Linus Torvalds 5a0387a8a8 Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6
Pull crypto updates from Herbert Xu:
 "Here is the crypto update for 4.12:

  API:
   - Add batch registration for acomp/scomp
   - Change acomp testing to non-unique compressed result
   - Extend algorithm name limit to 128 bytes
   - Require setkey before accept(2) in algif_aead

  Algorithms:
   - Add support for deflate rfc1950 (zlib)

  Drivers:
   - Add accelerated crct10dif for powerpc
   - Add crc32 in stm32
   - Add sha384/sha512 in ccp
   - Add 3des/gcm(aes) for v5 devices in ccp
   - Add Queue Interface (QI) backend support in caam
   - Add new Exynos RNG driver
   - Add ThunderX ZIP driver
   - Add driver for hardware random generator on MT7623 SoC"

* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (101 commits)
  crypto: stm32 - Fix OF module alias information
  crypto: algif_aead - Require setkey before accept(2)
  crypto: scomp - add support for deflate rfc1950 (zlib)
  crypto: scomp - allow registration of multiple scomps
  crypto: ccp - Change ISR handler method for a v5 CCP
  crypto: ccp - Change ISR handler method for a v3 CCP
  crypto: crypto4xx - rename ce_ring_contol to ce_ring_control
  crypto: testmgr - Allow ecb(cipher_null) in FIPS mode
  Revert "crypto: arm64/sha - Add constant operand modifier to ASM_EXPORT"
  crypto: ccp - Disable interrupts early on unload
  crypto: ccp - Use only the relevant interrupt bits
  hwrng: mtk - Add driver for hardware random generator on MT7623 SoC
  dt-bindings: hwrng: Add Mediatek hardware random generator bindings
  crypto: crct10dif-vpmsum - Fix missing preempt_disable()
  crypto: testmgr - replace compression known answer test
  crypto: acomp - allow registration of multiple acomps
  hwrng: n2 - Use devm_kcalloc() in n2rng_probe()
  crypto: chcr - Fix error handling related to 'chcr_alloc_shash'
  padata: get_next is never NULL
  crypto: exynos - Add new Exynos RNG driver
  ...
2017-05-02 15:53:46 -07:00

875 lines
29 KiB
C

#ifndef _LINUX_KERNEL_H
#define _LINUX_KERNEL_H
#include <stdarg.h>
#include <linux/linkage.h>
#include <linux/stddef.h>
#include <linux/types.h>
#include <linux/compiler.h>
#include <linux/bitops.h>
#include <linux/log2.h>
#include <linux/typecheck.h>
#include <linux/printk.h>
#include <asm/byteorder.h>
#include <uapi/linux/kernel.h>
#define USHRT_MAX ((u16)(~0U))
#define SHRT_MAX ((s16)(USHRT_MAX>>1))
#define SHRT_MIN ((s16)(-SHRT_MAX - 1))
#define INT_MAX ((int)(~0U>>1))
#define INT_MIN (-INT_MAX - 1)
#define UINT_MAX (~0U)
#define LONG_MAX ((long)(~0UL>>1))
#define LONG_MIN (-LONG_MAX - 1)
#define ULONG_MAX (~0UL)
#define LLONG_MAX ((long long)(~0ULL>>1))
#define LLONG_MIN (-LLONG_MAX - 1)
#define ULLONG_MAX (~0ULL)
#define SIZE_MAX (~(size_t)0)
#define U8_MAX ((u8)~0U)
#define S8_MAX ((s8)(U8_MAX>>1))
#define S8_MIN ((s8)(-S8_MAX - 1))
#define U16_MAX ((u16)~0U)
#define S16_MAX ((s16)(U16_MAX>>1))
#define S16_MIN ((s16)(-S16_MAX - 1))
#define U32_MAX ((u32)~0U)
#define S32_MAX ((s32)(U32_MAX>>1))
#define S32_MIN ((s32)(-S32_MAX - 1))
#define U64_MAX ((u64)~0ULL)
#define S64_MAX ((s64)(U64_MAX>>1))
#define S64_MIN ((s64)(-S64_MAX - 1))
#define STACK_MAGIC 0xdeadbeef
#define REPEAT_BYTE(x) ((~0ul / 0xff) * (x))
/* @a is a power of 2 value */
#define ALIGN(x, a) __ALIGN_KERNEL((x), (a))
#define ALIGN_DOWN(x, a) __ALIGN_KERNEL((x) - ((a) - 1), (a))
#define __ALIGN_MASK(x, mask) __ALIGN_KERNEL_MASK((x), (mask))
#define PTR_ALIGN(p, a) ((typeof(p))ALIGN((unsigned long)(p), (a)))
#define IS_ALIGNED(x, a) (((x) & ((typeof(x))(a) - 1)) == 0)
/* generic data direction definitions */
#define READ 0
#define WRITE 1
#define ARRAY_SIZE(arr) (sizeof(arr) / sizeof((arr)[0]) + __must_be_array(arr))
#define u64_to_user_ptr(x) ( \
{ \
typecheck(u64, x); \
(void __user *)(uintptr_t)x; \
} \
)
/*
* This looks more complex than it should be. But we need to
* get the type for the ~ right in round_down (it needs to be
* as wide as the result!), and we want to evaluate the macro
* arguments just once each.
*/
#define __round_mask(x, y) ((__typeof__(x))((y)-1))
#define round_up(x, y) ((((x)-1) | __round_mask(x, y))+1)
#define round_down(x, y) ((x) & ~__round_mask(x, y))
#define FIELD_SIZEOF(t, f) (sizeof(((t*)0)->f))
#define DIV_ROUND_UP __KERNEL_DIV_ROUND_UP
#define DIV_ROUND_UP_ULL(ll,d) \
({ unsigned long long _tmp = (ll)+(d)-1; do_div(_tmp, d); _tmp; })
#if BITS_PER_LONG == 32
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP_ULL(ll, d)
#else
# define DIV_ROUND_UP_SECTOR_T(ll,d) DIV_ROUND_UP(ll,d)
#endif
/* The `const' in roundup() prevents gcc-3.3 from calling __divdi3 */
#define roundup(x, y) ( \
{ \
const typeof(y) __y = y; \
(((x) + (__y - 1)) / __y) * __y; \
} \
)
#define rounddown(x, y) ( \
{ \
typeof(x) __x = (x); \
__x - (__x % (y)); \
} \
)
/*
* Divide positive or negative dividend by positive or negative divisor
* and round to closest integer. Result is undefined for negative
* divisors if he dividend variable type is unsigned and for negative
* dividends if the divisor variable type is unsigned.
*/
#define DIV_ROUND_CLOSEST(x, divisor)( \
{ \
typeof(x) __x = x; \
typeof(divisor) __d = divisor; \
(((typeof(x))-1) > 0 || \
((typeof(divisor))-1) > 0 || \
(((__x) > 0) == ((__d) > 0))) ? \
(((__x) + ((__d) / 2)) / (__d)) : \
(((__x) - ((__d) / 2)) / (__d)); \
} \
)
/*
* Same as above but for u64 dividends. divisor must be a 32-bit
* number.
*/
#define DIV_ROUND_CLOSEST_ULL(x, divisor)( \
{ \
typeof(divisor) __d = divisor; \
unsigned long long _tmp = (x) + (__d) / 2; \
do_div(_tmp, __d); \
_tmp; \
} \
)
/*
* Multiplies an integer by a fraction, while avoiding unnecessary
* overflow or loss of precision.
*/
#define mult_frac(x, numer, denom)( \
{ \
typeof(x) quot = (x) / (denom); \
typeof(x) rem = (x) % (denom); \
(quot * (numer)) + ((rem * (numer)) / (denom)); \
} \
)
#define _RET_IP_ (unsigned long)__builtin_return_address(0)
#define _THIS_IP_ ({ __label__ __here; __here: (unsigned long)&&__here; })
#ifdef CONFIG_LBDAF
# include <asm/div64.h>
# define sector_div(a, b) do_div(a, b)
#else
# define sector_div(n, b)( \
{ \
int _res; \
_res = (n) % (b); \
(n) /= (b); \
_res; \
} \
)
#endif
/**
* upper_32_bits - return bits 32-63 of a number
* @n: the number we're accessing
*
* A basic shift-right of a 64- or 32-bit quantity. Use this to suppress
* the "right shift count >= width of type" warning when that quantity is
* 32-bits.
*/
#define upper_32_bits(n) ((u32)(((n) >> 16) >> 16))
/**
* lower_32_bits - return bits 0-31 of a number
* @n: the number we're accessing
*/
#define lower_32_bits(n) ((u32)(n))
struct completion;
struct pt_regs;
struct user;
#ifdef CONFIG_PREEMPT_VOLUNTARY
extern int _cond_resched(void);
# define might_resched() _cond_resched()
#else
# define might_resched() do { } while (0)
#endif
#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
void ___might_sleep(const char *file, int line, int preempt_offset);
void __might_sleep(const char *file, int line, int preempt_offset);
/**
* might_sleep - annotation for functions that can sleep
*
* this macro will print a stack trace if it is executed in an atomic
* context (spinlock, irq-handler, ...).
*
* This is a useful debugging help to be able to catch problems early and not
* be bitten later when the calling function happens to sleep when it is not
* supposed to.
*/
# define might_sleep() \
do { __might_sleep(__FILE__, __LINE__, 0); might_resched(); } while (0)
# define sched_annotate_sleep() (current->task_state_change = 0)
#else
static inline void ___might_sleep(const char *file, int line,
int preempt_offset) { }
static inline void __might_sleep(const char *file, int line,
int preempt_offset) { }
# define might_sleep() do { might_resched(); } while (0)
# define sched_annotate_sleep() do { } while (0)
#endif
#define might_sleep_if(cond) do { if (cond) might_sleep(); } while (0)
/**
* abs - return absolute value of an argument
* @x: the value. If it is unsigned type, it is converted to signed type first.
* char is treated as if it was signed (regardless of whether it really is)
* but the macro's return type is preserved as char.
*
* Return: an absolute value of x.
*/
#define abs(x) __abs_choose_expr(x, long long, \
__abs_choose_expr(x, long, \
__abs_choose_expr(x, int, \
__abs_choose_expr(x, short, \
__abs_choose_expr(x, char, \
__builtin_choose_expr( \
__builtin_types_compatible_p(typeof(x), char), \
(char)({ signed char __x = (x); __x<0?-__x:__x; }), \
((void)0)))))))
#define __abs_choose_expr(x, type, other) __builtin_choose_expr( \
__builtin_types_compatible_p(typeof(x), signed type) || \
__builtin_types_compatible_p(typeof(x), unsigned type), \
({ signed type __x = (x); __x < 0 ? -__x : __x; }), other)
/**
* reciprocal_scale - "scale" a value into range [0, ep_ro)
* @val: value
* @ep_ro: right open interval endpoint
*
* Perform a "reciprocal multiplication" in order to "scale" a value into
* range [0, ep_ro), where the upper interval endpoint is right-open.
* This is useful, e.g. for accessing a index of an array containing
* ep_ro elements, for example. Think of it as sort of modulus, only that
* the result isn't that of modulo. ;) Note that if initial input is a
* small value, then result will return 0.
*
* Return: a result based on val in interval [0, ep_ro).
*/
static inline u32 reciprocal_scale(u32 val, u32 ep_ro)
{
return (u32)(((u64) val * ep_ro) >> 32);
}
#if defined(CONFIG_MMU) && \
(defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP))
#define might_fault() __might_fault(__FILE__, __LINE__)
void __might_fault(const char *file, int line);
#else
static inline void might_fault(void) { }
#endif
extern struct atomic_notifier_head panic_notifier_list;
extern long (*panic_blink)(int state);
__printf(1, 2)
void panic(const char *fmt, ...) __noreturn __cold;
void nmi_panic(struct pt_regs *regs, const char *msg);
extern void oops_enter(void);
extern void oops_exit(void);
void print_oops_end_marker(void);
extern int oops_may_print(void);
void do_exit(long error_code) __noreturn;
void complete_and_exit(struct completion *, long) __noreturn;
/* Internal, do not use. */
int __must_check _kstrtoul(const char *s, unsigned int base, unsigned long *res);
int __must_check _kstrtol(const char *s, unsigned int base, long *res);
int __must_check kstrtoull(const char *s, unsigned int base, unsigned long long *res);
int __must_check kstrtoll(const char *s, unsigned int base, long long *res);
/**
* kstrtoul - convert a string to an unsigned long
* @s: The start of the string. The string must be null-terminated, and may also
* include a single newline before its terminating null. The first character
* may also be a plus sign, but not a minus sign.
* @base: The number base to use. The maximum supported base is 16. If base is
* given as 0, then the base of the string is automatically detected with the
* conventional semantics - If it begins with 0x the number will be parsed as a
* hexadecimal (case insensitive), if it otherwise begins with 0, it will be
* parsed as an octal number. Otherwise it will be parsed as a decimal.
* @res: Where to write the result of the conversion on success.
*
* Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
* Used as a replacement for the obsolete simple_strtoull. Return code must
* be checked.
*/
static inline int __must_check kstrtoul(const char *s, unsigned int base, unsigned long *res)
{
/*
* We want to shortcut function call, but
* __builtin_types_compatible_p(unsigned long, unsigned long long) = 0.
*/
if (sizeof(unsigned long) == sizeof(unsigned long long) &&
__alignof__(unsigned long) == __alignof__(unsigned long long))
return kstrtoull(s, base, (unsigned long long *)res);
else
return _kstrtoul(s, base, res);
}
/**
* kstrtol - convert a string to a long
* @s: The start of the string. The string must be null-terminated, and may also
* include a single newline before its terminating null. The first character
* may also be a plus sign or a minus sign.
* @base: The number base to use. The maximum supported base is 16. If base is
* given as 0, then the base of the string is automatically detected with the
* conventional semantics - If it begins with 0x the number will be parsed as a
* hexadecimal (case insensitive), if it otherwise begins with 0, it will be
* parsed as an octal number. Otherwise it will be parsed as a decimal.
* @res: Where to write the result of the conversion on success.
*
* Returns 0 on success, -ERANGE on overflow and -EINVAL on parsing error.
* Used as a replacement for the obsolete simple_strtoull. Return code must
* be checked.
*/
static inline int __must_check kstrtol(const char *s, unsigned int base, long *res)
{
/*
* We want to shortcut function call, but
* __builtin_types_compatible_p(long, long long) = 0.
*/
if (sizeof(long) == sizeof(long long) &&
__alignof__(long) == __alignof__(long long))
return kstrtoll(s, base, (long long *)res);
else
return _kstrtol(s, base, res);
}
int __must_check kstrtouint(const char *s, unsigned int base, unsigned int *res);
int __must_check kstrtoint(const char *s, unsigned int base, int *res);
static inline int __must_check kstrtou64(const char *s, unsigned int base, u64 *res)
{
return kstrtoull(s, base, res);
}
static inline int __must_check kstrtos64(const char *s, unsigned int base, s64 *res)
{
return kstrtoll(s, base, res);
}
static inline int __must_check kstrtou32(const char *s, unsigned int base, u32 *res)
{
return kstrtouint(s, base, res);
}
static inline int __must_check kstrtos32(const char *s, unsigned int base, s32 *res)
{
return kstrtoint(s, base, res);
}
int __must_check kstrtou16(const char *s, unsigned int base, u16 *res);
int __must_check kstrtos16(const char *s, unsigned int base, s16 *res);
int __must_check kstrtou8(const char *s, unsigned int base, u8 *res);
int __must_check kstrtos8(const char *s, unsigned int base, s8 *res);
int __must_check kstrtobool(const char *s, bool *res);
int __must_check kstrtoull_from_user(const char __user *s, size_t count, unsigned int base, unsigned long long *res);
int __must_check kstrtoll_from_user(const char __user *s, size_t count, unsigned int base, long long *res);
int __must_check kstrtoul_from_user(const char __user *s, size_t count, unsigned int base, unsigned long *res);
int __must_check kstrtol_from_user(const char __user *s, size_t count, unsigned int base, long *res);
int __must_check kstrtouint_from_user(const char __user *s, size_t count, unsigned int base, unsigned int *res);
int __must_check kstrtoint_from_user(const char __user *s, size_t count, unsigned int base, int *res);
int __must_check kstrtou16_from_user(const char __user *s, size_t count, unsigned int base, u16 *res);
int __must_check kstrtos16_from_user(const char __user *s, size_t count, unsigned int base, s16 *res);
int __must_check kstrtou8_from_user(const char __user *s, size_t count, unsigned int base, u8 *res);
int __must_check kstrtos8_from_user(const char __user *s, size_t count, unsigned int base, s8 *res);
int __must_check kstrtobool_from_user(const char __user *s, size_t count, bool *res);
static inline int __must_check kstrtou64_from_user(const char __user *s, size_t count, unsigned int base, u64 *res)
{
return kstrtoull_from_user(s, count, base, res);
}
static inline int __must_check kstrtos64_from_user(const char __user *s, size_t count, unsigned int base, s64 *res)
{
return kstrtoll_from_user(s, count, base, res);
}
static inline int __must_check kstrtou32_from_user(const char __user *s, size_t count, unsigned int base, u32 *res)
{
return kstrtouint_from_user(s, count, base, res);
}
static inline int __must_check kstrtos32_from_user(const char __user *s, size_t count, unsigned int base, s32 *res)
{
return kstrtoint_from_user(s, count, base, res);
}
/* Obsolete, do not use. Use kstrto<foo> instead */
extern unsigned long simple_strtoul(const char *,char **,unsigned int);
extern long simple_strtol(const char *,char **,unsigned int);
extern unsigned long long simple_strtoull(const char *,char **,unsigned int);
extern long long simple_strtoll(const char *,char **,unsigned int);
extern int num_to_str(char *buf, int size, unsigned long long num);
/* lib/printf utilities */
extern __printf(2, 3) int sprintf(char *buf, const char * fmt, ...);
extern __printf(2, 0) int vsprintf(char *buf, const char *, va_list);
extern __printf(3, 4)
int snprintf(char *buf, size_t size, const char *fmt, ...);
extern __printf(3, 0)
int vsnprintf(char *buf, size_t size, const char *fmt, va_list args);
extern __printf(3, 4)
int scnprintf(char *buf, size_t size, const char *fmt, ...);
extern __printf(3, 0)
int vscnprintf(char *buf, size_t size, const char *fmt, va_list args);
extern __printf(2, 3) __malloc
char *kasprintf(gfp_t gfp, const char *fmt, ...);
extern __printf(2, 0) __malloc
char *kvasprintf(gfp_t gfp, const char *fmt, va_list args);
extern __printf(2, 0)
const char *kvasprintf_const(gfp_t gfp, const char *fmt, va_list args);
extern __scanf(2, 3)
int sscanf(const char *, const char *, ...);
extern __scanf(2, 0)
int vsscanf(const char *, const char *, va_list);
extern int get_option(char **str, int *pint);
extern char *get_options(const char *str, int nints, int *ints);
extern unsigned long long memparse(const char *ptr, char **retptr);
extern bool parse_option_str(const char *str, const char *option);
extern char *next_arg(char *args, char **param, char **val);
extern int core_kernel_text(unsigned long addr);
extern int core_kernel_data(unsigned long addr);
extern int __kernel_text_address(unsigned long addr);
extern int kernel_text_address(unsigned long addr);
extern int func_ptr_is_kernel_text(void *ptr);
unsigned long int_sqrt(unsigned long);
extern void bust_spinlocks(int yes);
extern int oops_in_progress; /* If set, an oops, panic(), BUG() or die() is in progress */
extern int panic_timeout;
extern int panic_on_oops;
extern int panic_on_unrecovered_nmi;
extern int panic_on_io_nmi;
extern int panic_on_warn;
extern int sysctl_panic_on_rcu_stall;
extern int sysctl_panic_on_stackoverflow;
extern bool crash_kexec_post_notifiers;
/*
* panic_cpu is used for synchronizing panic() and crash_kexec() execution. It
* holds a CPU number which is executing panic() currently. A value of
* PANIC_CPU_INVALID means no CPU has entered panic() or crash_kexec().
*/
extern atomic_t panic_cpu;
#define PANIC_CPU_INVALID -1
/*
* Only to be used by arch init code. If the user over-wrote the default
* CONFIG_PANIC_TIMEOUT, honor it.
*/
static inline void set_arch_panic_timeout(int timeout, int arch_default_timeout)
{
if (panic_timeout == arch_default_timeout)
panic_timeout = timeout;
}
extern const char *print_tainted(void);
enum lockdep_ok {
LOCKDEP_STILL_OK,
LOCKDEP_NOW_UNRELIABLE
};
extern void add_taint(unsigned flag, enum lockdep_ok);
extern int test_taint(unsigned flag);
extern unsigned long get_taint(void);
extern int root_mountflags;
extern bool early_boot_irqs_disabled;
/* Values used for system_state */
extern enum system_states {
SYSTEM_BOOTING,
SYSTEM_RUNNING,
SYSTEM_HALT,
SYSTEM_POWER_OFF,
SYSTEM_RESTART,
} system_state;
#define TAINT_PROPRIETARY_MODULE 0
#define TAINT_FORCED_MODULE 1
#define TAINT_CPU_OUT_OF_SPEC 2
#define TAINT_FORCED_RMMOD 3
#define TAINT_MACHINE_CHECK 4
#define TAINT_BAD_PAGE 5
#define TAINT_USER 6
#define TAINT_DIE 7
#define TAINT_OVERRIDDEN_ACPI_TABLE 8
#define TAINT_WARN 9
#define TAINT_CRAP 10
#define TAINT_FIRMWARE_WORKAROUND 11
#define TAINT_OOT_MODULE 12
#define TAINT_UNSIGNED_MODULE 13
#define TAINT_SOFTLOCKUP 14
#define TAINT_LIVEPATCH 15
#define TAINT_FLAGS_COUNT 16
struct taint_flag {
char c_true; /* character printed when tainted */
char c_false; /* character printed when not tainted */
bool module; /* also show as a per-module taint flag */
};
extern const struct taint_flag taint_flags[TAINT_FLAGS_COUNT];
extern const char hex_asc[];
#define hex_asc_lo(x) hex_asc[((x) & 0x0f)]
#define hex_asc_hi(x) hex_asc[((x) & 0xf0) >> 4]
static inline char *hex_byte_pack(char *buf, u8 byte)
{
*buf++ = hex_asc_hi(byte);
*buf++ = hex_asc_lo(byte);
return buf;
}
extern const char hex_asc_upper[];
#define hex_asc_upper_lo(x) hex_asc_upper[((x) & 0x0f)]
#define hex_asc_upper_hi(x) hex_asc_upper[((x) & 0xf0) >> 4]
static inline char *hex_byte_pack_upper(char *buf, u8 byte)
{
*buf++ = hex_asc_upper_hi(byte);
*buf++ = hex_asc_upper_lo(byte);
return buf;
}
extern int hex_to_bin(char ch);
extern int __must_check hex2bin(u8 *dst, const char *src, size_t count);
extern char *bin2hex(char *dst, const void *src, size_t count);
bool mac_pton(const char *s, u8 *mac);
/*
* General tracing related utility functions - trace_printk(),
* tracing_on/tracing_off and tracing_start()/tracing_stop
*
* Use tracing_on/tracing_off when you want to quickly turn on or off
* tracing. It simply enables or disables the recording of the trace events.
* This also corresponds to the user space /sys/kernel/debug/tracing/tracing_on
* file, which gives a means for the kernel and userspace to interact.
* Place a tracing_off() in the kernel where you want tracing to end.
* From user space, examine the trace, and then echo 1 > tracing_on
* to continue tracing.
*
* tracing_stop/tracing_start has slightly more overhead. It is used
* by things like suspend to ram where disabling the recording of the
* trace is not enough, but tracing must actually stop because things
* like calling smp_processor_id() may crash the system.
*
* Most likely, you want to use tracing_on/tracing_off.
*/
enum ftrace_dump_mode {
DUMP_NONE,
DUMP_ALL,
DUMP_ORIG,
};
#ifdef CONFIG_TRACING
void tracing_on(void);
void tracing_off(void);
int tracing_is_on(void);
void tracing_snapshot(void);
void tracing_snapshot_alloc(void);
extern void tracing_start(void);
extern void tracing_stop(void);
static inline __printf(1, 2)
void ____trace_printk_check_format(const char *fmt, ...)
{
}
#define __trace_printk_check_format(fmt, args...) \
do { \
if (0) \
____trace_printk_check_format(fmt, ##args); \
} while (0)
/**
* trace_printk - printf formatting in the ftrace buffer
* @fmt: the printf format for printing
*
* Note: __trace_printk is an internal function for trace_printk and
* the @ip is passed in via the trace_printk macro.
*
* This function allows a kernel developer to debug fast path sections
* that printk is not appropriate for. By scattering in various
* printk like tracing in the code, a developer can quickly see
* where problems are occurring.
*
* This is intended as a debugging tool for the developer only.
* Please refrain from leaving trace_printks scattered around in
* your code. (Extra memory is used for special buffers that are
* allocated when trace_printk() is used)
*
* A little optization trick is done here. If there's only one
* argument, there's no need to scan the string for printf formats.
* The trace_puts() will suffice. But how can we take advantage of
* using trace_puts() when trace_printk() has only one argument?
* By stringifying the args and checking the size we can tell
* whether or not there are args. __stringify((__VA_ARGS__)) will
* turn into "()\0" with a size of 3 when there are no args, anything
* else will be bigger. All we need to do is define a string to this,
* and then take its size and compare to 3. If it's bigger, use
* do_trace_printk() otherwise, optimize it to trace_puts(). Then just
* let gcc optimize the rest.
*/
#define trace_printk(fmt, ...) \
do { \
char _______STR[] = __stringify((__VA_ARGS__)); \
if (sizeof(_______STR) > 3) \
do_trace_printk(fmt, ##__VA_ARGS__); \
else \
trace_puts(fmt); \
} while (0)
#define do_trace_printk(fmt, args...) \
do { \
static const char *trace_printk_fmt __used \
__attribute__((section("__trace_printk_fmt"))) = \
__builtin_constant_p(fmt) ? fmt : NULL; \
\
__trace_printk_check_format(fmt, ##args); \
\
if (__builtin_constant_p(fmt)) \
__trace_bprintk(_THIS_IP_, trace_printk_fmt, ##args); \
else \
__trace_printk(_THIS_IP_, fmt, ##args); \
} while (0)
extern __printf(2, 3)
int __trace_bprintk(unsigned long ip, const char *fmt, ...);
extern __printf(2, 3)
int __trace_printk(unsigned long ip, const char *fmt, ...);
/**
* trace_puts - write a string into the ftrace buffer
* @str: the string to record
*
* Note: __trace_bputs is an internal function for trace_puts and
* the @ip is passed in via the trace_puts macro.
*
* This is similar to trace_printk() but is made for those really fast
* paths that a developer wants the least amount of "Heisenbug" affects,
* where the processing of the print format is still too much.
*
* This function allows a kernel developer to debug fast path sections
* that printk is not appropriate for. By scattering in various
* printk like tracing in the code, a developer can quickly see
* where problems are occurring.
*
* This is intended as a debugging tool for the developer only.
* Please refrain from leaving trace_puts scattered around in
* your code. (Extra memory is used for special buffers that are
* allocated when trace_puts() is used)
*
* Returns: 0 if nothing was written, positive # if string was.
* (1 when __trace_bputs is used, strlen(str) when __trace_puts is used)
*/
#define trace_puts(str) ({ \
static const char *trace_printk_fmt __used \
__attribute__((section("__trace_printk_fmt"))) = \
__builtin_constant_p(str) ? str : NULL; \
\
if (__builtin_constant_p(str)) \
__trace_bputs(_THIS_IP_, trace_printk_fmt); \
else \
__trace_puts(_THIS_IP_, str, strlen(str)); \
})
extern int __trace_bputs(unsigned long ip, const char *str);
extern int __trace_puts(unsigned long ip, const char *str, int size);
extern void trace_dump_stack(int skip);
/*
* The double __builtin_constant_p is because gcc will give us an error
* if we try to allocate the static variable to fmt if it is not a
* constant. Even with the outer if statement.
*/
#define ftrace_vprintk(fmt, vargs) \
do { \
if (__builtin_constant_p(fmt)) { \
static const char *trace_printk_fmt __used \
__attribute__((section("__trace_printk_fmt"))) = \
__builtin_constant_p(fmt) ? fmt : NULL; \
\
__ftrace_vbprintk(_THIS_IP_, trace_printk_fmt, vargs); \
} else \
__ftrace_vprintk(_THIS_IP_, fmt, vargs); \
} while (0)
extern __printf(2, 0) int
__ftrace_vbprintk(unsigned long ip, const char *fmt, va_list ap);
extern __printf(2, 0) int
__ftrace_vprintk(unsigned long ip, const char *fmt, va_list ap);
extern void ftrace_dump(enum ftrace_dump_mode oops_dump_mode);
#else
static inline void tracing_start(void) { }
static inline void tracing_stop(void) { }
static inline void trace_dump_stack(int skip) { }
static inline void tracing_on(void) { }
static inline void tracing_off(void) { }
static inline int tracing_is_on(void) { return 0; }
static inline void tracing_snapshot(void) { }
static inline void tracing_snapshot_alloc(void) { }
static inline __printf(1, 2)
int trace_printk(const char *fmt, ...)
{
return 0;
}
static __printf(1, 0) inline int
ftrace_vprintk(const char *fmt, va_list ap)
{
return 0;
}
static inline void ftrace_dump(enum ftrace_dump_mode oops_dump_mode) { }
#endif /* CONFIG_TRACING */
/*
* min()/max()/clamp() macros that also do
* strict type-checking.. See the
* "unnecessary" pointer comparison.
*/
#define __min(t1, t2, min1, min2, x, y) ({ \
t1 min1 = (x); \
t2 min2 = (y); \
(void) (&min1 == &min2); \
min1 < min2 ? min1 : min2; })
#define min(x, y) \
__min(typeof(x), typeof(y), \
__UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
x, y)
#define __max(t1, t2, max1, max2, x, y) ({ \
t1 max1 = (x); \
t2 max2 = (y); \
(void) (&max1 == &max2); \
max1 > max2 ? max1 : max2; })
#define max(x, y) \
__max(typeof(x), typeof(y), \
__UNIQUE_ID(max1_), __UNIQUE_ID(max2_), \
x, y)
#define min3(x, y, z) min((typeof(x))min(x, y), z)
#define max3(x, y, z) max((typeof(x))max(x, y), z)
/**
* min_not_zero - return the minimum that is _not_ zero, unless both are zero
* @x: value1
* @y: value2
*/
#define min_not_zero(x, y) ({ \
typeof(x) __x = (x); \
typeof(y) __y = (y); \
__x == 0 ? __y : ((__y == 0) ? __x : min(__x, __y)); })
/**
* clamp - return a value clamped to a given range with strict typechecking
* @val: current value
* @lo: lowest allowable value
* @hi: highest allowable value
*
* This macro does strict typechecking of lo/hi to make sure they are of the
* same type as val. See the unnecessary pointer comparisons.
*/
#define clamp(val, lo, hi) min((typeof(val))max(val, lo), hi)
/*
* ..and if you can't take the strict
* types, you can specify one yourself.
*
* Or not use min/max/clamp at all, of course.
*/
#define min_t(type, x, y) \
__min(type, type, \
__UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
x, y)
#define max_t(type, x, y) \
__max(type, type, \
__UNIQUE_ID(min1_), __UNIQUE_ID(min2_), \
x, y)
/**
* clamp_t - return a value clamped to a given range using a given type
* @type: the type of variable to use
* @val: current value
* @lo: minimum allowable value
* @hi: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of type
* 'type' to make all the comparisons.
*/
#define clamp_t(type, val, lo, hi) min_t(type, max_t(type, val, lo), hi)
/**
* clamp_val - return a value clamped to a given range using val's type
* @val: current value
* @lo: minimum allowable value
* @hi: maximum allowable value
*
* This macro does no typechecking and uses temporary variables of whatever
* type the input argument 'val' is. This is useful when val is an unsigned
* type and min and max are literals that will otherwise be assigned a signed
* integer type.
*/
#define clamp_val(val, lo, hi) clamp_t(typeof(val), val, lo, hi)
/*
* swap - swap value of @a and @b
*/
#define swap(a, b) \
do { typeof(a) __tmp = (a); (a) = (b); (b) = __tmp; } while (0)
/**
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*
*/
#define container_of(ptr, type, member) ({ \
const typeof( ((type *)0)->member ) *__mptr = (ptr); \
(type *)( (char *)__mptr - offsetof(type,member) );})
/* Rebuild everything on CONFIG_FTRACE_MCOUNT_RECORD */
#ifdef CONFIG_FTRACE_MCOUNT_RECORD
# define REBUILD_DUE_TO_FTRACE_MCOUNT_RECORD
#endif
/* Permissions on a sysfs file: you didn't miss the 0 prefix did you? */
#define VERIFY_OCTAL_PERMISSIONS(perms) \
(BUILD_BUG_ON_ZERO((perms) < 0) + \
BUILD_BUG_ON_ZERO((perms) > 0777) + \
/* USER_READABLE >= GROUP_READABLE >= OTHER_READABLE */ \
BUILD_BUG_ON_ZERO((((perms) >> 6) & 4) < (((perms) >> 3) & 4)) + \
BUILD_BUG_ON_ZERO((((perms) >> 3) & 4) < ((perms) & 4)) + \
/* USER_WRITABLE >= GROUP_WRITABLE */ \
BUILD_BUG_ON_ZERO((((perms) >> 6) & 2) < (((perms) >> 3) & 2)) + \
/* OTHER_WRITABLE? Generally considered a bad idea. */ \
BUILD_BUG_ON_ZERO((perms) & 2) + \
(perms))
#endif