mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-18 03:06:43 +00:00
3429055f04
Provide a hook that can be used by custom memcpy implementations to tell KMSAN that the metadata needs to be copied. Without that, false positive reports are possible in the cases where KMSAN fails to intercept memory initialization. Link: https://lore.kernel.org/all/3b7dbd88-0861-4638-b2d2-911c97a4cadf@I-love.SAKURA.ne.jp/ Link: https://lkml.kernel.org/r/20240320101851.2589698-1-glider@google.com Signed-off-by: Alexander Potapenko <glider@google.com> Suggested-by: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Reviewed-by: Marco Elver <elver@google.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Linus Torvalds <torvalds@linux-foundation.org> Cc: Tetsuo Handa <penguin-kernel@I-love.SAKURA.ne.jp> Cc: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
426 lines
11 KiB
C
426 lines
11 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* KMSAN hooks for kernel subsystems.
|
|
*
|
|
* These functions handle creation of KMSAN metadata for memory allocations.
|
|
*
|
|
* Copyright (C) 2018-2022 Google LLC
|
|
* Author: Alexander Potapenko <glider@google.com>
|
|
*
|
|
*/
|
|
|
|
#include <linux/cacheflush.h>
|
|
#include <linux/dma-direction.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kmsan.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/mm_types.h>
|
|
#include <linux/scatterlist.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/usb.h>
|
|
|
|
#include "../internal.h"
|
|
#include "../slab.h"
|
|
#include "kmsan.h"
|
|
|
|
/*
|
|
* Instrumented functions shouldn't be called under
|
|
* kmsan_enter_runtime()/kmsan_leave_runtime(), because this will lead to
|
|
* skipping effects of functions like memset() inside instrumented code.
|
|
*/
|
|
|
|
void kmsan_task_create(struct task_struct *task)
|
|
{
|
|
kmsan_enter_runtime();
|
|
kmsan_internal_task_create(task);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_task_exit(struct task_struct *task)
|
|
{
|
|
struct kmsan_ctx *ctx = &task->kmsan_ctx;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
|
|
ctx->allow_reporting = false;
|
|
}
|
|
|
|
void kmsan_slab_alloc(struct kmem_cache *s, void *object, gfp_t flags)
|
|
{
|
|
if (unlikely(object == NULL))
|
|
return;
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
/*
|
|
* There's a ctor or this is an RCU cache - do nothing. The memory
|
|
* status hasn't changed since last use.
|
|
*/
|
|
if (s->ctor || (s->flags & SLAB_TYPESAFE_BY_RCU))
|
|
return;
|
|
|
|
kmsan_enter_runtime();
|
|
if (flags & __GFP_ZERO)
|
|
kmsan_internal_unpoison_memory(object, s->object_size,
|
|
KMSAN_POISON_CHECK);
|
|
else
|
|
kmsan_internal_poison_memory(object, s->object_size, flags,
|
|
KMSAN_POISON_CHECK);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_slab_free(struct kmem_cache *s, void *object)
|
|
{
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
|
|
/* RCU slabs could be legally used after free within the RCU period */
|
|
if (unlikely(s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)))
|
|
return;
|
|
/*
|
|
* If there's a constructor, freed memory must remain in the same state
|
|
* until the next allocation. We cannot save its state to detect
|
|
* use-after-free bugs, instead we just keep it unpoisoned.
|
|
*/
|
|
if (s->ctor)
|
|
return;
|
|
kmsan_enter_runtime();
|
|
kmsan_internal_poison_memory(object, s->object_size, GFP_KERNEL,
|
|
KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_kmalloc_large(const void *ptr, size_t size, gfp_t flags)
|
|
{
|
|
if (unlikely(ptr == NULL))
|
|
return;
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
kmsan_enter_runtime();
|
|
if (flags & __GFP_ZERO)
|
|
kmsan_internal_unpoison_memory((void *)ptr, size,
|
|
/*checked*/ true);
|
|
else
|
|
kmsan_internal_poison_memory((void *)ptr, size, flags,
|
|
KMSAN_POISON_CHECK);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_kfree_large(const void *ptr)
|
|
{
|
|
struct page *page;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
kmsan_enter_runtime();
|
|
page = virt_to_head_page((void *)ptr);
|
|
KMSAN_WARN_ON(ptr != page_address(page));
|
|
kmsan_internal_poison_memory((void *)ptr,
|
|
page_size(page),
|
|
GFP_KERNEL,
|
|
KMSAN_POISON_CHECK | KMSAN_POISON_FREE);
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
static unsigned long vmalloc_shadow(unsigned long addr)
|
|
{
|
|
return (unsigned long)kmsan_get_metadata((void *)addr,
|
|
KMSAN_META_SHADOW);
|
|
}
|
|
|
|
static unsigned long vmalloc_origin(unsigned long addr)
|
|
{
|
|
return (unsigned long)kmsan_get_metadata((void *)addr,
|
|
KMSAN_META_ORIGIN);
|
|
}
|
|
|
|
void kmsan_vunmap_range_noflush(unsigned long start, unsigned long end)
|
|
{
|
|
__vunmap_range_noflush(vmalloc_shadow(start), vmalloc_shadow(end));
|
|
__vunmap_range_noflush(vmalloc_origin(start), vmalloc_origin(end));
|
|
flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
|
|
flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
|
|
}
|
|
|
|
/*
|
|
* This function creates new shadow/origin pages for the physical pages mapped
|
|
* into the virtual memory. If those physical pages already had shadow/origin,
|
|
* those are ignored.
|
|
*/
|
|
int kmsan_ioremap_page_range(unsigned long start, unsigned long end,
|
|
phys_addr_t phys_addr, pgprot_t prot,
|
|
unsigned int page_shift)
|
|
{
|
|
gfp_t gfp_mask = GFP_KERNEL | __GFP_ZERO;
|
|
struct page *shadow, *origin;
|
|
unsigned long off = 0;
|
|
int nr, err = 0, clean = 0, mapped;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return 0;
|
|
|
|
nr = (end - start) / PAGE_SIZE;
|
|
kmsan_enter_runtime();
|
|
for (int i = 0; i < nr; i++, off += PAGE_SIZE, clean = i) {
|
|
shadow = alloc_pages(gfp_mask, 1);
|
|
origin = alloc_pages(gfp_mask, 1);
|
|
if (!shadow || !origin) {
|
|
err = -ENOMEM;
|
|
goto ret;
|
|
}
|
|
mapped = __vmap_pages_range_noflush(
|
|
vmalloc_shadow(start + off),
|
|
vmalloc_shadow(start + off + PAGE_SIZE), prot, &shadow,
|
|
PAGE_SHIFT);
|
|
if (mapped) {
|
|
err = mapped;
|
|
goto ret;
|
|
}
|
|
shadow = NULL;
|
|
mapped = __vmap_pages_range_noflush(
|
|
vmalloc_origin(start + off),
|
|
vmalloc_origin(start + off + PAGE_SIZE), prot, &origin,
|
|
PAGE_SHIFT);
|
|
if (mapped) {
|
|
__vunmap_range_noflush(
|
|
vmalloc_shadow(start + off),
|
|
vmalloc_shadow(start + off + PAGE_SIZE));
|
|
err = mapped;
|
|
goto ret;
|
|
}
|
|
origin = NULL;
|
|
}
|
|
/* Page mapping loop finished normally, nothing to clean up. */
|
|
clean = 0;
|
|
|
|
ret:
|
|
if (clean > 0) {
|
|
/*
|
|
* Something went wrong. Clean up shadow/origin pages allocated
|
|
* on the last loop iteration, then delete mappings created
|
|
* during the previous iterations.
|
|
*/
|
|
if (shadow)
|
|
__free_pages(shadow, 1);
|
|
if (origin)
|
|
__free_pages(origin, 1);
|
|
__vunmap_range_noflush(
|
|
vmalloc_shadow(start),
|
|
vmalloc_shadow(start + clean * PAGE_SIZE));
|
|
__vunmap_range_noflush(
|
|
vmalloc_origin(start),
|
|
vmalloc_origin(start + clean * PAGE_SIZE));
|
|
}
|
|
flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
|
|
flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
|
|
kmsan_leave_runtime();
|
|
return err;
|
|
}
|
|
|
|
void kmsan_iounmap_page_range(unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long v_shadow, v_origin;
|
|
struct page *shadow, *origin;
|
|
int nr;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
|
|
nr = (end - start) / PAGE_SIZE;
|
|
kmsan_enter_runtime();
|
|
v_shadow = (unsigned long)vmalloc_shadow(start);
|
|
v_origin = (unsigned long)vmalloc_origin(start);
|
|
for (int i = 0; i < nr;
|
|
i++, v_shadow += PAGE_SIZE, v_origin += PAGE_SIZE) {
|
|
shadow = kmsan_vmalloc_to_page_or_null((void *)v_shadow);
|
|
origin = kmsan_vmalloc_to_page_or_null((void *)v_origin);
|
|
__vunmap_range_noflush(v_shadow, vmalloc_shadow(end));
|
|
__vunmap_range_noflush(v_origin, vmalloc_origin(end));
|
|
if (shadow)
|
|
__free_pages(shadow, 1);
|
|
if (origin)
|
|
__free_pages(origin, 1);
|
|
}
|
|
flush_cache_vmap(vmalloc_shadow(start), vmalloc_shadow(end));
|
|
flush_cache_vmap(vmalloc_origin(start), vmalloc_origin(end));
|
|
kmsan_leave_runtime();
|
|
}
|
|
|
|
void kmsan_copy_to_user(void __user *to, const void *from, size_t to_copy,
|
|
size_t left)
|
|
{
|
|
unsigned long ua_flags;
|
|
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
/*
|
|
* At this point we've copied the memory already. It's hard to check it
|
|
* before copying, as the size of actually copied buffer is unknown.
|
|
*/
|
|
|
|
/* copy_to_user() may copy zero bytes. No need to check. */
|
|
if (!to_copy)
|
|
return;
|
|
/* Or maybe copy_to_user() failed to copy anything. */
|
|
if (to_copy <= left)
|
|
return;
|
|
|
|
ua_flags = user_access_save();
|
|
if ((u64)to < TASK_SIZE) {
|
|
/* This is a user memory access, check it. */
|
|
kmsan_internal_check_memory((void *)from, to_copy - left, to,
|
|
REASON_COPY_TO_USER);
|
|
} else {
|
|
/* Otherwise this is a kernel memory access. This happens when a
|
|
* compat syscall passes an argument allocated on the kernel
|
|
* stack to a real syscall.
|
|
* Don't check anything, just copy the shadow of the copied
|
|
* bytes.
|
|
*/
|
|
kmsan_internal_memmove_metadata((void *)to, (void *)from,
|
|
to_copy - left);
|
|
}
|
|
user_access_restore(ua_flags);
|
|
}
|
|
EXPORT_SYMBOL(kmsan_copy_to_user);
|
|
|
|
void kmsan_memmove(void *to, const void *from, size_t size)
|
|
{
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
|
|
kmsan_enter_runtime();
|
|
kmsan_internal_memmove_metadata(to, (void *)from, size);
|
|
kmsan_leave_runtime();
|
|
}
|
|
EXPORT_SYMBOL(kmsan_memmove);
|
|
|
|
/* Helper function to check an URB. */
|
|
void kmsan_handle_urb(const struct urb *urb, bool is_out)
|
|
{
|
|
if (!urb)
|
|
return;
|
|
if (is_out)
|
|
kmsan_internal_check_memory(urb->transfer_buffer,
|
|
urb->transfer_buffer_length,
|
|
/*user_addr*/ 0, REASON_SUBMIT_URB);
|
|
else
|
|
kmsan_internal_unpoison_memory(urb->transfer_buffer,
|
|
urb->transfer_buffer_length,
|
|
/*checked*/ false);
|
|
}
|
|
EXPORT_SYMBOL_GPL(kmsan_handle_urb);
|
|
|
|
static void kmsan_handle_dma_page(const void *addr, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
switch (dir) {
|
|
case DMA_BIDIRECTIONAL:
|
|
kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
|
|
REASON_ANY);
|
|
kmsan_internal_unpoison_memory((void *)addr, size,
|
|
/*checked*/ false);
|
|
break;
|
|
case DMA_TO_DEVICE:
|
|
kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
|
|
REASON_ANY);
|
|
break;
|
|
case DMA_FROM_DEVICE:
|
|
kmsan_internal_unpoison_memory((void *)addr, size,
|
|
/*checked*/ false);
|
|
break;
|
|
case DMA_NONE:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Helper function to handle DMA data transfers. */
|
|
void kmsan_handle_dma(struct page *page, size_t offset, size_t size,
|
|
enum dma_data_direction dir)
|
|
{
|
|
u64 page_offset, to_go, addr;
|
|
|
|
if (PageHighMem(page))
|
|
return;
|
|
addr = (u64)page_address(page) + offset;
|
|
/*
|
|
* The kernel may occasionally give us adjacent DMA pages not belonging
|
|
* to the same allocation. Process them separately to avoid triggering
|
|
* internal KMSAN checks.
|
|
*/
|
|
while (size > 0) {
|
|
page_offset = offset_in_page(addr);
|
|
to_go = min(PAGE_SIZE - page_offset, (u64)size);
|
|
kmsan_handle_dma_page((void *)addr, to_go, dir);
|
|
addr += to_go;
|
|
size -= to_go;
|
|
}
|
|
}
|
|
|
|
void kmsan_handle_dma_sg(struct scatterlist *sg, int nents,
|
|
enum dma_data_direction dir)
|
|
{
|
|
struct scatterlist *item;
|
|
int i;
|
|
|
|
for_each_sg(sg, item, nents, i)
|
|
kmsan_handle_dma(sg_page(item), item->offset, item->length,
|
|
dir);
|
|
}
|
|
|
|
/* Functions from kmsan-checks.h follow. */
|
|
|
|
/*
|
|
* To create an origin, kmsan_poison_memory() unwinds the stacks and stores it
|
|
* into the stack depot. This may cause deadlocks if done from within KMSAN
|
|
* runtime, therefore we bail out if kmsan_in_runtime().
|
|
*/
|
|
void kmsan_poison_memory(const void *address, size_t size, gfp_t flags)
|
|
{
|
|
if (!kmsan_enabled || kmsan_in_runtime())
|
|
return;
|
|
kmsan_enter_runtime();
|
|
/* The users may want to poison/unpoison random memory. */
|
|
kmsan_internal_poison_memory((void *)address, size, flags,
|
|
KMSAN_POISON_NOCHECK);
|
|
kmsan_leave_runtime();
|
|
}
|
|
EXPORT_SYMBOL(kmsan_poison_memory);
|
|
|
|
/*
|
|
* Unlike kmsan_poison_memory(), this function can be used from within KMSAN
|
|
* runtime, because it does not trigger allocations or call instrumented code.
|
|
*/
|
|
void kmsan_unpoison_memory(const void *address, size_t size)
|
|
{
|
|
unsigned long ua_flags;
|
|
|
|
if (!kmsan_enabled)
|
|
return;
|
|
|
|
ua_flags = user_access_save();
|
|
/* The users may want to poison/unpoison random memory. */
|
|
kmsan_internal_unpoison_memory((void *)address, size,
|
|
KMSAN_POISON_NOCHECK);
|
|
user_access_restore(ua_flags);
|
|
}
|
|
EXPORT_SYMBOL(kmsan_unpoison_memory);
|
|
|
|
/*
|
|
* Version of kmsan_unpoison_memory() called from IRQ entry functions.
|
|
*/
|
|
void kmsan_unpoison_entry_regs(const struct pt_regs *regs)
|
|
{
|
|
kmsan_unpoison_memory((void *)regs, sizeof(*regs));
|
|
}
|
|
|
|
void kmsan_check_memory(const void *addr, size_t size)
|
|
{
|
|
if (!kmsan_enabled)
|
|
return;
|
|
return kmsan_internal_check_memory((void *)addr, size, /*user_addr*/ 0,
|
|
REASON_ANY);
|
|
}
|
|
EXPORT_SYMBOL(kmsan_check_memory);
|