all drivers are
   * converted to not use .remove_new any more, it will be dropped.
   */

This was just a tree-wide 'sed' script that replaced '.remove_new' with
'.remove', with some care taken to turn a subsequent tab into two tabs
to make things line up.

I did do some minimal manual whitespace adjustment for places that used
spaces to line things up.

Then I just removed the old (sic) .remove_new member function, and this
is the end result.  No more unnecessary conversion noise.

Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2024-12-01 15:12:43 -08:00

1895 lines
51 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) 2012-2015, 2017, 2021, The Linux Foundation. All rights reserved.
*/
#include <linux/bitmap.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/irqchip/chained_irq.h>
#include <linux/irqdomain.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spmi.h>
/* PMIC Arbiter configuration registers */
#define PMIC_ARB_VERSION 0x0000
#define PMIC_ARB_VERSION_V2_MIN 0x20010000
#define PMIC_ARB_VERSION_V3_MIN 0x30000000
#define PMIC_ARB_VERSION_V5_MIN 0x50000000
#define PMIC_ARB_VERSION_V7_MIN 0x70000000
#define PMIC_ARB_INT_EN 0x0004
#define PMIC_ARB_FEATURES 0x0004
#define PMIC_ARB_FEATURES_PERIPH_MASK GENMASK(10, 0)
#define PMIC_ARB_FEATURES1 0x0008
/* PMIC Arbiter channel registers offsets */
#define PMIC_ARB_CMD 0x00
#define PMIC_ARB_CONFIG 0x04
#define PMIC_ARB_STATUS 0x08
#define PMIC_ARB_WDATA0 0x10
#define PMIC_ARB_WDATA1 0x14
#define PMIC_ARB_RDATA0 0x18
#define PMIC_ARB_RDATA1 0x1C
/* Mapping Table */
#define SPMI_MAPPING_TABLE_REG(N) (0x0B00 + (4 * (N)))
#define SPMI_MAPPING_BIT_INDEX(X) (((X) >> 18) & 0xF)
#define SPMI_MAPPING_BIT_IS_0_FLAG(X) (((X) >> 17) & 0x1)
#define SPMI_MAPPING_BIT_IS_0_RESULT(X) (((X) >> 9) & 0xFF)
#define SPMI_MAPPING_BIT_IS_1_FLAG(X) (((X) >> 8) & 0x1)
#define SPMI_MAPPING_BIT_IS_1_RESULT(X) (((X) >> 0) & 0xFF)
#define SPMI_MAPPING_TABLE_TREE_DEPTH 16 /* Maximum of 16-bits */
#define PMIC_ARB_MAX_PPID BIT(12) /* PPID is 12bit */
#define PMIC_ARB_APID_VALID BIT(15)
#define PMIC_ARB_CHAN_IS_IRQ_OWNER(reg) ((reg) & BIT(24))
#define INVALID_EE 0xFF
/* Ownership Table */
#define SPMI_OWNERSHIP_PERIPH2OWNER(X) ((X) & 0x7)
/* Channel Status fields */
enum pmic_arb_chnl_status {
PMIC_ARB_STATUS_DONE = BIT(0),
PMIC_ARB_STATUS_FAILURE = BIT(1),
PMIC_ARB_STATUS_DENIED = BIT(2),
PMIC_ARB_STATUS_DROPPED = BIT(3),
};
/* Command register fields */
#define PMIC_ARB_CMD_MAX_BYTE_COUNT 8
/* Command Opcodes */
enum pmic_arb_cmd_op_code {
PMIC_ARB_OP_EXT_WRITEL = 0,
PMIC_ARB_OP_EXT_READL = 1,
PMIC_ARB_OP_EXT_WRITE = 2,
PMIC_ARB_OP_RESET = 3,
PMIC_ARB_OP_SLEEP = 4,
PMIC_ARB_OP_SHUTDOWN = 5,
PMIC_ARB_OP_WAKEUP = 6,
PMIC_ARB_OP_AUTHENTICATE = 7,
PMIC_ARB_OP_MSTR_READ = 8,
PMIC_ARB_OP_MSTR_WRITE = 9,
PMIC_ARB_OP_EXT_READ = 13,
PMIC_ARB_OP_WRITE = 14,
PMIC_ARB_OP_READ = 15,
PMIC_ARB_OP_ZERO_WRITE = 16,
};
/*
* PMIC arbiter version 5 uses different register offsets for read/write vs
* observer channels.
*/
enum pmic_arb_channel {
PMIC_ARB_CHANNEL_RW,
PMIC_ARB_CHANNEL_OBS,
};
#define PMIC_ARB_MAX_BUSES 2
/* Maximum number of support PMIC peripherals */
#define PMIC_ARB_MAX_PERIPHS 512
#define PMIC_ARB_MAX_PERIPHS_V7 1024
#define PMIC_ARB_TIMEOUT_US 1000
#define PMIC_ARB_MAX_TRANS_BYTES (8)
#define PMIC_ARB_APID_MASK 0xFF
#define PMIC_ARB_PPID_MASK 0xFFF
/* interrupt enable bit */
#define SPMI_PIC_ACC_ENABLE_BIT BIT(0)
#define spec_to_hwirq(slave_id, periph_id, irq_id, apid) \
((((slave_id) & 0xF) << 28) | \
(((periph_id) & 0xFF) << 20) | \
(((irq_id) & 0x7) << 16) | \
(((apid) & 0x3FF) << 0))
#define hwirq_to_sid(hwirq) (((hwirq) >> 28) & 0xF)
#define hwirq_to_per(hwirq) (((hwirq) >> 20) & 0xFF)
#define hwirq_to_irq(hwirq) (((hwirq) >> 16) & 0x7)
#define hwirq_to_apid(hwirq) (((hwirq) >> 0) & 0x3FF)
struct pmic_arb_ver_ops;
struct apid_data {
u16 ppid;
u8 write_ee;
u8 irq_ee;
};
struct spmi_pmic_arb;
/**
* struct spmi_pmic_arb_bus - SPMI PMIC Arbiter Bus object
*
* @pmic_arb: the SPMI PMIC Arbiter the bus belongs to.
* @domain: irq domain object for PMIC IRQ domain
* @intr: address of the SPMI interrupt control registers.
* @cnfg: address of the PMIC Arbiter configuration registers.
* @spmic: spmi controller registered for this bus
* @lock: lock to synchronize accesses.
* @base_apid: on v7: minimum APID associated with the particular SPMI
* bus instance
* @apid_count: on v5 and v7: number of APIDs associated with the
* particular SPMI bus instance
* @mapping_table: in-memory copy of PPID -> APID mapping table.
* @mapping_table_valid:bitmap containing valid-only periphs
* @ppid_to_apid: in-memory copy of PPID -> APID mapping table.
* @last_apid: Highest value APID in use
* @apid_data: Table of data for all APIDs
* @min_apid: minimum APID (used for bounding IRQ search)
* @max_apid: maximum APID
* @irq: PMIC ARB interrupt.
* @id: unique ID of the bus
*/
struct spmi_pmic_arb_bus {
struct spmi_pmic_arb *pmic_arb;
struct irq_domain *domain;
void __iomem *intr;
void __iomem *cnfg;
struct spmi_controller *spmic;
raw_spinlock_t lock;
u16 base_apid;
int apid_count;
u32 *mapping_table;
DECLARE_BITMAP(mapping_table_valid, PMIC_ARB_MAX_PERIPHS);
u16 *ppid_to_apid;
u16 last_apid;
struct apid_data *apid_data;
u16 min_apid;
u16 max_apid;
int irq;
u8 id;
};
/**
* struct spmi_pmic_arb - SPMI PMIC Arbiter object
*
* @rd_base: on v1 "core", on v2 "observer" register base off DT.
* @wr_base: on v1 "core", on v2 "chnls" register base off DT.
* @core: core register base for v2 and above only (see above)
* @core_size: core register base size
* @channel: execution environment channel to use for accesses.
* @ee: the current Execution Environment
* @ver_ops: version dependent operations.
* @max_periphs: Number of elements in apid_data[]
* @buses: per arbiter buses instances
* @buses_available: number of buses registered
*/
struct spmi_pmic_arb {
void __iomem *rd_base;
void __iomem *wr_base;
void __iomem *core;
resource_size_t core_size;
u8 channel;
u8 ee;
const struct pmic_arb_ver_ops *ver_ops;
int max_periphs;
struct spmi_pmic_arb_bus *buses[PMIC_ARB_MAX_BUSES];
int buses_available;
};
/**
* struct pmic_arb_ver_ops - version dependent functionality.
*
* @ver_str: version string.
* @get_core_resources: initializes the core, observer and channels
* @init_apid: finds the apid base and count
* @ppid_to_apid: finds the apid for a given ppid.
* @non_data_cmd: on v1 issues an spmi non-data command.
* on v2 no HW support, returns -EOPNOTSUPP.
* @offset: on v1 offset of per-ee channel.
* on v2 offset of per-ee and per-ppid channel.
* @fmt_cmd: formats a GENI/SPMI command.
* @owner_acc_status: on v1 address of PMIC_ARB_SPMI_PIC_OWNERm_ACC_STATUSn
* on v2 address of SPMI_PIC_OWNERm_ACC_STATUSn.
* @acc_enable: on v1 address of PMIC_ARB_SPMI_PIC_ACC_ENABLEn
* on v2 address of SPMI_PIC_ACC_ENABLEn.
* @irq_status: on v1 address of PMIC_ARB_SPMI_PIC_IRQ_STATUSn
* on v2 address of SPMI_PIC_IRQ_STATUSn.
* @irq_clear: on v1 address of PMIC_ARB_SPMI_PIC_IRQ_CLEARn
* on v2 address of SPMI_PIC_IRQ_CLEARn.
* @apid_map_offset: offset of PMIC_ARB_REG_CHNLn
* @apid_owner: on v2 and later address of SPMI_PERIPHn_2OWNER_TABLE_REG
*/
struct pmic_arb_ver_ops {
const char *ver_str;
int (*get_core_resources)(struct platform_device *pdev, void __iomem *core);
int (*init_apid)(struct spmi_pmic_arb_bus *bus, int index);
int (*ppid_to_apid)(struct spmi_pmic_arb_bus *bus, u16 ppid);
/* spmi commands (read_cmd, write_cmd, cmd) functionality */
int (*offset)(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type);
u32 (*fmt_cmd)(u8 opc, u8 sid, u16 addr, u8 bc);
int (*non_data_cmd)(struct spmi_controller *ctrl, u8 opc, u8 sid);
/* Interrupts controller functionality (offset of PIC registers) */
void __iomem *(*owner_acc_status)(struct spmi_pmic_arb_bus *bus, u8 m,
u16 n);
void __iomem *(*acc_enable)(struct spmi_pmic_arb_bus *bus, u16 n);
void __iomem *(*irq_status)(struct spmi_pmic_arb_bus *bus, u16 n);
void __iomem *(*irq_clear)(struct spmi_pmic_arb_bus *bus, u16 n);
u32 (*apid_map_offset)(u16 n);
void __iomem *(*apid_owner)(struct spmi_pmic_arb_bus *bus, u16 n);
};
static inline void pmic_arb_base_write(struct spmi_pmic_arb *pmic_arb,
u32 offset, u32 val)
{
writel_relaxed(val, pmic_arb->wr_base + offset);
}
static inline void pmic_arb_set_rd_cmd(struct spmi_pmic_arb *pmic_arb,
u32 offset, u32 val)
{
writel_relaxed(val, pmic_arb->rd_base + offset);
}
/**
* pmic_arb_read_data: reads pmic-arb's register and copy 1..4 bytes to buf
* @pmic_arb: the SPMI PMIC arbiter
* @bc: byte count -1. range: 0..3
* @reg: register's address
* @buf: output parameter, length must be bc + 1
*/
static void
pmic_arb_read_data(struct spmi_pmic_arb *pmic_arb, u8 *buf, u32 reg, u8 bc)
{
u32 data = __raw_readl(pmic_arb->rd_base + reg);
memcpy(buf, &data, (bc & 3) + 1);
}
/**
* pmic_arb_write_data: write 1..4 bytes from buf to pmic-arb's register
* @pmic_arb: the SPMI PMIC arbiter
* @bc: byte-count -1. range: 0..3.
* @reg: register's address.
* @buf: buffer to write. length must be bc + 1.
*/
static void pmic_arb_write_data(struct spmi_pmic_arb *pmic_arb, const u8 *buf,
u32 reg, u8 bc)
{
u32 data = 0;
memcpy(&data, buf, (bc & 3) + 1);
__raw_writel(data, pmic_arb->wr_base + reg);
}
static int pmic_arb_wait_for_done(struct spmi_controller *ctrl,
void __iomem *base, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u32 status = 0;
u32 timeout = PMIC_ARB_TIMEOUT_US;
u32 offset;
int rc;
rc = pmic_arb->ver_ops->offset(bus, sid, addr, ch_type);
if (rc < 0)
return rc;
offset = rc;
offset += PMIC_ARB_STATUS;
while (timeout--) {
status = readl_relaxed(base + offset);
if (status & PMIC_ARB_STATUS_DONE) {
if (status & PMIC_ARB_STATUS_DENIED) {
dev_err(&ctrl->dev, "%s: %#x %#x: transaction denied (%#x)\n",
__func__, sid, addr, status);
return -EPERM;
}
if (status & PMIC_ARB_STATUS_FAILURE) {
dev_err(&ctrl->dev, "%s: %#x %#x: transaction failed (%#x) reg: 0x%x\n",
__func__, sid, addr, status, offset);
WARN_ON(1);
return -EIO;
}
if (status & PMIC_ARB_STATUS_DROPPED) {
dev_err(&ctrl->dev, "%s: %#x %#x: transaction dropped (%#x)\n",
__func__, sid, addr, status);
return -EIO;
}
return 0;
}
udelay(1);
}
dev_err(&ctrl->dev, "%s: %#x %#x %#x: timeout, status %#x\n",
__func__, bus->id, sid, addr, status);
return -ETIMEDOUT;
}
static int
pmic_arb_non_data_cmd_v1(struct spmi_controller *ctrl, u8 opc, u8 sid)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
unsigned long flags;
u32 cmd;
int rc;
u32 offset;
rc = pmic_arb->ver_ops->offset(bus, sid, 0, PMIC_ARB_CHANNEL_RW);
if (rc < 0)
return rc;
offset = rc;
cmd = ((opc | 0x40) << 27) | ((sid & 0xf) << 20);
raw_spin_lock_irqsave(&bus->lock, flags);
pmic_arb_base_write(pmic_arb, offset + PMIC_ARB_CMD, cmd);
rc = pmic_arb_wait_for_done(ctrl, pmic_arb->wr_base, sid, 0,
PMIC_ARB_CHANNEL_RW);
raw_spin_unlock_irqrestore(&bus->lock, flags);
return rc;
}
static int
pmic_arb_non_data_cmd_v2(struct spmi_controller *ctrl, u8 opc, u8 sid)
{
return -EOPNOTSUPP;
}
/* Non-data command */
static int pmic_arb_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid)
{
struct spmi_pmic_arb *pmic_arb = spmi_controller_get_drvdata(ctrl);
dev_dbg(&ctrl->dev, "cmd op:0x%x sid:%d\n", opc, sid);
/* Check for valid non-data command */
if (opc < SPMI_CMD_RESET || opc > SPMI_CMD_WAKEUP)
return -EINVAL;
return pmic_arb->ver_ops->non_data_cmd(ctrl, opc, sid);
}
static int pmic_arb_fmt_read_cmd(struct spmi_pmic_arb_bus *bus, u8 opc, u8 sid,
u16 addr, size_t len, u32 *cmd, u32 *offset)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 bc = len - 1;
int rc;
rc = pmic_arb->ver_ops->offset(bus, sid, addr,
PMIC_ARB_CHANNEL_OBS);
if (rc < 0)
return rc;
*offset = rc;
if (bc >= PMIC_ARB_MAX_TRANS_BYTES) {
dev_err(&bus->spmic->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested\n",
PMIC_ARB_MAX_TRANS_BYTES, len);
return -EINVAL;
}
/* Check the opcode */
if (opc >= 0x60 && opc <= 0x7F)
opc = PMIC_ARB_OP_READ;
else if (opc >= 0x20 && opc <= 0x2F)
opc = PMIC_ARB_OP_EXT_READ;
else if (opc >= 0x38 && opc <= 0x3F)
opc = PMIC_ARB_OP_EXT_READL;
else
return -EINVAL;
*cmd = pmic_arb->ver_ops->fmt_cmd(opc, sid, addr, bc);
return 0;
}
static int pmic_arb_read_cmd_unlocked(struct spmi_controller *ctrl, u32 cmd,
u32 offset, u8 sid, u16 addr, u8 *buf,
size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 bc = len - 1;
int rc;
pmic_arb_set_rd_cmd(pmic_arb, offset + PMIC_ARB_CMD, cmd);
rc = pmic_arb_wait_for_done(ctrl, pmic_arb->rd_base, sid, addr,
PMIC_ARB_CHANNEL_OBS);
if (rc)
return rc;
pmic_arb_read_data(pmic_arb, buf, offset + PMIC_ARB_RDATA0,
min_t(u8, bc, 3));
if (bc > 3)
pmic_arb_read_data(pmic_arb, buf + 4, offset + PMIC_ARB_RDATA1,
bc - 4);
return 0;
}
static int pmic_arb_read_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid,
u16 addr, u8 *buf, size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
unsigned long flags;
u32 cmd, offset;
int rc;
rc = pmic_arb_fmt_read_cmd(bus, opc, sid, addr, len, &cmd,
&offset);
if (rc)
return rc;
raw_spin_lock_irqsave(&bus->lock, flags);
rc = pmic_arb_read_cmd_unlocked(ctrl, cmd, offset, sid, addr, buf, len);
raw_spin_unlock_irqrestore(&bus->lock, flags);
return rc;
}
static int pmic_arb_fmt_write_cmd(struct spmi_pmic_arb_bus *bus, u8 opc,
u8 sid, u16 addr, size_t len, u32 *cmd,
u32 *offset)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 bc = len - 1;
int rc;
rc = pmic_arb->ver_ops->offset(bus, sid, addr,
PMIC_ARB_CHANNEL_RW);
if (rc < 0)
return rc;
*offset = rc;
if (bc >= PMIC_ARB_MAX_TRANS_BYTES) {
dev_err(&bus->spmic->dev, "pmic-arb supports 1..%d bytes per trans, but:%zu requested\n",
PMIC_ARB_MAX_TRANS_BYTES, len);
return -EINVAL;
}
/* Check the opcode */
if (opc >= 0x40 && opc <= 0x5F)
opc = PMIC_ARB_OP_WRITE;
else if (opc <= 0x0F)
opc = PMIC_ARB_OP_EXT_WRITE;
else if (opc >= 0x30 && opc <= 0x37)
opc = PMIC_ARB_OP_EXT_WRITEL;
else if (opc >= 0x80)
opc = PMIC_ARB_OP_ZERO_WRITE;
else
return -EINVAL;
*cmd = pmic_arb->ver_ops->fmt_cmd(opc, sid, addr, bc);
return 0;
}
static int pmic_arb_write_cmd_unlocked(struct spmi_controller *ctrl, u32 cmd,
u32 offset, u8 sid, u16 addr,
const u8 *buf, size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 bc = len - 1;
/* Write data to FIFOs */
pmic_arb_write_data(pmic_arb, buf, offset + PMIC_ARB_WDATA0,
min_t(u8, bc, 3));
if (bc > 3)
pmic_arb_write_data(pmic_arb, buf + 4, offset + PMIC_ARB_WDATA1,
bc - 4);
/* Start the transaction */
pmic_arb_base_write(pmic_arb, offset + PMIC_ARB_CMD, cmd);
return pmic_arb_wait_for_done(ctrl, pmic_arb->wr_base, sid, addr,
PMIC_ARB_CHANNEL_RW);
}
static int pmic_arb_write_cmd(struct spmi_controller *ctrl, u8 opc, u8 sid,
u16 addr, const u8 *buf, size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
unsigned long flags;
u32 cmd, offset;
int rc;
rc = pmic_arb_fmt_write_cmd(bus, opc, sid, addr, len, &cmd,
&offset);
if (rc)
return rc;
raw_spin_lock_irqsave(&bus->lock, flags);
rc = pmic_arb_write_cmd_unlocked(ctrl, cmd, offset, sid, addr, buf,
len);
raw_spin_unlock_irqrestore(&bus->lock, flags);
return rc;
}
static int pmic_arb_masked_write(struct spmi_controller *ctrl, u8 sid, u16 addr,
const u8 *buf, const u8 *mask, size_t len)
{
struct spmi_pmic_arb_bus *bus = spmi_controller_get_drvdata(ctrl);
u32 read_cmd, read_offset, write_cmd, write_offset;
u8 temp[PMIC_ARB_MAX_TRANS_BYTES];
unsigned long flags;
int rc, i;
rc = pmic_arb_fmt_read_cmd(bus, SPMI_CMD_EXT_READL, sid, addr, len,
&read_cmd, &read_offset);
if (rc)
return rc;
rc = pmic_arb_fmt_write_cmd(bus, SPMI_CMD_EXT_WRITEL, sid, addr,
len, &write_cmd, &write_offset);
if (rc)
return rc;
raw_spin_lock_irqsave(&bus->lock, flags);
rc = pmic_arb_read_cmd_unlocked(ctrl, read_cmd, read_offset, sid, addr,
temp, len);
if (rc)
goto done;
for (i = 0; i < len; i++)
temp[i] = (temp[i] & ~mask[i]) | (buf[i] & mask[i]);
rc = pmic_arb_write_cmd_unlocked(ctrl, write_cmd, write_offset, sid,
addr, temp, len);
done:
raw_spin_unlock_irqrestore(&bus->lock, flags);
return rc;
}
enum qpnpint_regs {
QPNPINT_REG_RT_STS = 0x10,
QPNPINT_REG_SET_TYPE = 0x11,
QPNPINT_REG_POLARITY_HIGH = 0x12,
QPNPINT_REG_POLARITY_LOW = 0x13,
QPNPINT_REG_LATCHED_CLR = 0x14,
QPNPINT_REG_EN_SET = 0x15,
QPNPINT_REG_EN_CLR = 0x16,
QPNPINT_REG_LATCHED_STS = 0x18,
};
struct spmi_pmic_arb_qpnpint_type {
u8 type; /* 1 -> edge */
u8 polarity_high;
u8 polarity_low;
} __packed;
/* Simplified accessor functions for irqchip callbacks */
static void qpnpint_spmi_write(struct irq_data *d, u8 reg, void *buf,
size_t len)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
u8 sid = hwirq_to_sid(d->hwirq);
u8 per = hwirq_to_per(d->hwirq);
if (pmic_arb_write_cmd(bus->spmic, SPMI_CMD_EXT_WRITEL, sid,
(per << 8) + reg, buf, len))
dev_err_ratelimited(&bus->spmic->dev, "failed irqchip transaction on %x\n",
d->irq);
}
static void qpnpint_spmi_read(struct irq_data *d, u8 reg, void *buf, size_t len)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
u8 sid = hwirq_to_sid(d->hwirq);
u8 per = hwirq_to_per(d->hwirq);
if (pmic_arb_read_cmd(bus->spmic, SPMI_CMD_EXT_READL, sid,
(per << 8) + reg, buf, len))
dev_err_ratelimited(&bus->spmic->dev, "failed irqchip transaction on %x\n",
d->irq);
}
static int qpnpint_spmi_masked_write(struct irq_data *d, u8 reg,
const void *buf, const void *mask,
size_t len)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
u8 sid = hwirq_to_sid(d->hwirq);
u8 per = hwirq_to_per(d->hwirq);
int rc;
rc = pmic_arb_masked_write(bus->spmic, sid, (per << 8) + reg, buf,
mask, len);
if (rc)
dev_err_ratelimited(&bus->spmic->dev, "failed irqchip transaction on %x rc=%d\n",
d->irq, rc);
return rc;
}
static void cleanup_irq(struct spmi_pmic_arb_bus *bus, u16 apid, int id)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 ppid = bus->apid_data[apid].ppid;
u8 sid = ppid >> 8;
u8 per = ppid & 0xFF;
u8 irq_mask = BIT(id);
dev_err_ratelimited(&bus->spmic->dev, "%s apid=%d sid=0x%x per=0x%x irq=%d\n",
__func__, apid, sid, per, id);
writel_relaxed(irq_mask, pmic_arb->ver_ops->irq_clear(bus, apid));
}
static int periph_interrupt(struct spmi_pmic_arb_bus *bus, u16 apid)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
unsigned int irq;
u32 status, id;
int handled = 0;
u8 sid = (bus->apid_data[apid].ppid >> 8) & 0xF;
u8 per = bus->apid_data[apid].ppid & 0xFF;
status = readl_relaxed(pmic_arb->ver_ops->irq_status(bus, apid));
while (status) {
id = ffs(status) - 1;
status &= ~BIT(id);
irq = irq_find_mapping(bus->domain,
spec_to_hwirq(sid, per, id, apid));
if (irq == 0) {
cleanup_irq(bus, apid, id);
continue;
}
generic_handle_irq(irq);
handled++;
}
return handled;
}
static void pmic_arb_chained_irq(struct irq_desc *desc)
{
struct spmi_pmic_arb_bus *bus = irq_desc_get_handler_data(desc);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
const struct pmic_arb_ver_ops *ver_ops = pmic_arb->ver_ops;
struct irq_chip *chip = irq_desc_get_chip(desc);
int first = bus->min_apid;
int last = bus->max_apid;
/*
* acc_offset will be non-zero for the secondary SPMI bus instance on
* v7 controllers.
*/
int acc_offset = bus->base_apid >> 5;
u8 ee = pmic_arb->ee;
u32 status, enable, handled = 0;
int i, id, apid;
/* status based dispatch */
bool acc_valid = false;
u32 irq_status = 0;
chained_irq_enter(chip, desc);
for (i = first >> 5; i <= last >> 5; ++i) {
status = readl_relaxed(ver_ops->owner_acc_status(bus, ee, i - acc_offset));
if (status)
acc_valid = true;
while (status) {
id = ffs(status) - 1;
status &= ~BIT(id);
apid = id + i * 32;
if (apid < first || apid > last) {
WARN_ONCE(true, "spurious spmi irq received for apid=%d\n",
apid);
continue;
}
enable = readl_relaxed(
ver_ops->acc_enable(bus, apid));
if (enable & SPMI_PIC_ACC_ENABLE_BIT)
if (periph_interrupt(bus, apid) != 0)
handled++;
}
}
/* ACC_STATUS is empty but IRQ fired check IRQ_STATUS */
if (!acc_valid) {
for (i = first; i <= last; i++) {
/* skip if APPS is not irq owner */
if (bus->apid_data[i].irq_ee != pmic_arb->ee)
continue;
irq_status = readl_relaxed(
ver_ops->irq_status(bus, i));
if (irq_status) {
enable = readl_relaxed(
ver_ops->acc_enable(bus, i));
if (enable & SPMI_PIC_ACC_ENABLE_BIT) {
dev_dbg(&bus->spmic->dev,
"Dispatching IRQ for apid=%d status=%x\n",
i, irq_status);
if (periph_interrupt(bus, i) != 0)
handled++;
}
}
}
}
if (handled == 0)
handle_bad_irq(desc);
chained_irq_exit(chip, desc);
}
static void qpnpint_irq_ack(struct irq_data *d)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u8 irq = hwirq_to_irq(d->hwirq);
u16 apid = hwirq_to_apid(d->hwirq);
u8 data;
writel_relaxed(BIT(irq), pmic_arb->ver_ops->irq_clear(bus, apid));
data = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &data, 1);
}
static void qpnpint_irq_mask(struct irq_data *d)
{
u8 irq = hwirq_to_irq(d->hwirq);
u8 data = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &data, 1);
}
static void qpnpint_irq_unmask(struct irq_data *d)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
const struct pmic_arb_ver_ops *ver_ops = pmic_arb->ver_ops;
u8 irq = hwirq_to_irq(d->hwirq);
u16 apid = hwirq_to_apid(d->hwirq);
u8 buf[2];
writel_relaxed(SPMI_PIC_ACC_ENABLE_BIT,
ver_ops->acc_enable(bus, apid));
qpnpint_spmi_read(d, QPNPINT_REG_EN_SET, &buf[0], 1);
if (!(buf[0] & BIT(irq))) {
/*
* Since the interrupt is currently disabled, write to both the
* LATCHED_CLR and EN_SET registers so that a spurious interrupt
* cannot be triggered when the interrupt is enabled
*/
buf[0] = BIT(irq);
buf[1] = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 2);
}
}
static int qpnpint_irq_set_type(struct irq_data *d, unsigned int flow_type)
{
struct spmi_pmic_arb_qpnpint_type type = {0};
struct spmi_pmic_arb_qpnpint_type mask;
irq_flow_handler_t flow_handler;
u8 irq_bit = BIT(hwirq_to_irq(d->hwirq));
int rc;
if (flow_type & (IRQF_TRIGGER_RISING | IRQF_TRIGGER_FALLING)) {
type.type = irq_bit;
if (flow_type & IRQF_TRIGGER_RISING)
type.polarity_high = irq_bit;
if (flow_type & IRQF_TRIGGER_FALLING)
type.polarity_low = irq_bit;
flow_handler = handle_edge_irq;
} else {
if ((flow_type & (IRQF_TRIGGER_HIGH)) &&
(flow_type & (IRQF_TRIGGER_LOW)))
return -EINVAL;
if (flow_type & IRQF_TRIGGER_HIGH)
type.polarity_high = irq_bit;
else
type.polarity_low = irq_bit;
flow_handler = handle_level_irq;
}
mask.type = irq_bit;
mask.polarity_high = irq_bit;
mask.polarity_low = irq_bit;
rc = qpnpint_spmi_masked_write(d, QPNPINT_REG_SET_TYPE, &type, &mask,
sizeof(type));
irq_set_handler_locked(d, flow_handler);
return rc;
}
static int qpnpint_irq_set_wake(struct irq_data *d, unsigned int on)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
return irq_set_irq_wake(bus->irq, on);
}
static int qpnpint_get_irqchip_state(struct irq_data *d,
enum irqchip_irq_state which,
bool *state)
{
u8 irq = hwirq_to_irq(d->hwirq);
u8 status = 0;
if (which != IRQCHIP_STATE_LINE_LEVEL)
return -EINVAL;
qpnpint_spmi_read(d, QPNPINT_REG_RT_STS, &status, 1);
*state = !!(status & BIT(irq));
return 0;
}
static int qpnpint_irq_domain_activate(struct irq_domain *domain,
struct irq_data *d, bool reserve)
{
struct spmi_pmic_arb_bus *bus = irq_data_get_irq_chip_data(d);
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 periph = hwirq_to_per(d->hwirq);
u16 apid = hwirq_to_apid(d->hwirq);
u16 sid = hwirq_to_sid(d->hwirq);
u16 irq = hwirq_to_irq(d->hwirq);
u8 buf;
if (bus->apid_data[apid].irq_ee != pmic_arb->ee) {
dev_err(&bus->spmic->dev, "failed to xlate sid = %#x, periph = %#x, irq = %u: ee=%u but owner=%u\n",
sid, periph, irq, pmic_arb->ee,
bus->apid_data[apid].irq_ee);
return -ENODEV;
}
buf = BIT(irq);
qpnpint_spmi_write(d, QPNPINT_REG_EN_CLR, &buf, 1);
qpnpint_spmi_write(d, QPNPINT_REG_LATCHED_CLR, &buf, 1);
return 0;
}
static struct irq_chip pmic_arb_irqchip = {
.name = "pmic_arb",
.irq_ack = qpnpint_irq_ack,
.irq_mask = qpnpint_irq_mask,
.irq_unmask = qpnpint_irq_unmask,
.irq_set_type = qpnpint_irq_set_type,
.irq_set_wake = qpnpint_irq_set_wake,
.irq_get_irqchip_state = qpnpint_get_irqchip_state,
.flags = IRQCHIP_MASK_ON_SUSPEND,
};
static int qpnpint_irq_domain_translate(struct irq_domain *d,
struct irq_fwspec *fwspec,
unsigned long *out_hwirq,
unsigned int *out_type)
{
struct spmi_pmic_arb_bus *bus = d->host_data;
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u32 *intspec = fwspec->param;
u16 apid, ppid;
int rc;
dev_dbg(&bus->spmic->dev, "intspec[0] 0x%1x intspec[1] 0x%02x intspec[2] 0x%02x\n",
intspec[0], intspec[1], intspec[2]);
if (irq_domain_get_of_node(d) != bus->spmic->dev.of_node)
return -EINVAL;
if (fwspec->param_count != 4)
return -EINVAL;
if (intspec[0] > 0xF || intspec[1] > 0xFF || intspec[2] > 0x7)
return -EINVAL;
ppid = intspec[0] << 8 | intspec[1];
rc = pmic_arb->ver_ops->ppid_to_apid(bus, ppid);
if (rc < 0) {
dev_err(&bus->spmic->dev, "failed to xlate sid = %#x, periph = %#x, irq = %u rc = %d\n",
intspec[0], intspec[1], intspec[2], rc);
return rc;
}
apid = rc;
/* Keep track of {max,min}_apid for bounding search during interrupt */
if (apid > bus->max_apid)
bus->max_apid = apid;
if (apid < bus->min_apid)
bus->min_apid = apid;
*out_hwirq = spec_to_hwirq(intspec[0], intspec[1], intspec[2], apid);
*out_type = intspec[3] & IRQ_TYPE_SENSE_MASK;
dev_dbg(&bus->spmic->dev, "out_hwirq = %lu\n", *out_hwirq);
return 0;
}
static struct lock_class_key qpnpint_irq_lock_class, qpnpint_irq_request_class;
static void qpnpint_irq_domain_map(struct spmi_pmic_arb_bus *bus,
struct irq_domain *domain, unsigned int virq,
irq_hw_number_t hwirq, unsigned int type)
{
irq_flow_handler_t handler;
dev_dbg(&bus->spmic->dev, "virq = %u, hwirq = %lu, type = %u\n",
virq, hwirq, type);
if (type & IRQ_TYPE_EDGE_BOTH)
handler = handle_edge_irq;
else
handler = handle_level_irq;
irq_set_lockdep_class(virq, &qpnpint_irq_lock_class,
&qpnpint_irq_request_class);
irq_domain_set_info(domain, virq, hwirq, &pmic_arb_irqchip, bus,
handler, NULL, NULL);
}
static int qpnpint_irq_domain_alloc(struct irq_domain *domain,
unsigned int virq, unsigned int nr_irqs,
void *data)
{
struct spmi_pmic_arb_bus *bus = domain->host_data;
struct irq_fwspec *fwspec = data;
irq_hw_number_t hwirq;
unsigned int type;
int ret, i;
ret = qpnpint_irq_domain_translate(domain, fwspec, &hwirq, &type);
if (ret)
return ret;
for (i = 0; i < nr_irqs; i++)
qpnpint_irq_domain_map(bus, domain, virq + i, hwirq + i,
type);
return 0;
}
static int pmic_arb_init_apid_min_max(struct spmi_pmic_arb_bus *bus)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
/*
* Initialize max_apid/min_apid to the opposite bounds, during
* the irq domain translation, we are sure to update these
*/
bus->max_apid = 0;
bus->min_apid = pmic_arb->max_periphs - 1;
return 0;
}
static int pmic_arb_get_core_resources_v1(struct platform_device *pdev,
void __iomem *core)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
pmic_arb->wr_base = core;
pmic_arb->rd_base = core;
pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS;
return 0;
}
static int pmic_arb_init_apid_v1(struct spmi_pmic_arb_bus *bus, int index)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u32 *mapping_table;
if (index) {
dev_err(&bus->spmic->dev, "Unsupported buses count %d detected\n",
index);
return -EINVAL;
}
mapping_table = devm_kcalloc(&bus->spmic->dev, pmic_arb->max_periphs,
sizeof(*mapping_table), GFP_KERNEL);
if (!mapping_table)
return -ENOMEM;
bus->mapping_table = mapping_table;
return pmic_arb_init_apid_min_max(bus);
}
static int pmic_arb_ppid_to_apid_v1(struct spmi_pmic_arb_bus *bus, u16 ppid)
{
u32 *mapping_table = bus->mapping_table;
int index = 0, i;
u16 apid_valid;
u16 apid;
u32 data;
apid_valid = bus->ppid_to_apid[ppid];
if (apid_valid & PMIC_ARB_APID_VALID) {
apid = apid_valid & ~PMIC_ARB_APID_VALID;
return apid;
}
for (i = 0; i < SPMI_MAPPING_TABLE_TREE_DEPTH; ++i) {
if (!test_and_set_bit(index, bus->mapping_table_valid))
mapping_table[index] = readl_relaxed(bus->cnfg +
SPMI_MAPPING_TABLE_REG(index));
data = mapping_table[index];
if (ppid & BIT(SPMI_MAPPING_BIT_INDEX(data))) {
if (SPMI_MAPPING_BIT_IS_1_FLAG(data)) {
index = SPMI_MAPPING_BIT_IS_1_RESULT(data);
} else {
apid = SPMI_MAPPING_BIT_IS_1_RESULT(data);
bus->ppid_to_apid[ppid]
= apid | PMIC_ARB_APID_VALID;
bus->apid_data[apid].ppid = ppid;
return apid;
}
} else {
if (SPMI_MAPPING_BIT_IS_0_FLAG(data)) {
index = SPMI_MAPPING_BIT_IS_0_RESULT(data);
} else {
apid = SPMI_MAPPING_BIT_IS_0_RESULT(data);
bus->ppid_to_apid[ppid]
= apid | PMIC_ARB_APID_VALID;
bus->apid_data[apid].ppid = ppid;
return apid;
}
}
}
return -ENODEV;
}
/* v1 offset per ee */
static int pmic_arb_offset_v1(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return 0x800 + 0x80 * pmic_arb->channel;
}
static u16 pmic_arb_find_apid(struct spmi_pmic_arb_bus *bus, u16 ppid)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
struct apid_data *apidd = &bus->apid_data[bus->last_apid];
u32 regval, offset;
u16 id, apid;
for (apid = bus->last_apid; ; apid++, apidd++) {
offset = pmic_arb->ver_ops->apid_map_offset(apid);
if (offset >= pmic_arb->core_size)
break;
regval = readl_relaxed(pmic_arb->ver_ops->apid_owner(bus,
apid));
apidd->irq_ee = SPMI_OWNERSHIP_PERIPH2OWNER(regval);
apidd->write_ee = apidd->irq_ee;
regval = readl_relaxed(pmic_arb->core + offset);
if (!regval)
continue;
id = (regval >> 8) & PMIC_ARB_PPID_MASK;
bus->ppid_to_apid[id] = apid | PMIC_ARB_APID_VALID;
apidd->ppid = id;
if (id == ppid) {
apid |= PMIC_ARB_APID_VALID;
break;
}
}
bus->last_apid = apid & ~PMIC_ARB_APID_VALID;
return apid;
}
static int pmic_arb_get_obsrvr_chnls_v2(struct platform_device *pdev)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
pmic_arb->rd_base = devm_platform_ioremap_resource_byname(pdev, "obsrvr");
if (IS_ERR(pmic_arb->rd_base))
return PTR_ERR(pmic_arb->rd_base);
pmic_arb->wr_base = devm_platform_ioremap_resource_byname(pdev, "chnls");
if (IS_ERR(pmic_arb->wr_base))
return PTR_ERR(pmic_arb->wr_base);
return 0;
}
static int pmic_arb_get_core_resources_v2(struct platform_device *pdev,
void __iomem *core)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
pmic_arb->core = core;
pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS;
return pmic_arb_get_obsrvr_chnls_v2(pdev);
}
static int pmic_arb_ppid_to_apid_v2(struct spmi_pmic_arb_bus *bus, u16 ppid)
{
u16 apid_valid;
apid_valid = bus->ppid_to_apid[ppid];
if (!(apid_valid & PMIC_ARB_APID_VALID))
apid_valid = pmic_arb_find_apid(bus, ppid);
if (!(apid_valid & PMIC_ARB_APID_VALID))
return -ENODEV;
return apid_valid & ~PMIC_ARB_APID_VALID;
}
static int pmic_arb_read_apid_map_v5(struct spmi_pmic_arb_bus *bus)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
struct apid_data *apidd;
struct apid_data *prev_apidd;
u16 i, apid, ppid, apid_max;
bool valid, is_irq_ee;
u32 regval, offset;
/*
* In order to allow multiple EEs to write to a single PPID in arbiter
* version 5 and 7, there is more than one APID mapped to each PPID.
* The owner field for each of these mappings specifies the EE which is
* allowed to write to the APID. The owner of the last (highest) APID
* which has the IRQ owner bit set for a given PPID will receive
* interrupts from the PPID.
*
* In arbiter version 7, the APID numbering space is divided between
* the primary bus (0) and secondary bus (1) such that:
* APID = 0 to N-1 are assigned to the primary bus
* APID = N to N+M-1 are assigned to the secondary bus
* where N = number of APIDs supported by the primary bus and
* M = number of APIDs supported by the secondary bus
*/
apidd = &bus->apid_data[bus->base_apid];
apid_max = bus->base_apid + bus->apid_count;
for (i = bus->base_apid; i < apid_max; i++, apidd++) {
offset = pmic_arb->ver_ops->apid_map_offset(i);
if (offset >= pmic_arb->core_size)
break;
regval = readl_relaxed(pmic_arb->core + offset);
if (!regval)
continue;
ppid = (regval >> 8) & PMIC_ARB_PPID_MASK;
is_irq_ee = PMIC_ARB_CHAN_IS_IRQ_OWNER(regval);
regval = readl_relaxed(pmic_arb->ver_ops->apid_owner(bus, i));
apidd->write_ee = SPMI_OWNERSHIP_PERIPH2OWNER(regval);
apidd->irq_ee = is_irq_ee ? apidd->write_ee : INVALID_EE;
valid = bus->ppid_to_apid[ppid] & PMIC_ARB_APID_VALID;
apid = bus->ppid_to_apid[ppid] & ~PMIC_ARB_APID_VALID;
prev_apidd = &bus->apid_data[apid];
if (!valid || apidd->write_ee == pmic_arb->ee) {
/* First PPID mapping or one for this EE */
bus->ppid_to_apid[ppid] = i | PMIC_ARB_APID_VALID;
} else if (valid && is_irq_ee &&
prev_apidd->write_ee == pmic_arb->ee) {
/*
* Duplicate PPID mapping after the one for this EE;
* override the irq owner
*/
prev_apidd->irq_ee = apidd->irq_ee;
}
apidd->ppid = ppid;
bus->last_apid = i;
}
/* Dump the mapping table for debug purposes. */
dev_dbg(&bus->spmic->dev, "PPID APID Write-EE IRQ-EE\n");
for (ppid = 0; ppid < PMIC_ARB_MAX_PPID; ppid++) {
apid = bus->ppid_to_apid[ppid];
if (apid & PMIC_ARB_APID_VALID) {
apid &= ~PMIC_ARB_APID_VALID;
apidd = &bus->apid_data[apid];
dev_dbg(&bus->spmic->dev, "%#03X %3u %2u %2u\n",
ppid, apid, apidd->write_ee, apidd->irq_ee);
}
}
return 0;
}
static int pmic_arb_ppid_to_apid_v5(struct spmi_pmic_arb_bus *bus, u16 ppid)
{
if (!(bus->ppid_to_apid[ppid] & PMIC_ARB_APID_VALID))
return -ENODEV;
return bus->ppid_to_apid[ppid] & ~PMIC_ARB_APID_VALID;
}
/* v2 offset per ppid and per ee */
static int pmic_arb_offset_v2(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 apid;
u16 ppid;
int rc;
ppid = sid << 8 | ((addr >> 8) & 0xFF);
rc = pmic_arb_ppid_to_apid_v2(bus, ppid);
if (rc < 0)
return rc;
apid = rc;
return 0x1000 * pmic_arb->ee + 0x8000 * apid;
}
static int pmic_arb_init_apid_v5(struct spmi_pmic_arb_bus *bus, int index)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
int ret;
if (index) {
dev_err(&bus->spmic->dev, "Unsupported buses count %d detected\n",
index);
return -EINVAL;
}
bus->base_apid = 0;
bus->apid_count = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES) &
PMIC_ARB_FEATURES_PERIPH_MASK;
if (bus->base_apid + bus->apid_count > pmic_arb->max_periphs) {
dev_err(&bus->spmic->dev, "Unsupported APID count %d detected\n",
bus->base_apid + bus->apid_count);
return -EINVAL;
}
ret = pmic_arb_init_apid_min_max(bus);
if (ret)
return ret;
ret = pmic_arb_read_apid_map_v5(bus);
if (ret) {
dev_err(&bus->spmic->dev, "could not read APID->PPID mapping table, rc= %d\n",
ret);
return ret;
}
return 0;
}
/*
* v5 offset per ee and per apid for observer channels and per apid for
* read/write channels.
*/
static int pmic_arb_offset_v5(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 apid;
int rc;
u32 offset = 0;
u16 ppid = (sid << 8) | (addr >> 8);
rc = pmic_arb_ppid_to_apid_v5(bus, ppid);
if (rc < 0)
return rc;
apid = rc;
switch (ch_type) {
case PMIC_ARB_CHANNEL_OBS:
offset = 0x10000 * pmic_arb->ee + 0x80 * apid;
break;
case PMIC_ARB_CHANNEL_RW:
if (bus->apid_data[apid].write_ee != pmic_arb->ee) {
dev_err(&bus->spmic->dev, "disallowed SPMI write to sid=%u, addr=0x%04X\n",
sid, addr);
return -EPERM;
}
offset = 0x10000 * apid;
break;
}
return offset;
}
static int pmic_arb_get_core_resources_v7(struct platform_device *pdev,
void __iomem *core)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
pmic_arb->core = core;
pmic_arb->max_periphs = PMIC_ARB_MAX_PERIPHS_V7;
return pmic_arb_get_obsrvr_chnls_v2(pdev);
}
/*
* Only v7 supports 2 buses. Each bus will get a different apid count, read
* from different registers.
*/
static int pmic_arb_init_apid_v7(struct spmi_pmic_arb_bus *bus, int index)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
int ret;
if (index == 0) {
bus->base_apid = 0;
bus->apid_count = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES) &
PMIC_ARB_FEATURES_PERIPH_MASK;
} else if (index == 1) {
bus->base_apid = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES) &
PMIC_ARB_FEATURES_PERIPH_MASK;
bus->apid_count = readl_relaxed(pmic_arb->core + PMIC_ARB_FEATURES1) &
PMIC_ARB_FEATURES_PERIPH_MASK;
} else {
dev_err(&bus->spmic->dev, "Unsupported buses count %d detected\n",
bus->id);
return -EINVAL;
}
if (bus->base_apid + bus->apid_count > pmic_arb->max_periphs) {
dev_err(&bus->spmic->dev, "Unsupported APID count %d detected\n",
bus->base_apid + bus->apid_count);
return -EINVAL;
}
ret = pmic_arb_init_apid_min_max(bus);
if (ret)
return ret;
ret = pmic_arb_read_apid_map_v5(bus);
if (ret) {
dev_err(&bus->spmic->dev, "could not read APID->PPID mapping table, rc= %d\n",
ret);
return ret;
}
return 0;
}
/*
* v7 offset per ee and per apid for observer channels and per apid for
* read/write channels.
*/
static int pmic_arb_offset_v7(struct spmi_pmic_arb_bus *bus, u8 sid, u16 addr,
enum pmic_arb_channel ch_type)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
u16 apid;
int rc;
u32 offset = 0;
u16 ppid = (sid << 8) | (addr >> 8);
rc = pmic_arb->ver_ops->ppid_to_apid(bus, ppid);
if (rc < 0)
return rc;
apid = rc;
switch (ch_type) {
case PMIC_ARB_CHANNEL_OBS:
offset = 0x8000 * pmic_arb->ee + 0x20 * apid;
break;
case PMIC_ARB_CHANNEL_RW:
if (bus->apid_data[apid].write_ee != pmic_arb->ee) {
dev_err(&bus->spmic->dev, "disallowed SPMI write to sid=%u, addr=0x%04X\n",
sid, addr);
return -EPERM;
}
offset = 0x1000 * apid;
break;
}
return offset;
}
static u32 pmic_arb_fmt_cmd_v1(u8 opc, u8 sid, u16 addr, u8 bc)
{
return (opc << 27) | ((sid & 0xf) << 20) | (addr << 4) | (bc & 0x7);
}
static u32 pmic_arb_fmt_cmd_v2(u8 opc, u8 sid, u16 addr, u8 bc)
{
return (opc << 27) | ((addr & 0xff) << 4) | (bc & 0x7);
}
static void __iomem *
pmic_arb_owner_acc_status_v1(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x20 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_owner_acc_status_v2(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x100000 + 0x1000 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_owner_acc_status_v3(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x200000 + 0x1000 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_owner_acc_status_v5(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x10000 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_owner_acc_status_v7(struct spmi_pmic_arb_bus *bus, u8 m, u16 n)
{
return bus->intr + 0x1000 * m + 0x4 * n;
}
static void __iomem *
pmic_arb_acc_enable_v1(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x200 + 0x4 * n;
}
static void __iomem *
pmic_arb_acc_enable_v2(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x1000 * n;
}
static void __iomem *
pmic_arb_acc_enable_v5(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x100 + 0x10000 * n;
}
static void __iomem *
pmic_arb_acc_enable_v7(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x100 + 0x1000 * n;
}
static void __iomem *
pmic_arb_irq_status_v1(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x600 + 0x4 * n;
}
static void __iomem *
pmic_arb_irq_status_v2(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x4 + 0x1000 * n;
}
static void __iomem *
pmic_arb_irq_status_v5(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x104 + 0x10000 * n;
}
static void __iomem *
pmic_arb_irq_status_v7(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x104 + 0x1000 * n;
}
static void __iomem *
pmic_arb_irq_clear_v1(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0xA00 + 0x4 * n;
}
static void __iomem *
pmic_arb_irq_clear_v2(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->intr + 0x8 + 0x1000 * n;
}
static void __iomem *
pmic_arb_irq_clear_v5(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x108 + 0x10000 * n;
}
static void __iomem *
pmic_arb_irq_clear_v7(struct spmi_pmic_arb_bus *bus, u16 n)
{
struct spmi_pmic_arb *pmic_arb = bus->pmic_arb;
return pmic_arb->wr_base + 0x108 + 0x1000 * n;
}
static u32 pmic_arb_apid_map_offset_v2(u16 n)
{
return 0x800 + 0x4 * n;
}
static u32 pmic_arb_apid_map_offset_v5(u16 n)
{
return 0x900 + 0x4 * n;
}
static u32 pmic_arb_apid_map_offset_v7(u16 n)
{
return 0x2000 + 0x4 * n;
}
static void __iomem *
pmic_arb_apid_owner_v2(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->cnfg + 0x700 + 0x4 * n;
}
/*
* For arbiter version 7, APID ownership table registers have independent
* numbering space for each SPMI bus instance, so each is indexed starting from
* 0.
*/
static void __iomem *
pmic_arb_apid_owner_v7(struct spmi_pmic_arb_bus *bus, u16 n)
{
return bus->cnfg + 0x4 * (n - bus->base_apid);
}
static const struct pmic_arb_ver_ops pmic_arb_v1 = {
.ver_str = "v1",
.get_core_resources = pmic_arb_get_core_resources_v1,
.init_apid = pmic_arb_init_apid_v1,
.ppid_to_apid = pmic_arb_ppid_to_apid_v1,
.non_data_cmd = pmic_arb_non_data_cmd_v1,
.offset = pmic_arb_offset_v1,
.fmt_cmd = pmic_arb_fmt_cmd_v1,
.owner_acc_status = pmic_arb_owner_acc_status_v1,
.acc_enable = pmic_arb_acc_enable_v1,
.irq_status = pmic_arb_irq_status_v1,
.irq_clear = pmic_arb_irq_clear_v1,
.apid_map_offset = pmic_arb_apid_map_offset_v2,
.apid_owner = pmic_arb_apid_owner_v2,
};
static const struct pmic_arb_ver_ops pmic_arb_v2 = {
.ver_str = "v2",
.get_core_resources = pmic_arb_get_core_resources_v2,
.init_apid = pmic_arb_init_apid_v1,
.ppid_to_apid = pmic_arb_ppid_to_apid_v2,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v2,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v2,
.acc_enable = pmic_arb_acc_enable_v2,
.irq_status = pmic_arb_irq_status_v2,
.irq_clear = pmic_arb_irq_clear_v2,
.apid_map_offset = pmic_arb_apid_map_offset_v2,
.apid_owner = pmic_arb_apid_owner_v2,
};
static const struct pmic_arb_ver_ops pmic_arb_v3 = {
.ver_str = "v3",
.get_core_resources = pmic_arb_get_core_resources_v2,
.init_apid = pmic_arb_init_apid_v1,
.ppid_to_apid = pmic_arb_ppid_to_apid_v2,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v2,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v3,
.acc_enable = pmic_arb_acc_enable_v2,
.irq_status = pmic_arb_irq_status_v2,
.irq_clear = pmic_arb_irq_clear_v2,
.apid_map_offset = pmic_arb_apid_map_offset_v2,
.apid_owner = pmic_arb_apid_owner_v2,
};
static const struct pmic_arb_ver_ops pmic_arb_v5 = {
.ver_str = "v5",
.get_core_resources = pmic_arb_get_core_resources_v2,
.init_apid = pmic_arb_init_apid_v5,
.ppid_to_apid = pmic_arb_ppid_to_apid_v5,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v5,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v5,
.acc_enable = pmic_arb_acc_enable_v5,
.irq_status = pmic_arb_irq_status_v5,
.irq_clear = pmic_arb_irq_clear_v5,
.apid_map_offset = pmic_arb_apid_map_offset_v5,
.apid_owner = pmic_arb_apid_owner_v2,
};
static const struct pmic_arb_ver_ops pmic_arb_v7 = {
.ver_str = "v7",
.get_core_resources = pmic_arb_get_core_resources_v7,
.init_apid = pmic_arb_init_apid_v7,
.ppid_to_apid = pmic_arb_ppid_to_apid_v5,
.non_data_cmd = pmic_arb_non_data_cmd_v2,
.offset = pmic_arb_offset_v7,
.fmt_cmd = pmic_arb_fmt_cmd_v2,
.owner_acc_status = pmic_arb_owner_acc_status_v7,
.acc_enable = pmic_arb_acc_enable_v7,
.irq_status = pmic_arb_irq_status_v7,
.irq_clear = pmic_arb_irq_clear_v7,
.apid_map_offset = pmic_arb_apid_map_offset_v7,
.apid_owner = pmic_arb_apid_owner_v7,
};
static const struct irq_domain_ops pmic_arb_irq_domain_ops = {
.activate = qpnpint_irq_domain_activate,
.alloc = qpnpint_irq_domain_alloc,
.free = irq_domain_free_irqs_common,
.translate = qpnpint_irq_domain_translate,
};
static int spmi_pmic_arb_bus_init(struct platform_device *pdev,
struct device_node *node,
struct spmi_pmic_arb *pmic_arb)
{
int bus_index = pmic_arb->buses_available;
struct spmi_pmic_arb_bus *bus;
struct device *dev = &pdev->dev;
struct spmi_controller *ctrl;
void __iomem *intr;
void __iomem *cnfg;
int index, ret;
int irq;
ctrl = devm_spmi_controller_alloc(dev, sizeof(*bus));
if (IS_ERR(ctrl))
return PTR_ERR(ctrl);
ctrl->cmd = pmic_arb_cmd;
ctrl->read_cmd = pmic_arb_read_cmd;
ctrl->write_cmd = pmic_arb_write_cmd;
bus = spmi_controller_get_drvdata(ctrl);
pmic_arb->buses[bus_index] = bus;
raw_spin_lock_init(&bus->lock);
bus->ppid_to_apid = devm_kcalloc(dev, PMIC_ARB_MAX_PPID,
sizeof(*bus->ppid_to_apid),
GFP_KERNEL);
if (!bus->ppid_to_apid)
return -ENOMEM;
bus->apid_data = devm_kcalloc(dev, pmic_arb->max_periphs,
sizeof(*bus->apid_data),
GFP_KERNEL);
if (!bus->apid_data)
return -ENOMEM;
index = of_property_match_string(node, "reg-names", "cnfg");
if (index < 0) {
dev_err(dev, "cnfg reg region missing\n");
return -EINVAL;
}
cnfg = devm_of_iomap(dev, node, index, NULL);
if (IS_ERR(cnfg))
return PTR_ERR(cnfg);
index = of_property_match_string(node, "reg-names", "intr");
if (index < 0) {
dev_err(dev, "intr reg region missing\n");
return -EINVAL;
}
intr = devm_of_iomap(dev, node, index, NULL);
if (IS_ERR(intr))
return PTR_ERR(intr);
irq = of_irq_get_byname(node, "periph_irq");
if (irq <= 0)
return irq ?: -ENXIO;
bus->pmic_arb = pmic_arb;
bus->intr = intr;
bus->cnfg = cnfg;
bus->irq = irq;
bus->spmic = ctrl;
bus->id = bus_index;
ret = pmic_arb->ver_ops->init_apid(bus, bus_index);
if (ret)
return ret;
dev_dbg(&pdev->dev, "adding irq domain for bus %d\n", bus_index);
bus->domain = irq_domain_add_tree(node, &pmic_arb_irq_domain_ops, bus);
if (!bus->domain) {
dev_err(&pdev->dev, "unable to create irq_domain\n");
return -ENOMEM;
}
irq_set_chained_handler_and_data(bus->irq,
pmic_arb_chained_irq, bus);
ctrl->dev.of_node = node;
dev_set_name(&ctrl->dev, "spmi-%d", bus_index);
ret = devm_spmi_controller_add(dev, ctrl);
if (ret)
return ret;
pmic_arb->buses_available++;
return 0;
}
static int spmi_pmic_arb_register_buses(struct spmi_pmic_arb *pmic_arb,
struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct device_node *node = dev->of_node;
int ret;
/* legacy mode doesn't provide child node for the bus */
if (of_device_is_compatible(node, "qcom,spmi-pmic-arb"))
return spmi_pmic_arb_bus_init(pdev, node, pmic_arb);
for_each_available_child_of_node_scoped(node, child) {
if (of_node_name_eq(child, "spmi")) {
ret = spmi_pmic_arb_bus_init(pdev, child, pmic_arb);
if (ret)
return ret;
}
}
return ret;
}
static void spmi_pmic_arb_deregister_buses(struct spmi_pmic_arb *pmic_arb)
{
int i;
for (i = 0; i < pmic_arb->buses_available; i++) {
struct spmi_pmic_arb_bus *bus = pmic_arb->buses[i];
irq_set_chained_handler_and_data(bus->irq,
NULL, NULL);
irq_domain_remove(bus->domain);
}
}
static int spmi_pmic_arb_probe(struct platform_device *pdev)
{
struct spmi_pmic_arb *pmic_arb;
struct device *dev = &pdev->dev;
struct resource *res;
void __iomem *core;
u32 channel, ee, hw_ver;
int err;
pmic_arb = devm_kzalloc(dev, sizeof(*pmic_arb), GFP_KERNEL);
if (!pmic_arb)
return -ENOMEM;
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "core");
core = devm_ioremap(dev, res->start, resource_size(res));
if (!core)
return -ENOMEM;
pmic_arb->core_size = resource_size(res);
platform_set_drvdata(pdev, pmic_arb);
hw_ver = readl_relaxed(core + PMIC_ARB_VERSION);
if (hw_ver < PMIC_ARB_VERSION_V2_MIN)
pmic_arb->ver_ops = &pmic_arb_v1;
else if (hw_ver < PMIC_ARB_VERSION_V3_MIN)
pmic_arb->ver_ops = &pmic_arb_v2;
else if (hw_ver < PMIC_ARB_VERSION_V5_MIN)
pmic_arb->ver_ops = &pmic_arb_v3;
else if (hw_ver < PMIC_ARB_VERSION_V7_MIN)
pmic_arb->ver_ops = &pmic_arb_v5;
else
pmic_arb->ver_ops = &pmic_arb_v7;
err = pmic_arb->ver_ops->get_core_resources(pdev, core);
if (err)
return err;
dev_info(dev, "PMIC arbiter version %s (0x%x)\n",
pmic_arb->ver_ops->ver_str, hw_ver);
err = of_property_read_u32(pdev->dev.of_node, "qcom,channel", &channel);
if (err) {
dev_err(&pdev->dev, "channel unspecified.\n");
return err;
}
if (channel > 5) {
dev_err(&pdev->dev, "invalid channel (%u) specified.\n",
channel);
return -EINVAL;
}
pmic_arb->channel = channel;
err = of_property_read_u32(pdev->dev.of_node, "qcom,ee", &ee);
if (err) {
dev_err(&pdev->dev, "EE unspecified.\n");
return err;
}
if (ee > 5) {
dev_err(&pdev->dev, "invalid EE (%u) specified\n", ee);
return -EINVAL;
}
pmic_arb->ee = ee;
return spmi_pmic_arb_register_buses(pmic_arb, pdev);
}
static void spmi_pmic_arb_remove(struct platform_device *pdev)
{
struct spmi_pmic_arb *pmic_arb = platform_get_drvdata(pdev);
spmi_pmic_arb_deregister_buses(pmic_arb);
}
static const struct of_device_id spmi_pmic_arb_match_table[] = {
{ .compatible = "qcom,spmi-pmic-arb", },
{ .compatible = "qcom,x1e80100-spmi-pmic-arb", },
{},
};
MODULE_DEVICE_TABLE(of, spmi_pmic_arb_match_table);
static struct platform_driver spmi_pmic_arb_driver = {
.probe = spmi_pmic_arb_probe,
.remove = spmi_pmic_arb_remove,
.driver = {
.name = "spmi_pmic_arb",
.of_match_table = spmi_pmic_arb_match_table,
},
};
module_platform_driver(spmi_pmic_arb_driver);
MODULE_DESCRIPTION("Qualcomm MSM SPMI Controller (PMIC Arbiter) driver");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS("platform:spmi_pmic_arb");