linux-stable/fs/f2fs/inode.c
Linus Torvalds 92901222f8 f2fs update for 6.6-rc1
In this cycle, we don't have a highlighted feature enhancement, but mostly
 have fixed issues mainly in two parts: 1) zoned block device, 2) compression
 support. For zoned block device, we've tried to improve the power-off recovery
 flow as much as possible. For compression, we found some corner cases caused by
 wrong compression policy and logics. Other than them, there were some reverts
 and stat corrections.
 
 Bug fix:
  - use finish zone command when closing a zone
  - check zone type before sending async reset zone command
  - fix to assign compress_level for lz4 correctly
  - fix error path of f2fs_submit_page_read()
  - don't {,de}compress non-full cluster
  - send small discard commands during checkpoint back
  - flush inode if atomic file is aborted
  - correct to account gc/cp stats
 
 And, there are minor bug fixes, avoiding false lockdep warning, and clean-ups.
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEE00UqedjCtOrGVvQiQBSofoJIUNIFAmTyemoACgkQQBSofoJI
 UNLLKQ//bupYGPOqAgKbd/s7FhtULMiiRmFVy7W2eoMIc/oeeXOGrzDAF/1NifLC
 WLV4uBNVTS4PS8D1vRzxZNEZt9aqPS0vQ8hxW/3nTI9Z425NX3nz7gLSxxmwIkIe
 xj++V6tvKPcCH0BfKvfFCtcxj09PsflgdEuT8w/sIkH6p4o+VEMFs1Lc9PQsjUmh
 epznK7JGBwpAxmHqI74n1eAw2CI6W+oKx23YDTNMBD6hmXTU0fkTeBURrOlSsUHZ
 nhafPecsrCEI+OpAj03G/7e/zt+iTUKdmHx9O5ir/P00vF/c+SU2vSwB97FiHqBi
 B4UmocTM0MAsU80PQcmE6aU3zgQFI0Yun5yZ24VeWjKTu76ssZSmT2HA/4RL+LLf
 AeAW4FSyfh76pls8X5IWfilxGLWq6kTzSZA0MF7dH2q7qlj5apL5wKpm/XH6POqn
 qELY/Y9+P1QuCcNL8BiYrgA5xBqVJ7Uw/6/6U3Y77PElc+Pwl3vI8UZ7uCOBrsXL
 e0TLXy23AJA6AS2DyLLziy669nXAZRb95B8TWMfEeVZIMFvCeeqYc74N8jOFa0T8
 q6uQFZs+0cETLZA8MSZdlNhzvhJmbW6wgSIz++CEdikWSLBZMKWxBVjCPkkCY9uc
 DMh8zruSVbYPZWBTcxkMFEBJKKrU43++e7pb8ZoqTj4Pq1317b0=
 =Qa8+
 -----END PGP SIGNATURE-----

Merge tag 'f2fs-for-6-6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs

Pull f2fs updates from Jaegeuk Kim:
 "In this cycle, we don't have a highlighted feature enhancement, but
  mostly have fixed issues mainly in two parts: 1) zoned block device,
  and 2) compression support.

  For zoned block device, we've tried to improve the power-off recovery
  flow as much as possible. For compression, we found some corner cases
  caused by wrong compression policy and logics. Other than them, there
  were some reverts and stat corrections.

  Bug fixes:
   - use finish zone command when closing a zone
   - check zone type before sending async reset zone command
   - fix to assign compress_level for lz4 correctly
   - fix error path of f2fs_submit_page_read()
   - don't {,de}compress non-full cluster
   - send small discard commands during checkpoint back
   - flush inode if atomic file is aborted
   - correct to account gc/cp stats

  And, there are minor bug fixes, avoiding false lockdep warning, and
  clean-ups"

* tag 'f2fs-for-6-6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk/f2fs: (25 commits)
  f2fs: use finish zone command when closing a zone
  f2fs: compress: fix to assign compress_level for lz4 correctly
  f2fs: fix error path of f2fs_submit_page_read()
  f2fs: clean up error handling in sanity_check_{compress_,}inode()
  f2fs: avoid false alarm of circular locking
  Revert "f2fs: do not issue small discard commands during checkpoint"
  f2fs: doc: fix description of max_small_discards
  f2fs: should update REQ_TIME for direct write
  f2fs: fix to account cp stats correctly
  f2fs: fix to account gc stats correctly
  f2fs: remove unneeded check condition in __f2fs_setxattr()
  f2fs: fix to update i_ctime in __f2fs_setxattr()
  Revert "f2fs: fix to do sanity check on extent cache correctly"
  f2fs: increase usage of folio_next_index() helper
  f2fs: Only lfs mode is allowed with zoned block device feature
  f2fs: check zone type before sending async reset zone command
  f2fs: compress: don't {,de}compress non-full cluster
  f2fs: allow f2fs_ioc_{,de}compress_file to be interrupted
  f2fs: don't reopen the main block device in f2fs_scan_devices
  f2fs: fix to avoid mmap vs set_compress_option case
  ...
2023-09-02 15:37:59 -07:00

1020 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* fs/f2fs/inode.c
*
* Copyright (c) 2012 Samsung Electronics Co., Ltd.
* http://www.samsung.com/
*/
#include <linux/fs.h>
#include <linux/f2fs_fs.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/sched/mm.h>
#include <linux/lz4.h>
#include <linux/zstd.h>
#include "f2fs.h"
#include "node.h"
#include "segment.h"
#include "xattr.h"
#include <trace/events/f2fs.h>
#ifdef CONFIG_F2FS_FS_COMPRESSION
extern const struct address_space_operations f2fs_compress_aops;
#endif
void f2fs_mark_inode_dirty_sync(struct inode *inode, bool sync)
{
if (is_inode_flag_set(inode, FI_NEW_INODE))
return;
if (f2fs_inode_dirtied(inode, sync))
return;
mark_inode_dirty_sync(inode);
}
void f2fs_set_inode_flags(struct inode *inode)
{
unsigned int flags = F2FS_I(inode)->i_flags;
unsigned int new_fl = 0;
if (flags & F2FS_SYNC_FL)
new_fl |= S_SYNC;
if (flags & F2FS_APPEND_FL)
new_fl |= S_APPEND;
if (flags & F2FS_IMMUTABLE_FL)
new_fl |= S_IMMUTABLE;
if (flags & F2FS_NOATIME_FL)
new_fl |= S_NOATIME;
if (flags & F2FS_DIRSYNC_FL)
new_fl |= S_DIRSYNC;
if (file_is_encrypt(inode))
new_fl |= S_ENCRYPTED;
if (file_is_verity(inode))
new_fl |= S_VERITY;
if (flags & F2FS_CASEFOLD_FL)
new_fl |= S_CASEFOLD;
inode_set_flags(inode, new_fl,
S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|
S_ENCRYPTED|S_VERITY|S_CASEFOLD);
}
static void __get_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
int extra_size = get_extra_isize(inode);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
if (ri->i_addr[extra_size])
inode->i_rdev = old_decode_dev(
le32_to_cpu(ri->i_addr[extra_size]));
else
inode->i_rdev = new_decode_dev(
le32_to_cpu(ri->i_addr[extra_size + 1]));
}
}
static int __written_first_block(struct f2fs_sb_info *sbi,
struct f2fs_inode *ri)
{
block_t addr = le32_to_cpu(ri->i_addr[offset_in_addr(ri)]);
if (!__is_valid_data_blkaddr(addr))
return 1;
if (!f2fs_is_valid_blkaddr(sbi, addr, DATA_GENERIC_ENHANCE)) {
f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
return -EFSCORRUPTED;
}
return 0;
}
static void __set_inode_rdev(struct inode *inode, struct f2fs_inode *ri)
{
int extra_size = get_extra_isize(inode);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
if (old_valid_dev(inode->i_rdev)) {
ri->i_addr[extra_size] =
cpu_to_le32(old_encode_dev(inode->i_rdev));
ri->i_addr[extra_size + 1] = 0;
} else {
ri->i_addr[extra_size] = 0;
ri->i_addr[extra_size + 1] =
cpu_to_le32(new_encode_dev(inode->i_rdev));
ri->i_addr[extra_size + 2] = 0;
}
}
}
static void __recover_inline_status(struct inode *inode, struct page *ipage)
{
void *inline_data = inline_data_addr(inode, ipage);
__le32 *start = inline_data;
__le32 *end = start + MAX_INLINE_DATA(inode) / sizeof(__le32);
while (start < end) {
if (*start++) {
f2fs_wait_on_page_writeback(ipage, NODE, true, true);
set_inode_flag(inode, FI_DATA_EXIST);
set_raw_inline(inode, F2FS_INODE(ipage));
set_page_dirty(ipage);
return;
}
}
return;
}
static bool f2fs_enable_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *ri = &F2FS_NODE(page)->i;
if (!f2fs_sb_has_inode_chksum(sbi))
return false;
if (!IS_INODE(page) || !(ri->i_inline & F2FS_EXTRA_ATTR))
return false;
if (!F2FS_FITS_IN_INODE(ri, le16_to_cpu(ri->i_extra_isize),
i_inode_checksum))
return false;
return true;
}
static __u32 f2fs_inode_chksum(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_node *node = F2FS_NODE(page);
struct f2fs_inode *ri = &node->i;
__le32 ino = node->footer.ino;
__le32 gen = ri->i_generation;
__u32 chksum, chksum_seed;
__u32 dummy_cs = 0;
unsigned int offset = offsetof(struct f2fs_inode, i_inode_checksum);
unsigned int cs_size = sizeof(dummy_cs);
chksum = f2fs_chksum(sbi, sbi->s_chksum_seed, (__u8 *)&ino,
sizeof(ino));
chksum_seed = f2fs_chksum(sbi, chksum, (__u8 *)&gen, sizeof(gen));
chksum = f2fs_chksum(sbi, chksum_seed, (__u8 *)ri, offset);
chksum = f2fs_chksum(sbi, chksum, (__u8 *)&dummy_cs, cs_size);
offset += cs_size;
chksum = f2fs_chksum(sbi, chksum, (__u8 *)ri + offset,
F2FS_BLKSIZE - offset);
return chksum;
}
bool f2fs_inode_chksum_verify(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *ri;
__u32 provided, calculated;
if (unlikely(is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)))
return true;
#ifdef CONFIG_F2FS_CHECK_FS
if (!f2fs_enable_inode_chksum(sbi, page))
#else
if (!f2fs_enable_inode_chksum(sbi, page) ||
PageDirty(page) || PageWriteback(page))
#endif
return true;
ri = &F2FS_NODE(page)->i;
provided = le32_to_cpu(ri->i_inode_checksum);
calculated = f2fs_inode_chksum(sbi, page);
if (provided != calculated)
f2fs_warn(sbi, "checksum invalid, nid = %lu, ino_of_node = %x, %x vs. %x",
page->index, ino_of_node(page), provided, calculated);
return provided == calculated;
}
void f2fs_inode_chksum_set(struct f2fs_sb_info *sbi, struct page *page)
{
struct f2fs_inode *ri = &F2FS_NODE(page)->i;
if (!f2fs_enable_inode_chksum(sbi, page))
return;
ri->i_inode_checksum = cpu_to_le32(f2fs_inode_chksum(sbi, page));
}
static bool sanity_check_compress_inode(struct inode *inode,
struct f2fs_inode *ri)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
unsigned char clevel;
if (ri->i_compress_algorithm >= COMPRESS_MAX) {
f2fs_warn(sbi,
"%s: inode (ino=%lx) has unsupported compress algorithm: %u, run fsck to fix",
__func__, inode->i_ino, ri->i_compress_algorithm);
return false;
}
if (le64_to_cpu(ri->i_compr_blocks) >
SECTOR_TO_BLOCK(inode->i_blocks)) {
f2fs_warn(sbi,
"%s: inode (ino=%lx) has inconsistent i_compr_blocks:%llu, i_blocks:%llu, run fsck to fix",
__func__, inode->i_ino, le64_to_cpu(ri->i_compr_blocks),
SECTOR_TO_BLOCK(inode->i_blocks));
return false;
}
if (ri->i_log_cluster_size < MIN_COMPRESS_LOG_SIZE ||
ri->i_log_cluster_size > MAX_COMPRESS_LOG_SIZE) {
f2fs_warn(sbi,
"%s: inode (ino=%lx) has unsupported log cluster size: %u, run fsck to fix",
__func__, inode->i_ino, ri->i_log_cluster_size);
return false;
}
clevel = le16_to_cpu(ri->i_compress_flag) >>
COMPRESS_LEVEL_OFFSET;
switch (ri->i_compress_algorithm) {
case COMPRESS_LZO:
#ifdef CONFIG_F2FS_FS_LZO
if (clevel)
goto err_level;
#endif
break;
case COMPRESS_LZORLE:
#ifdef CONFIG_F2FS_FS_LZORLE
if (clevel)
goto err_level;
#endif
break;
case COMPRESS_LZ4:
#ifdef CONFIG_F2FS_FS_LZ4
#ifdef CONFIG_F2FS_FS_LZ4HC
if (clevel &&
(clevel < LZ4HC_MIN_CLEVEL || clevel > LZ4HC_MAX_CLEVEL))
goto err_level;
#else
if (clevel)
goto err_level;
#endif
#endif
break;
case COMPRESS_ZSTD:
#ifdef CONFIG_F2FS_FS_ZSTD
if (clevel < zstd_min_clevel() || clevel > zstd_max_clevel())
goto err_level;
#endif
break;
default:
goto err_level;
}
return true;
err_level:
f2fs_warn(sbi, "%s: inode (ino=%lx) has unsupported compress level: %u, run fsck to fix",
__func__, inode->i_ino, clevel);
return false;
}
static bool sanity_check_inode(struct inode *inode, struct page *node_page)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct f2fs_inode *ri = F2FS_INODE(node_page);
unsigned long long iblocks;
iblocks = le64_to_cpu(F2FS_INODE(node_page)->i_blocks);
if (!iblocks) {
f2fs_warn(sbi, "%s: corrupted inode i_blocks i_ino=%lx iblocks=%llu, run fsck to fix.",
__func__, inode->i_ino, iblocks);
return false;
}
if (ino_of_node(node_page) != nid_of_node(node_page)) {
f2fs_warn(sbi, "%s: corrupted inode footer i_ino=%lx, ino,nid: [%u, %u] run fsck to fix.",
__func__, inode->i_ino,
ino_of_node(node_page), nid_of_node(node_page));
return false;
}
if (f2fs_has_extra_attr(inode)) {
if (!f2fs_sb_has_extra_attr(sbi)) {
f2fs_warn(sbi, "%s: inode (ino=%lx) is with extra_attr, but extra_attr feature is off",
__func__, inode->i_ino);
return false;
}
if (fi->i_extra_isize > F2FS_TOTAL_EXTRA_ATTR_SIZE ||
fi->i_extra_isize < F2FS_MIN_EXTRA_ATTR_SIZE ||
fi->i_extra_isize % sizeof(__le32)) {
f2fs_warn(sbi, "%s: inode (ino=%lx) has corrupted i_extra_isize: %d, max: %zu",
__func__, inode->i_ino, fi->i_extra_isize,
F2FS_TOTAL_EXTRA_ATTR_SIZE);
return false;
}
if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
f2fs_has_inline_xattr(inode) &&
(!fi->i_inline_xattr_size ||
fi->i_inline_xattr_size > MAX_INLINE_XATTR_SIZE)) {
f2fs_warn(sbi, "%s: inode (ino=%lx) has corrupted i_inline_xattr_size: %d, max: %zu",
__func__, inode->i_ino, fi->i_inline_xattr_size,
MAX_INLINE_XATTR_SIZE);
return false;
}
if (f2fs_sb_has_compression(sbi) &&
fi->i_flags & F2FS_COMPR_FL &&
F2FS_FITS_IN_INODE(ri, fi->i_extra_isize,
i_compress_flag)) {
if (!sanity_check_compress_inode(inode, ri))
return false;
}
} else if (f2fs_sb_has_flexible_inline_xattr(sbi)) {
f2fs_warn(sbi, "%s: corrupted inode ino=%lx, run fsck to fix.",
__func__, inode->i_ino);
return false;
}
if (!f2fs_sb_has_extra_attr(sbi)) {
if (f2fs_sb_has_project_quota(sbi)) {
f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.",
__func__, inode->i_ino, F2FS_FEATURE_PRJQUOTA);
return false;
}
if (f2fs_sb_has_inode_chksum(sbi)) {
f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.",
__func__, inode->i_ino, F2FS_FEATURE_INODE_CHKSUM);
return false;
}
if (f2fs_sb_has_flexible_inline_xattr(sbi)) {
f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.",
__func__, inode->i_ino, F2FS_FEATURE_FLEXIBLE_INLINE_XATTR);
return false;
}
if (f2fs_sb_has_inode_crtime(sbi)) {
f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.",
__func__, inode->i_ino, F2FS_FEATURE_INODE_CRTIME);
return false;
}
if (f2fs_sb_has_compression(sbi)) {
f2fs_warn(sbi, "%s: corrupted inode ino=%lx, wrong feature flag: %u, run fsck to fix.",
__func__, inode->i_ino, F2FS_FEATURE_COMPRESSION);
return false;
}
}
if (f2fs_sanity_check_inline_data(inode)) {
f2fs_warn(sbi, "%s: inode (ino=%lx, mode=%u) should not have inline_data, run fsck to fix",
__func__, inode->i_ino, inode->i_mode);
return false;
}
if (f2fs_has_inline_dentry(inode) && !S_ISDIR(inode->i_mode)) {
f2fs_warn(sbi, "%s: inode (ino=%lx, mode=%u) should not have inline_dentry, run fsck to fix",
__func__, inode->i_ino, inode->i_mode);
return false;
}
if ((fi->i_flags & F2FS_CASEFOLD_FL) && !f2fs_sb_has_casefold(sbi)) {
f2fs_warn(sbi, "%s: inode (ino=%lx) has casefold flag, but casefold feature is off",
__func__, inode->i_ino);
return false;
}
return true;
}
static void init_idisk_time(struct inode *inode)
{
struct f2fs_inode_info *fi = F2FS_I(inode);
fi->i_disk_time[0] = inode->i_atime;
fi->i_disk_time[1] = inode_get_ctime(inode);
fi->i_disk_time[2] = inode->i_mtime;
}
static int do_read_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
struct page *node_page;
struct f2fs_inode *ri;
projid_t i_projid;
int err;
/* Check if ino is within scope */
if (f2fs_check_nid_range(sbi, inode->i_ino))
return -EINVAL;
node_page = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page))
return PTR_ERR(node_page);
ri = F2FS_INODE(node_page);
inode->i_mode = le16_to_cpu(ri->i_mode);
i_uid_write(inode, le32_to_cpu(ri->i_uid));
i_gid_write(inode, le32_to_cpu(ri->i_gid));
set_nlink(inode, le32_to_cpu(ri->i_links));
inode->i_size = le64_to_cpu(ri->i_size);
inode->i_blocks = SECTOR_FROM_BLOCK(le64_to_cpu(ri->i_blocks) - 1);
inode->i_atime.tv_sec = le64_to_cpu(ri->i_atime);
inode_set_ctime(inode, le64_to_cpu(ri->i_ctime),
le32_to_cpu(ri->i_ctime_nsec));
inode->i_mtime.tv_sec = le64_to_cpu(ri->i_mtime);
inode->i_atime.tv_nsec = le32_to_cpu(ri->i_atime_nsec);
inode->i_mtime.tv_nsec = le32_to_cpu(ri->i_mtime_nsec);
inode->i_generation = le32_to_cpu(ri->i_generation);
if (S_ISDIR(inode->i_mode))
fi->i_current_depth = le32_to_cpu(ri->i_current_depth);
else if (S_ISREG(inode->i_mode))
fi->i_gc_failures[GC_FAILURE_PIN] =
le16_to_cpu(ri->i_gc_failures);
fi->i_xattr_nid = le32_to_cpu(ri->i_xattr_nid);
fi->i_flags = le32_to_cpu(ri->i_flags);
if (S_ISREG(inode->i_mode))
fi->i_flags &= ~F2FS_PROJINHERIT_FL;
bitmap_zero(fi->flags, FI_MAX);
fi->i_advise = ri->i_advise;
fi->i_pino = le32_to_cpu(ri->i_pino);
fi->i_dir_level = ri->i_dir_level;
get_inline_info(inode, ri);
fi->i_extra_isize = f2fs_has_extra_attr(inode) ?
le16_to_cpu(ri->i_extra_isize) : 0;
if (f2fs_sb_has_flexible_inline_xattr(sbi)) {
fi->i_inline_xattr_size = le16_to_cpu(ri->i_inline_xattr_size);
} else if (f2fs_has_inline_xattr(inode) ||
f2fs_has_inline_dentry(inode)) {
fi->i_inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
} else {
/*
* Previous inline data or directory always reserved 200 bytes
* in inode layout, even if inline_xattr is disabled. In order
* to keep inline_dentry's structure for backward compatibility,
* we get the space back only from inline_data.
*/
fi->i_inline_xattr_size = 0;
}
if (!sanity_check_inode(inode, node_page)) {
f2fs_put_page(node_page, 1);
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
return -EFSCORRUPTED;
}
/* check data exist */
if (f2fs_has_inline_data(inode) && !f2fs_exist_data(inode))
__recover_inline_status(inode, node_page);
/* try to recover cold bit for non-dir inode */
if (!S_ISDIR(inode->i_mode) && !is_cold_node(node_page)) {
f2fs_wait_on_page_writeback(node_page, NODE, true, true);
set_cold_node(node_page, false);
set_page_dirty(node_page);
}
/* get rdev by using inline_info */
__get_inode_rdev(inode, ri);
if (S_ISREG(inode->i_mode)) {
err = __written_first_block(sbi, ri);
if (err < 0) {
f2fs_put_page(node_page, 1);
return err;
}
if (!err)
set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
}
if (!f2fs_need_inode_block_update(sbi, inode->i_ino))
fi->last_disk_size = inode->i_size;
if (fi->i_flags & F2FS_PROJINHERIT_FL)
set_inode_flag(inode, FI_PROJ_INHERIT);
if (f2fs_has_extra_attr(inode) && f2fs_sb_has_project_quota(sbi) &&
F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_projid))
i_projid = (projid_t)le32_to_cpu(ri->i_projid);
else
i_projid = F2FS_DEF_PROJID;
fi->i_projid = make_kprojid(&init_user_ns, i_projid);
if (f2fs_has_extra_attr(inode) && f2fs_sb_has_inode_crtime(sbi) &&
F2FS_FITS_IN_INODE(ri, fi->i_extra_isize, i_crtime)) {
fi->i_crtime.tv_sec = le64_to_cpu(ri->i_crtime);
fi->i_crtime.tv_nsec = le32_to_cpu(ri->i_crtime_nsec);
}
if (f2fs_has_extra_attr(inode) && f2fs_sb_has_compression(sbi) &&
(fi->i_flags & F2FS_COMPR_FL)) {
if (F2FS_FITS_IN_INODE(ri, fi->i_extra_isize,
i_compress_flag)) {
unsigned short compress_flag;
atomic_set(&fi->i_compr_blocks,
le64_to_cpu(ri->i_compr_blocks));
fi->i_compress_algorithm = ri->i_compress_algorithm;
fi->i_log_cluster_size = ri->i_log_cluster_size;
compress_flag = le16_to_cpu(ri->i_compress_flag);
fi->i_compress_level = compress_flag >>
COMPRESS_LEVEL_OFFSET;
fi->i_compress_flag = compress_flag &
GENMASK(COMPRESS_LEVEL_OFFSET - 1, 0);
fi->i_cluster_size = BIT(fi->i_log_cluster_size);
set_inode_flag(inode, FI_COMPRESSED_FILE);
}
}
init_idisk_time(inode);
/* Need all the flag bits */
f2fs_init_read_extent_tree(inode, node_page);
f2fs_init_age_extent_tree(inode);
if (!sanity_check_extent_cache(inode)) {
f2fs_put_page(node_page, 1);
f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
return -EFSCORRUPTED;
}
f2fs_put_page(node_page, 1);
stat_inc_inline_xattr(inode);
stat_inc_inline_inode(inode);
stat_inc_inline_dir(inode);
stat_inc_compr_inode(inode);
stat_add_compr_blocks(inode, atomic_read(&fi->i_compr_blocks));
return 0;
}
static bool is_meta_ino(struct f2fs_sb_info *sbi, unsigned int ino)
{
return ino == F2FS_NODE_INO(sbi) || ino == F2FS_META_INO(sbi) ||
ino == F2FS_COMPRESS_INO(sbi);
}
struct inode *f2fs_iget(struct super_block *sb, unsigned long ino)
{
struct f2fs_sb_info *sbi = F2FS_SB(sb);
struct inode *inode;
int ret = 0;
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW)) {
if (is_meta_ino(sbi, ino)) {
f2fs_err(sbi, "inaccessible inode: %lu, run fsck to repair", ino);
set_sbi_flag(sbi, SBI_NEED_FSCK);
ret = -EFSCORRUPTED;
trace_f2fs_iget_exit(inode, ret);
iput(inode);
f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
return ERR_PTR(ret);
}
trace_f2fs_iget(inode);
return inode;
}
if (is_meta_ino(sbi, ino))
goto make_now;
ret = do_read_inode(inode);
if (ret)
goto bad_inode;
make_now:
if (ino == F2FS_NODE_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_node_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
} else if (ino == F2FS_META_INO(sbi)) {
inode->i_mapping->a_ops = &f2fs_meta_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
} else if (ino == F2FS_COMPRESS_INO(sbi)) {
#ifdef CONFIG_F2FS_FS_COMPRESSION
inode->i_mapping->a_ops = &f2fs_compress_aops;
/*
* generic_error_remove_page only truncates pages of regular
* inode
*/
inode->i_mode |= S_IFREG;
#endif
mapping_set_gfp_mask(inode->i_mapping,
GFP_NOFS | __GFP_HIGHMEM | __GFP_MOVABLE);
} else if (S_ISREG(inode->i_mode)) {
inode->i_op = &f2fs_file_inode_operations;
inode->i_fop = &f2fs_file_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &f2fs_dir_inode_operations;
inode->i_fop = &f2fs_dir_operations;
inode->i_mapping->a_ops = &f2fs_dblock_aops;
mapping_set_gfp_mask(inode->i_mapping, GFP_NOFS);
} else if (S_ISLNK(inode->i_mode)) {
if (file_is_encrypt(inode))
inode->i_op = &f2fs_encrypted_symlink_inode_operations;
else
inode->i_op = &f2fs_symlink_inode_operations;
inode_nohighmem(inode);
inode->i_mapping->a_ops = &f2fs_dblock_aops;
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
inode->i_op = &f2fs_special_inode_operations;
init_special_inode(inode, inode->i_mode, inode->i_rdev);
} else {
ret = -EIO;
goto bad_inode;
}
f2fs_set_inode_flags(inode);
if (file_should_truncate(inode) &&
!is_sbi_flag_set(sbi, SBI_POR_DOING)) {
ret = f2fs_truncate(inode);
if (ret)
goto bad_inode;
file_dont_truncate(inode);
}
unlock_new_inode(inode);
trace_f2fs_iget(inode);
return inode;
bad_inode:
f2fs_inode_synced(inode);
iget_failed(inode);
trace_f2fs_iget_exit(inode, ret);
return ERR_PTR(ret);
}
struct inode *f2fs_iget_retry(struct super_block *sb, unsigned long ino)
{
struct inode *inode;
retry:
inode = f2fs_iget(sb, ino);
if (IS_ERR(inode)) {
if (PTR_ERR(inode) == -ENOMEM) {
memalloc_retry_wait(GFP_NOFS);
goto retry;
}
}
return inode;
}
void f2fs_update_inode(struct inode *inode, struct page *node_page)
{
struct f2fs_inode *ri;
struct extent_tree *et = F2FS_I(inode)->extent_tree[EX_READ];
f2fs_wait_on_page_writeback(node_page, NODE, true, true);
set_page_dirty(node_page);
f2fs_inode_synced(inode);
ri = F2FS_INODE(node_page);
ri->i_mode = cpu_to_le16(inode->i_mode);
ri->i_advise = F2FS_I(inode)->i_advise;
ri->i_uid = cpu_to_le32(i_uid_read(inode));
ri->i_gid = cpu_to_le32(i_gid_read(inode));
ri->i_links = cpu_to_le32(inode->i_nlink);
ri->i_blocks = cpu_to_le64(SECTOR_TO_BLOCK(inode->i_blocks) + 1);
if (!f2fs_is_atomic_file(inode) ||
is_inode_flag_set(inode, FI_ATOMIC_COMMITTED))
ri->i_size = cpu_to_le64(i_size_read(inode));
if (et) {
read_lock(&et->lock);
set_raw_read_extent(&et->largest, &ri->i_ext);
read_unlock(&et->lock);
} else {
memset(&ri->i_ext, 0, sizeof(ri->i_ext));
}
set_raw_inline(inode, ri);
ri->i_atime = cpu_to_le64(inode->i_atime.tv_sec);
ri->i_ctime = cpu_to_le64(inode_get_ctime(inode).tv_sec);
ri->i_mtime = cpu_to_le64(inode->i_mtime.tv_sec);
ri->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
ri->i_ctime_nsec = cpu_to_le32(inode_get_ctime(inode).tv_nsec);
ri->i_mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
if (S_ISDIR(inode->i_mode))
ri->i_current_depth =
cpu_to_le32(F2FS_I(inode)->i_current_depth);
else if (S_ISREG(inode->i_mode))
ri->i_gc_failures =
cpu_to_le16(F2FS_I(inode)->i_gc_failures[GC_FAILURE_PIN]);
ri->i_xattr_nid = cpu_to_le32(F2FS_I(inode)->i_xattr_nid);
ri->i_flags = cpu_to_le32(F2FS_I(inode)->i_flags);
ri->i_pino = cpu_to_le32(F2FS_I(inode)->i_pino);
ri->i_generation = cpu_to_le32(inode->i_generation);
ri->i_dir_level = F2FS_I(inode)->i_dir_level;
if (f2fs_has_extra_attr(inode)) {
ri->i_extra_isize = cpu_to_le16(F2FS_I(inode)->i_extra_isize);
if (f2fs_sb_has_flexible_inline_xattr(F2FS_I_SB(inode)))
ri->i_inline_xattr_size =
cpu_to_le16(F2FS_I(inode)->i_inline_xattr_size);
if (f2fs_sb_has_project_quota(F2FS_I_SB(inode)) &&
F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize,
i_projid)) {
projid_t i_projid;
i_projid = from_kprojid(&init_user_ns,
F2FS_I(inode)->i_projid);
ri->i_projid = cpu_to_le32(i_projid);
}
if (f2fs_sb_has_inode_crtime(F2FS_I_SB(inode)) &&
F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize,
i_crtime)) {
ri->i_crtime =
cpu_to_le64(F2FS_I(inode)->i_crtime.tv_sec);
ri->i_crtime_nsec =
cpu_to_le32(F2FS_I(inode)->i_crtime.tv_nsec);
}
if (f2fs_sb_has_compression(F2FS_I_SB(inode)) &&
F2FS_FITS_IN_INODE(ri, F2FS_I(inode)->i_extra_isize,
i_compress_flag)) {
unsigned short compress_flag;
ri->i_compr_blocks =
cpu_to_le64(atomic_read(
&F2FS_I(inode)->i_compr_blocks));
ri->i_compress_algorithm =
F2FS_I(inode)->i_compress_algorithm;
compress_flag = F2FS_I(inode)->i_compress_flag |
F2FS_I(inode)->i_compress_level <<
COMPRESS_LEVEL_OFFSET;
ri->i_compress_flag = cpu_to_le16(compress_flag);
ri->i_log_cluster_size =
F2FS_I(inode)->i_log_cluster_size;
}
}
__set_inode_rdev(inode, ri);
/* deleted inode */
if (inode->i_nlink == 0)
clear_page_private_inline(node_page);
init_idisk_time(inode);
#ifdef CONFIG_F2FS_CHECK_FS
f2fs_inode_chksum_set(F2FS_I_SB(inode), node_page);
#endif
}
void f2fs_update_inode_page(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct page *node_page;
int count = 0;
retry:
node_page = f2fs_get_node_page(sbi, inode->i_ino);
if (IS_ERR(node_page)) {
int err = PTR_ERR(node_page);
/* The node block was truncated. */
if (err == -ENOENT)
return;
if (err == -ENOMEM || ++count <= DEFAULT_RETRY_IO_COUNT)
goto retry;
f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_UPDATE_INODE);
return;
}
f2fs_update_inode(inode, node_page);
f2fs_put_page(node_page, 1);
}
int f2fs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi))
return 0;
/*
* atime could be updated without dirtying f2fs inode in lazytime mode
*/
if (f2fs_is_time_consistent(inode) &&
!is_inode_flag_set(inode, FI_DIRTY_INODE))
return 0;
if (!f2fs_is_checkpoint_ready(sbi))
return -ENOSPC;
/*
* We need to balance fs here to prevent from producing dirty node pages
* during the urgent cleaning time when running out of free sections.
*/
f2fs_update_inode_page(inode);
if (wbc && wbc->nr_to_write)
f2fs_balance_fs(sbi, true);
return 0;
}
/*
* Called at the last iput() if i_nlink is zero
*/
void f2fs_evict_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct f2fs_inode_info *fi = F2FS_I(inode);
nid_t xnid = fi->i_xattr_nid;
int err = 0;
f2fs_abort_atomic_write(inode, true);
if (fi->cow_inode) {
clear_inode_flag(fi->cow_inode, FI_COW_FILE);
iput(fi->cow_inode);
fi->cow_inode = NULL;
}
trace_f2fs_evict_inode(inode);
truncate_inode_pages_final(&inode->i_data);
if ((inode->i_nlink || is_bad_inode(inode)) &&
test_opt(sbi, COMPRESS_CACHE) && f2fs_compressed_file(inode))
f2fs_invalidate_compress_pages(sbi, inode->i_ino);
if (inode->i_ino == F2FS_NODE_INO(sbi) ||
inode->i_ino == F2FS_META_INO(sbi) ||
inode->i_ino == F2FS_COMPRESS_INO(sbi))
goto out_clear;
f2fs_bug_on(sbi, get_dirty_pages(inode));
f2fs_remove_dirty_inode(inode);
f2fs_destroy_extent_tree(inode);
if (inode->i_nlink || is_bad_inode(inode))
goto no_delete;
err = f2fs_dquot_initialize(inode);
if (err) {
err = 0;
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
}
f2fs_remove_ino_entry(sbi, inode->i_ino, APPEND_INO);
f2fs_remove_ino_entry(sbi, inode->i_ino, UPDATE_INO);
f2fs_remove_ino_entry(sbi, inode->i_ino, FLUSH_INO);
if (!is_sbi_flag_set(sbi, SBI_IS_FREEZING))
sb_start_intwrite(inode->i_sb);
set_inode_flag(inode, FI_NO_ALLOC);
i_size_write(inode, 0);
retry:
if (F2FS_HAS_BLOCKS(inode))
err = f2fs_truncate(inode);
if (time_to_inject(sbi, FAULT_EVICT_INODE))
err = -EIO;
if (!err) {
f2fs_lock_op(sbi);
err = f2fs_remove_inode_page(inode);
f2fs_unlock_op(sbi);
if (err == -ENOENT) {
err = 0;
/*
* in fuzzed image, another node may has the same
* block address as inode's, if it was truncated
* previously, truncation of inode node will fail.
*/
if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
f2fs_warn(F2FS_I_SB(inode),
"f2fs_evict_inode: inconsistent node id, ino:%lu",
inode->i_ino);
f2fs_inode_synced(inode);
set_sbi_flag(sbi, SBI_NEED_FSCK);
}
}
}
/* give more chances, if ENOMEM case */
if (err == -ENOMEM) {
err = 0;
goto retry;
}
if (err) {
f2fs_update_inode_page(inode);
if (dquot_initialize_needed(inode))
set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
}
if (!is_sbi_flag_set(sbi, SBI_IS_FREEZING))
sb_end_intwrite(inode->i_sb);
no_delete:
dquot_drop(inode);
stat_dec_inline_xattr(inode);
stat_dec_inline_dir(inode);
stat_dec_inline_inode(inode);
stat_dec_compr_inode(inode);
stat_sub_compr_blocks(inode,
atomic_read(&fi->i_compr_blocks));
if (likely(!f2fs_cp_error(sbi) &&
!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
f2fs_bug_on(sbi, is_inode_flag_set(inode, FI_DIRTY_INODE));
else
f2fs_inode_synced(inode);
/* for the case f2fs_new_inode() was failed, .i_ino is zero, skip it */
if (inode->i_ino)
invalidate_mapping_pages(NODE_MAPPING(sbi), inode->i_ino,
inode->i_ino);
if (xnid)
invalidate_mapping_pages(NODE_MAPPING(sbi), xnid, xnid);
if (inode->i_nlink) {
if (is_inode_flag_set(inode, FI_APPEND_WRITE))
f2fs_add_ino_entry(sbi, inode->i_ino, APPEND_INO);
if (is_inode_flag_set(inode, FI_UPDATE_WRITE))
f2fs_add_ino_entry(sbi, inode->i_ino, UPDATE_INO);
}
if (is_inode_flag_set(inode, FI_FREE_NID)) {
f2fs_alloc_nid_failed(sbi, inode->i_ino);
clear_inode_flag(inode, FI_FREE_NID);
} else {
/*
* If xattr nid is corrupted, we can reach out error condition,
* err & !f2fs_exist_written_data(sbi, inode->i_ino, ORPHAN_INO)).
* In that case, f2fs_check_nid_range() is enough to give a clue.
*/
}
out_clear:
fscrypt_put_encryption_info(inode);
fsverity_cleanup_inode(inode);
clear_inode(inode);
}
/* caller should call f2fs_lock_op() */
void f2fs_handle_failed_inode(struct inode *inode)
{
struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
struct node_info ni;
int err;
/*
* clear nlink of inode in order to release resource of inode
* immediately.
*/
clear_nlink(inode);
/*
* we must call this to avoid inode being remained as dirty, resulting
* in a panic when flushing dirty inodes in gdirty_list.
*/
f2fs_update_inode_page(inode);
f2fs_inode_synced(inode);
/* don't make bad inode, since it becomes a regular file. */
unlock_new_inode(inode);
/*
* Note: we should add inode to orphan list before f2fs_unlock_op()
* so we can prevent losing this orphan when encoutering checkpoint
* and following suddenly power-off.
*/
err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
if (err) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
set_inode_flag(inode, FI_FREE_NID);
f2fs_warn(sbi, "May loss orphan inode, run fsck to fix.");
goto out;
}
if (ni.blk_addr != NULL_ADDR) {
err = f2fs_acquire_orphan_inode(sbi);
if (err) {
set_sbi_flag(sbi, SBI_NEED_FSCK);
f2fs_warn(sbi, "Too many orphan inodes, run fsck to fix.");
} else {
f2fs_add_orphan_inode(inode);
}
f2fs_alloc_nid_done(sbi, inode->i_ino);
} else {
set_inode_flag(inode, FI_FREE_NID);
}
out:
f2fs_unlock_op(sbi);
/* iput will drop the inode object */
iput(inode);
}