mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-09 14:43:16 +00:00
dfbafa70bd
One of the "legitimate" uses of strncpy() is copying a NUL-terminated string into a fixed-size non-NUL-terminated character array. To avoid the weaknesses and ambiguity of intent when using strncpy(), provide replacement functions that explicitly distinguish between trailing padding and not, and require the destination buffer size be discoverable by the compiler. For example: struct obj { int foo; char small[4] __nonstring; char big[8] __nonstring; int bar; }; struct obj p; /* This will truncate to 4 chars with no trailing NUL */ strncpy(p.small, "hello", sizeof(p.small)); /* p.small contains 'h', 'e', 'l', 'l' */ /* This will NUL pad to 8 chars. */ strncpy(p.big, "hello", sizeof(p.big)); /* p.big contains 'h', 'e', 'l', 'l', 'o', '\0', '\0', '\0' */ When the "__nonstring" attributes are missing, the intent of the programmer becomes ambiguous for whether the lack of a trailing NUL in the p.small copy is a bug. Additionally, it's not clear whether the trailing padding in the p.big copy is _needed_. Both cases become unambiguous with: strtomem(p.small, "hello"); strtomem_pad(p.big, "hello", 0); See also https://github.com/KSPP/linux/issues/90 Expand the memcpy KUnit tests to include these functions. Cc: Wolfram Sang <wsa+renesas@sang-engineering.com> Cc: Nick Desaulniers <ndesaulniers@google.com> Cc: Geert Uytterhoeven <geert@linux-m68k.org> Cc: Guenter Roeck <linux@roeck-us.net> Signed-off-by: Kees Cook <keescook@chromium.org>
526 lines
18 KiB
C
526 lines
18 KiB
C
/* SPDX-License-Identifier: GPL-2.0 */
|
|
#ifndef _LINUX_FORTIFY_STRING_H_
|
|
#define _LINUX_FORTIFY_STRING_H_
|
|
|
|
#include <linux/const.h>
|
|
|
|
#define __FORTIFY_INLINE extern __always_inline __gnu_inline __overloadable
|
|
#define __RENAME(x) __asm__(#x)
|
|
|
|
void fortify_panic(const char *name) __noreturn __cold;
|
|
void __read_overflow(void) __compiletime_error("detected read beyond size of object (1st parameter)");
|
|
void __read_overflow2(void) __compiletime_error("detected read beyond size of object (2nd parameter)");
|
|
void __read_overflow2_field(size_t avail, size_t wanted) __compiletime_warning("detected read beyond size of field (2nd parameter); maybe use struct_group()?");
|
|
void __write_overflow(void) __compiletime_error("detected write beyond size of object (1st parameter)");
|
|
void __write_overflow_field(size_t avail, size_t wanted) __compiletime_warning("detected write beyond size of field (1st parameter); maybe use struct_group()?");
|
|
|
|
#define __compiletime_strlen(p) \
|
|
({ \
|
|
unsigned char *__p = (unsigned char *)(p); \
|
|
size_t __ret = (size_t)-1; \
|
|
size_t __p_size = __builtin_object_size(p, 1); \
|
|
if (__p_size != (size_t)-1) { \
|
|
size_t __p_len = __p_size - 1; \
|
|
if (__builtin_constant_p(__p[__p_len]) && \
|
|
__p[__p_len] == '\0') \
|
|
__ret = __builtin_strlen(__p); \
|
|
} \
|
|
__ret; \
|
|
})
|
|
|
|
#if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
|
|
extern void *__underlying_memchr(const void *p, int c, __kernel_size_t size) __RENAME(memchr);
|
|
extern int __underlying_memcmp(const void *p, const void *q, __kernel_size_t size) __RENAME(memcmp);
|
|
extern void *__underlying_memcpy(void *p, const void *q, __kernel_size_t size) __RENAME(memcpy);
|
|
extern void *__underlying_memmove(void *p, const void *q, __kernel_size_t size) __RENAME(memmove);
|
|
extern void *__underlying_memset(void *p, int c, __kernel_size_t size) __RENAME(memset);
|
|
extern char *__underlying_strcat(char *p, const char *q) __RENAME(strcat);
|
|
extern char *__underlying_strcpy(char *p, const char *q) __RENAME(strcpy);
|
|
extern __kernel_size_t __underlying_strlen(const char *p) __RENAME(strlen);
|
|
extern char *__underlying_strncat(char *p, const char *q, __kernel_size_t count) __RENAME(strncat);
|
|
extern char *__underlying_strncpy(char *p, const char *q, __kernel_size_t size) __RENAME(strncpy);
|
|
#else
|
|
#define __underlying_memchr __builtin_memchr
|
|
#define __underlying_memcmp __builtin_memcmp
|
|
#define __underlying_memcpy __builtin_memcpy
|
|
#define __underlying_memmove __builtin_memmove
|
|
#define __underlying_memset __builtin_memset
|
|
#define __underlying_strcat __builtin_strcat
|
|
#define __underlying_strcpy __builtin_strcpy
|
|
#define __underlying_strlen __builtin_strlen
|
|
#define __underlying_strncat __builtin_strncat
|
|
#define __underlying_strncpy __builtin_strncpy
|
|
#endif
|
|
|
|
/**
|
|
* unsafe_memcpy - memcpy implementation with no FORTIFY bounds checking
|
|
*
|
|
* @dst: Destination memory address to write to
|
|
* @src: Source memory address to read from
|
|
* @bytes: How many bytes to write to @dst from @src
|
|
* @justification: Free-form text or comment describing why the use is needed
|
|
*
|
|
* This should be used for corner cases where the compiler cannot do the
|
|
* right thing, or during transitions between APIs, etc. It should be used
|
|
* very rarely, and includes a place for justification detailing where bounds
|
|
* checking has happened, and why existing solutions cannot be employed.
|
|
*/
|
|
#define unsafe_memcpy(dst, src, bytes, justification) \
|
|
__underlying_memcpy(dst, src, bytes)
|
|
|
|
/*
|
|
* Clang's use of __builtin_object_size() within inlines needs hinting via
|
|
* __pass_object_size(). The preference is to only ever use type 1 (member
|
|
* size, rather than struct size), but there remain some stragglers using
|
|
* type 0 that will be converted in the future.
|
|
*/
|
|
#define POS __pass_object_size(1)
|
|
#define POS0 __pass_object_size(0)
|
|
|
|
/**
|
|
* strncpy - Copy a string to memory with non-guaranteed NUL padding
|
|
*
|
|
* @p: pointer to destination of copy
|
|
* @q: pointer to NUL-terminated source string to copy
|
|
* @size: bytes to write at @p
|
|
*
|
|
* If strlen(@q) >= @size, the copy of @q will stop after @size bytes,
|
|
* and @p will NOT be NUL-terminated
|
|
*
|
|
* If strlen(@q) < @size, following the copy of @q, trailing NUL bytes
|
|
* will be written to @p until @size total bytes have been written.
|
|
*
|
|
* Do not use this function. While FORTIFY_SOURCE tries to avoid
|
|
* over-reads of @q, it cannot defend against writing unterminated
|
|
* results to @p. Using strncpy() remains ambiguous and fragile.
|
|
* Instead, please choose an alternative, so that the expectation
|
|
* of @p's contents is unambiguous:
|
|
*
|
|
* +--------------------+-----------------+------------+
|
|
* | @p needs to be: | padded to @size | not padded |
|
|
* +====================+=================+============+
|
|
* | NUL-terminated | strscpy_pad() | strscpy() |
|
|
* +--------------------+-----------------+------------+
|
|
* | not NUL-terminated | strtomem_pad() | strtomem() |
|
|
* +--------------------+-----------------+------------+
|
|
*
|
|
* Note strscpy*()'s differing return values for detecting truncation,
|
|
* and strtomem*()'s expectation that the destination is marked with
|
|
* __nonstring when it is a character array.
|
|
*
|
|
*/
|
|
__FORTIFY_INLINE __diagnose_as(__builtin_strncpy, 1, 2, 3)
|
|
char *strncpy(char * const POS p, const char *q, __kernel_size_t size)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 1);
|
|
|
|
if (__builtin_constant_p(size) && p_size < size)
|
|
__write_overflow();
|
|
if (p_size < size)
|
|
fortify_panic(__func__);
|
|
return __underlying_strncpy(p, q, size);
|
|
}
|
|
|
|
__FORTIFY_INLINE __diagnose_as(__builtin_strcat, 1, 2)
|
|
char *strcat(char * const POS p, const char *q)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 1);
|
|
|
|
if (p_size == (size_t)-1)
|
|
return __underlying_strcat(p, q);
|
|
if (strlcat(p, q, p_size) >= p_size)
|
|
fortify_panic(__func__);
|
|
return p;
|
|
}
|
|
|
|
extern __kernel_size_t __real_strnlen(const char *, __kernel_size_t) __RENAME(strnlen);
|
|
__FORTIFY_INLINE __kernel_size_t strnlen(const char * const POS p, __kernel_size_t maxlen)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 1);
|
|
size_t p_len = __compiletime_strlen(p);
|
|
size_t ret;
|
|
|
|
/* We can take compile-time actions when maxlen is const. */
|
|
if (__builtin_constant_p(maxlen) && p_len != (size_t)-1) {
|
|
/* If p is const, we can use its compile-time-known len. */
|
|
if (maxlen >= p_size)
|
|
return p_len;
|
|
}
|
|
|
|
/* Do not check characters beyond the end of p. */
|
|
ret = __real_strnlen(p, maxlen < p_size ? maxlen : p_size);
|
|
if (p_size <= ret && maxlen != ret)
|
|
fortify_panic(__func__);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Defined after fortified strnlen to reuse it. However, it must still be
|
|
* possible for strlen() to be used on compile-time strings for use in
|
|
* static initializers (i.e. as a constant expression).
|
|
*/
|
|
#define strlen(p) \
|
|
__builtin_choose_expr(__is_constexpr(__builtin_strlen(p)), \
|
|
__builtin_strlen(p), __fortify_strlen(p))
|
|
__FORTIFY_INLINE __diagnose_as(__builtin_strlen, 1)
|
|
__kernel_size_t __fortify_strlen(const char * const POS p)
|
|
{
|
|
__kernel_size_t ret;
|
|
size_t p_size = __builtin_object_size(p, 1);
|
|
|
|
/* Give up if we don't know how large p is. */
|
|
if (p_size == (size_t)-1)
|
|
return __underlying_strlen(p);
|
|
ret = strnlen(p, p_size);
|
|
if (p_size <= ret)
|
|
fortify_panic(__func__);
|
|
return ret;
|
|
}
|
|
|
|
/* defined after fortified strlen to reuse it */
|
|
extern size_t __real_strlcpy(char *, const char *, size_t) __RENAME(strlcpy);
|
|
__FORTIFY_INLINE size_t strlcpy(char * const POS p, const char * const POS q, size_t size)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 1);
|
|
size_t q_size = __builtin_object_size(q, 1);
|
|
size_t q_len; /* Full count of source string length. */
|
|
size_t len; /* Count of characters going into destination. */
|
|
|
|
if (p_size == (size_t)-1 && q_size == (size_t)-1)
|
|
return __real_strlcpy(p, q, size);
|
|
q_len = strlen(q);
|
|
len = (q_len >= size) ? size - 1 : q_len;
|
|
if (__builtin_constant_p(size) && __builtin_constant_p(q_len) && size) {
|
|
/* Write size is always larger than destination. */
|
|
if (len >= p_size)
|
|
__write_overflow();
|
|
}
|
|
if (size) {
|
|
if (len >= p_size)
|
|
fortify_panic(__func__);
|
|
__underlying_memcpy(p, q, len);
|
|
p[len] = '\0';
|
|
}
|
|
return q_len;
|
|
}
|
|
|
|
/* defined after fortified strnlen to reuse it */
|
|
extern ssize_t __real_strscpy(char *, const char *, size_t) __RENAME(strscpy);
|
|
__FORTIFY_INLINE ssize_t strscpy(char * const POS p, const char * const POS q, size_t size)
|
|
{
|
|
size_t len;
|
|
/* Use string size rather than possible enclosing struct size. */
|
|
size_t p_size = __builtin_object_size(p, 1);
|
|
size_t q_size = __builtin_object_size(q, 1);
|
|
|
|
/* If we cannot get size of p and q default to call strscpy. */
|
|
if (p_size == (size_t) -1 && q_size == (size_t) -1)
|
|
return __real_strscpy(p, q, size);
|
|
|
|
/*
|
|
* If size can be known at compile time and is greater than
|
|
* p_size, generate a compile time write overflow error.
|
|
*/
|
|
if (__builtin_constant_p(size) && size > p_size)
|
|
__write_overflow();
|
|
|
|
/*
|
|
* This call protects from read overflow, because len will default to q
|
|
* length if it smaller than size.
|
|
*/
|
|
len = strnlen(q, size);
|
|
/*
|
|
* If len equals size, we will copy only size bytes which leads to
|
|
* -E2BIG being returned.
|
|
* Otherwise we will copy len + 1 because of the final '\O'.
|
|
*/
|
|
len = len == size ? size : len + 1;
|
|
|
|
/*
|
|
* Generate a runtime write overflow error if len is greater than
|
|
* p_size.
|
|
*/
|
|
if (len > p_size)
|
|
fortify_panic(__func__);
|
|
|
|
/*
|
|
* We can now safely call vanilla strscpy because we are protected from:
|
|
* 1. Read overflow thanks to call to strnlen().
|
|
* 2. Write overflow thanks to above ifs.
|
|
*/
|
|
return __real_strscpy(p, q, len);
|
|
}
|
|
|
|
/* defined after fortified strlen and strnlen to reuse them */
|
|
__FORTIFY_INLINE __diagnose_as(__builtin_strncat, 1, 2, 3)
|
|
char *strncat(char * const POS p, const char * const POS q, __kernel_size_t count)
|
|
{
|
|
size_t p_len, copy_len;
|
|
size_t p_size = __builtin_object_size(p, 1);
|
|
size_t q_size = __builtin_object_size(q, 1);
|
|
|
|
if (p_size == (size_t)-1 && q_size == (size_t)-1)
|
|
return __underlying_strncat(p, q, count);
|
|
p_len = strlen(p);
|
|
copy_len = strnlen(q, count);
|
|
if (p_size < p_len + copy_len + 1)
|
|
fortify_panic(__func__);
|
|
__underlying_memcpy(p + p_len, q, copy_len);
|
|
p[p_len + copy_len] = '\0';
|
|
return p;
|
|
}
|
|
|
|
__FORTIFY_INLINE void fortify_memset_chk(__kernel_size_t size,
|
|
const size_t p_size,
|
|
const size_t p_size_field)
|
|
{
|
|
if (__builtin_constant_p(size)) {
|
|
/*
|
|
* Length argument is a constant expression, so we
|
|
* can perform compile-time bounds checking where
|
|
* buffer sizes are known.
|
|
*/
|
|
|
|
/* Error when size is larger than enclosing struct. */
|
|
if (p_size > p_size_field && p_size < size)
|
|
__write_overflow();
|
|
|
|
/* Warn when write size is larger than dest field. */
|
|
if (p_size_field < size)
|
|
__write_overflow_field(p_size_field, size);
|
|
}
|
|
/*
|
|
* At this point, length argument may not be a constant expression,
|
|
* so run-time bounds checking can be done where buffer sizes are
|
|
* known. (This is not an "else" because the above checks may only
|
|
* be compile-time warnings, and we want to still warn for run-time
|
|
* overflows.)
|
|
*/
|
|
|
|
/*
|
|
* Always stop accesses beyond the struct that contains the
|
|
* field, when the buffer's remaining size is known.
|
|
* (The -1 test is to optimize away checks where the buffer
|
|
* lengths are unknown.)
|
|
*/
|
|
if (p_size != (size_t)(-1) && p_size < size)
|
|
fortify_panic("memset");
|
|
}
|
|
|
|
#define __fortify_memset_chk(p, c, size, p_size, p_size_field) ({ \
|
|
size_t __fortify_size = (size_t)(size); \
|
|
fortify_memset_chk(__fortify_size, p_size, p_size_field), \
|
|
__underlying_memset(p, c, __fortify_size); \
|
|
})
|
|
|
|
/*
|
|
* __builtin_object_size() must be captured here to avoid evaluating argument
|
|
* side-effects further into the macro layers.
|
|
*/
|
|
#define memset(p, c, s) __fortify_memset_chk(p, c, s, \
|
|
__builtin_object_size(p, 0), __builtin_object_size(p, 1))
|
|
|
|
/*
|
|
* To make sure the compiler can enforce protection against buffer overflows,
|
|
* memcpy(), memmove(), and memset() must not be used beyond individual
|
|
* struct members. If you need to copy across multiple members, please use
|
|
* struct_group() to create a named mirror of an anonymous struct union.
|
|
* (e.g. see struct sk_buff.) Read overflow checking is currently only
|
|
* done when a write overflow is also present, or when building with W=1.
|
|
*
|
|
* Mitigation coverage matrix
|
|
* Bounds checking at:
|
|
* +-------+-------+-------+-------+
|
|
* | Compile time | Run time |
|
|
* memcpy() argument sizes: | write | read | write | read |
|
|
* dest source length +-------+-------+-------+-------+
|
|
* memcpy(known, known, constant) | y | y | n/a | n/a |
|
|
* memcpy(known, unknown, constant) | y | n | n/a | V |
|
|
* memcpy(known, known, dynamic) | n | n | B | B |
|
|
* memcpy(known, unknown, dynamic) | n | n | B | V |
|
|
* memcpy(unknown, known, constant) | n | y | V | n/a |
|
|
* memcpy(unknown, unknown, constant) | n | n | V | V |
|
|
* memcpy(unknown, known, dynamic) | n | n | V | B |
|
|
* memcpy(unknown, unknown, dynamic) | n | n | V | V |
|
|
* +-------+-------+-------+-------+
|
|
*
|
|
* y = perform deterministic compile-time bounds checking
|
|
* n = cannot perform deterministic compile-time bounds checking
|
|
* n/a = no run-time bounds checking needed since compile-time deterministic
|
|
* B = can perform run-time bounds checking (currently unimplemented)
|
|
* V = vulnerable to run-time overflow (will need refactoring to solve)
|
|
*
|
|
*/
|
|
__FORTIFY_INLINE void fortify_memcpy_chk(__kernel_size_t size,
|
|
const size_t p_size,
|
|
const size_t q_size,
|
|
const size_t p_size_field,
|
|
const size_t q_size_field,
|
|
const char *func)
|
|
{
|
|
if (__builtin_constant_p(size)) {
|
|
/*
|
|
* Length argument is a constant expression, so we
|
|
* can perform compile-time bounds checking where
|
|
* buffer sizes are known.
|
|
*/
|
|
|
|
/* Error when size is larger than enclosing struct. */
|
|
if (p_size > p_size_field && p_size < size)
|
|
__write_overflow();
|
|
if (q_size > q_size_field && q_size < size)
|
|
__read_overflow2();
|
|
|
|
/* Warn when write size argument larger than dest field. */
|
|
if (p_size_field < size)
|
|
__write_overflow_field(p_size_field, size);
|
|
/*
|
|
* Warn for source field over-read when building with W=1
|
|
* or when an over-write happened, so both can be fixed at
|
|
* the same time.
|
|
*/
|
|
if ((IS_ENABLED(KBUILD_EXTRA_WARN1) || p_size_field < size) &&
|
|
q_size_field < size)
|
|
__read_overflow2_field(q_size_field, size);
|
|
}
|
|
/*
|
|
* At this point, length argument may not be a constant expression,
|
|
* so run-time bounds checking can be done where buffer sizes are
|
|
* known. (This is not an "else" because the above checks may only
|
|
* be compile-time warnings, and we want to still warn for run-time
|
|
* overflows.)
|
|
*/
|
|
|
|
/*
|
|
* Always stop accesses beyond the struct that contains the
|
|
* field, when the buffer's remaining size is known.
|
|
* (The -1 test is to optimize away checks where the buffer
|
|
* lengths are unknown.)
|
|
*/
|
|
if ((p_size != (size_t)(-1) && p_size < size) ||
|
|
(q_size != (size_t)(-1) && q_size < size))
|
|
fortify_panic(func);
|
|
}
|
|
|
|
#define __fortify_memcpy_chk(p, q, size, p_size, q_size, \
|
|
p_size_field, q_size_field, op) ({ \
|
|
size_t __fortify_size = (size_t)(size); \
|
|
fortify_memcpy_chk(__fortify_size, p_size, q_size, \
|
|
p_size_field, q_size_field, #op); \
|
|
__underlying_##op(p, q, __fortify_size); \
|
|
})
|
|
|
|
/*
|
|
* __builtin_object_size() must be captured here to avoid evaluating argument
|
|
* side-effects further into the macro layers.
|
|
*/
|
|
#define memcpy(p, q, s) __fortify_memcpy_chk(p, q, s, \
|
|
__builtin_object_size(p, 0), __builtin_object_size(q, 0), \
|
|
__builtin_object_size(p, 1), __builtin_object_size(q, 1), \
|
|
memcpy)
|
|
#define memmove(p, q, s) __fortify_memcpy_chk(p, q, s, \
|
|
__builtin_object_size(p, 0), __builtin_object_size(q, 0), \
|
|
__builtin_object_size(p, 1), __builtin_object_size(q, 1), \
|
|
memmove)
|
|
|
|
extern void *__real_memscan(void *, int, __kernel_size_t) __RENAME(memscan);
|
|
__FORTIFY_INLINE void *memscan(void * const POS0 p, int c, __kernel_size_t size)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 0);
|
|
|
|
if (__builtin_constant_p(size) && p_size < size)
|
|
__read_overflow();
|
|
if (p_size < size)
|
|
fortify_panic(__func__);
|
|
return __real_memscan(p, c, size);
|
|
}
|
|
|
|
__FORTIFY_INLINE __diagnose_as(__builtin_memcmp, 1, 2, 3)
|
|
int memcmp(const void * const POS0 p, const void * const POS0 q, __kernel_size_t size)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 0);
|
|
size_t q_size = __builtin_object_size(q, 0);
|
|
|
|
if (__builtin_constant_p(size)) {
|
|
if (p_size < size)
|
|
__read_overflow();
|
|
if (q_size < size)
|
|
__read_overflow2();
|
|
}
|
|
if (p_size < size || q_size < size)
|
|
fortify_panic(__func__);
|
|
return __underlying_memcmp(p, q, size);
|
|
}
|
|
|
|
__FORTIFY_INLINE __diagnose_as(__builtin_memchr, 1, 2, 3)
|
|
void *memchr(const void * const POS0 p, int c, __kernel_size_t size)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 0);
|
|
|
|
if (__builtin_constant_p(size) && p_size < size)
|
|
__read_overflow();
|
|
if (p_size < size)
|
|
fortify_panic(__func__);
|
|
return __underlying_memchr(p, c, size);
|
|
}
|
|
|
|
void *__real_memchr_inv(const void *s, int c, size_t n) __RENAME(memchr_inv);
|
|
__FORTIFY_INLINE void *memchr_inv(const void * const POS0 p, int c, size_t size)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 0);
|
|
|
|
if (__builtin_constant_p(size) && p_size < size)
|
|
__read_overflow();
|
|
if (p_size < size)
|
|
fortify_panic(__func__);
|
|
return __real_memchr_inv(p, c, size);
|
|
}
|
|
|
|
extern void *__real_kmemdup(const void *src, size_t len, gfp_t gfp) __RENAME(kmemdup);
|
|
__FORTIFY_INLINE void *kmemdup(const void * const POS0 p, size_t size, gfp_t gfp)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 0);
|
|
|
|
if (__builtin_constant_p(size) && p_size < size)
|
|
__read_overflow();
|
|
if (p_size < size)
|
|
fortify_panic(__func__);
|
|
return __real_kmemdup(p, size, gfp);
|
|
}
|
|
|
|
/* Defined after fortified strlen to reuse it. */
|
|
__FORTIFY_INLINE __diagnose_as(__builtin_strcpy, 1, 2)
|
|
char *strcpy(char * const POS p, const char * const POS q)
|
|
{
|
|
size_t p_size = __builtin_object_size(p, 1);
|
|
size_t q_size = __builtin_object_size(q, 1);
|
|
size_t size;
|
|
|
|
/* If neither buffer size is known, immediately give up. */
|
|
if (p_size == (size_t)-1 && q_size == (size_t)-1)
|
|
return __underlying_strcpy(p, q);
|
|
size = strlen(q) + 1;
|
|
/* Compile-time check for const size overflow. */
|
|
if (__builtin_constant_p(size) && p_size < size)
|
|
__write_overflow();
|
|
/* Run-time check for dynamic size overflow. */
|
|
if (p_size < size)
|
|
fortify_panic(__func__);
|
|
__underlying_memcpy(p, q, size);
|
|
return p;
|
|
}
|
|
|
|
/* Don't use these outside the FORITFY_SOURCE implementation */
|
|
#undef __underlying_memchr
|
|
#undef __underlying_memcmp
|
|
#undef __underlying_strcat
|
|
#undef __underlying_strcpy
|
|
#undef __underlying_strlen
|
|
#undef __underlying_strncat
|
|
#undef __underlying_strncpy
|
|
|
|
#undef POS
|
|
#undef POS0
|
|
|
|
#endif /* _LINUX_FORTIFY_STRING_H_ */
|