linux-stable/drivers/media/dvb-frontends/stv0910.c
Cai Huoqing be7468c77b media: dvb-frontends/stv0910: Remove repeated verbose license text
remove it because SPDX-License-Identifier is already used

Signed-off-by: Cai Huoqing <caihuoqing@baidu.com>
Signed-off-by: Sean Young <sean@mess.org>
Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2021-09-30 10:08:02 +02:00

1835 lines
50 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Driver for the ST STV0910 DVB-S/S2 demodulator.
*
* Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de>
* Marcus Metzler <mocm@metzlerbros.de>
* developed for Digital Devices GmbH
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/delay.h>
#include <linux/firmware.h>
#include <linux/i2c.h>
#include <asm/div64.h>
#include <media/dvb_frontend.h>
#include "stv0910.h"
#include "stv0910_regs.h"
#define EXT_CLOCK 30000000
#define TUNING_DELAY 200
#define BER_SRC_S 0x20
#define BER_SRC_S2 0x20
static LIST_HEAD(stvlist);
enum receive_mode { RCVMODE_NONE, RCVMODE_DVBS, RCVMODE_DVBS2, RCVMODE_AUTO };
enum dvbs2_fectype { DVBS2_64K, DVBS2_16K };
enum dvbs2_mod_cod {
DVBS2_DUMMY_PLF, DVBS2_QPSK_1_4, DVBS2_QPSK_1_3, DVBS2_QPSK_2_5,
DVBS2_QPSK_1_2, DVBS2_QPSK_3_5, DVBS2_QPSK_2_3, DVBS2_QPSK_3_4,
DVBS2_QPSK_4_5, DVBS2_QPSK_5_6, DVBS2_QPSK_8_9, DVBS2_QPSK_9_10,
DVBS2_8PSK_3_5, DVBS2_8PSK_2_3, DVBS2_8PSK_3_4, DVBS2_8PSK_5_6,
DVBS2_8PSK_8_9, DVBS2_8PSK_9_10, DVBS2_16APSK_2_3, DVBS2_16APSK_3_4,
DVBS2_16APSK_4_5, DVBS2_16APSK_5_6, DVBS2_16APSK_8_9, DVBS2_16APSK_9_10,
DVBS2_32APSK_3_4, DVBS2_32APSK_4_5, DVBS2_32APSK_5_6, DVBS2_32APSK_8_9,
DVBS2_32APSK_9_10
};
enum fe_stv0910_mod_cod {
FE_DUMMY_PLF, FE_QPSK_14, FE_QPSK_13, FE_QPSK_25,
FE_QPSK_12, FE_QPSK_35, FE_QPSK_23, FE_QPSK_34,
FE_QPSK_45, FE_QPSK_56, FE_QPSK_89, FE_QPSK_910,
FE_8PSK_35, FE_8PSK_23, FE_8PSK_34, FE_8PSK_56,
FE_8PSK_89, FE_8PSK_910, FE_16APSK_23, FE_16APSK_34,
FE_16APSK_45, FE_16APSK_56, FE_16APSK_89, FE_16APSK_910,
FE_32APSK_34, FE_32APSK_45, FE_32APSK_56, FE_32APSK_89,
FE_32APSK_910
};
enum fe_stv0910_roll_off { FE_SAT_35, FE_SAT_25, FE_SAT_20, FE_SAT_15 };
static inline u32 muldiv32(u32 a, u32 b, u32 c)
{
u64 tmp64;
tmp64 = (u64)a * (u64)b;
do_div(tmp64, c);
return (u32)tmp64;
}
struct stv_base {
struct list_head stvlist;
u8 adr;
struct i2c_adapter *i2c;
struct mutex i2c_lock; /* shared I2C access protect */
struct mutex reg_lock; /* shared register write protect */
int count;
u32 extclk;
u32 mclk;
};
struct stv {
struct stv_base *base;
struct dvb_frontend fe;
int nr;
u16 regoff;
u8 i2crpt;
u8 tscfgh;
u8 tsgeneral;
u8 tsspeed;
u8 single;
unsigned long tune_time;
s32 search_range;
u32 started;
u32 demod_lock_time;
enum receive_mode receive_mode;
u32 demod_timeout;
u32 fec_timeout;
u32 first_time_lock;
u8 demod_bits;
u32 symbol_rate;
u8 last_viterbi_rate;
enum fe_code_rate puncture_rate;
enum fe_stv0910_mod_cod mod_cod;
enum dvbs2_fectype fectype;
u32 pilots;
enum fe_stv0910_roll_off feroll_off;
int is_standard_broadcast;
int is_vcm;
u32 cur_scrambling_code;
u32 last_bernumerator;
u32 last_berdenominator;
u8 berscale;
u8 vth[6];
};
struct sinit_table {
u16 address;
u8 data;
};
struct slookup {
s16 value;
u32 reg_value;
};
static int write_reg(struct stv *state, u16 reg, u8 val)
{
struct i2c_adapter *adap = state->base->i2c;
u8 data[3] = {reg >> 8, reg & 0xff, val};
struct i2c_msg msg = {.addr = state->base->adr, .flags = 0,
.buf = data, .len = 3};
if (i2c_transfer(adap, &msg, 1) != 1) {
dev_warn(&adap->dev, "i2c write error ([%02x] %04x: %02x)\n",
state->base->adr, reg, val);
return -EIO;
}
return 0;
}
static inline int i2c_read_regs16(struct i2c_adapter *adapter, u8 adr,
u16 reg, u8 *val, int count)
{
u8 msg[2] = {reg >> 8, reg & 0xff};
struct i2c_msg msgs[2] = {{.addr = adr, .flags = 0,
.buf = msg, .len = 2},
{.addr = adr, .flags = I2C_M_RD,
.buf = val, .len = count } };
if (i2c_transfer(adapter, msgs, 2) != 2) {
dev_warn(&adapter->dev, "i2c read error ([%02x] %04x)\n",
adr, reg);
return -EIO;
}
return 0;
}
static int read_reg(struct stv *state, u16 reg, u8 *val)
{
return i2c_read_regs16(state->base->i2c, state->base->adr,
reg, val, 1);
}
static int read_regs(struct stv *state, u16 reg, u8 *val, int len)
{
return i2c_read_regs16(state->base->i2c, state->base->adr,
reg, val, len);
}
static int write_shared_reg(struct stv *state, u16 reg, u8 mask, u8 val)
{
int status;
u8 tmp;
mutex_lock(&state->base->reg_lock);
status = read_reg(state, reg, &tmp);
if (!status)
status = write_reg(state, reg, (tmp & ~mask) | (val & mask));
mutex_unlock(&state->base->reg_lock);
return status;
}
static int write_field(struct stv *state, u32 field, u8 val)
{
int status;
u8 shift, mask, old, new;
status = read_reg(state, field >> 16, &old);
if (status)
return status;
mask = field & 0xff;
shift = (field >> 12) & 0xf;
new = ((val << shift) & mask) | (old & ~mask);
if (new == old)
return 0;
return write_reg(state, field >> 16, new);
}
#define SET_FIELD(_reg, _val) \
write_field(state, state->nr ? FSTV0910_P2_##_reg : \
FSTV0910_P1_##_reg, _val)
#define SET_REG(_reg, _val) \
write_reg(state, state->nr ? RSTV0910_P2_##_reg : \
RSTV0910_P1_##_reg, _val)
#define GET_REG(_reg, _val) \
read_reg(state, state->nr ? RSTV0910_P2_##_reg : \
RSTV0910_P1_##_reg, _val)
static const struct slookup s1_sn_lookup[] = {
{ 0, 9242 }, /* C/N= 0dB */
{ 5, 9105 }, /* C/N= 0.5dB */
{ 10, 8950 }, /* C/N= 1.0dB */
{ 15, 8780 }, /* C/N= 1.5dB */
{ 20, 8566 }, /* C/N= 2.0dB */
{ 25, 8366 }, /* C/N= 2.5dB */
{ 30, 8146 }, /* C/N= 3.0dB */
{ 35, 7908 }, /* C/N= 3.5dB */
{ 40, 7666 }, /* C/N= 4.0dB */
{ 45, 7405 }, /* C/N= 4.5dB */
{ 50, 7136 }, /* C/N= 5.0dB */
{ 55, 6861 }, /* C/N= 5.5dB */
{ 60, 6576 }, /* C/N= 6.0dB */
{ 65, 6330 }, /* C/N= 6.5dB */
{ 70, 6048 }, /* C/N= 7.0dB */
{ 75, 5768 }, /* C/N= 7.5dB */
{ 80, 5492 }, /* C/N= 8.0dB */
{ 85, 5224 }, /* C/N= 8.5dB */
{ 90, 4959 }, /* C/N= 9.0dB */
{ 95, 4709 }, /* C/N= 9.5dB */
{ 100, 4467 }, /* C/N=10.0dB */
{ 105, 4236 }, /* C/N=10.5dB */
{ 110, 4013 }, /* C/N=11.0dB */
{ 115, 3800 }, /* C/N=11.5dB */
{ 120, 3598 }, /* C/N=12.0dB */
{ 125, 3406 }, /* C/N=12.5dB */
{ 130, 3225 }, /* C/N=13.0dB */
{ 135, 3052 }, /* C/N=13.5dB */
{ 140, 2889 }, /* C/N=14.0dB */
{ 145, 2733 }, /* C/N=14.5dB */
{ 150, 2587 }, /* C/N=15.0dB */
{ 160, 2318 }, /* C/N=16.0dB */
{ 170, 2077 }, /* C/N=17.0dB */
{ 180, 1862 }, /* C/N=18.0dB */
{ 190, 1670 }, /* C/N=19.0dB */
{ 200, 1499 }, /* C/N=20.0dB */
{ 210, 1347 }, /* C/N=21.0dB */
{ 220, 1213 }, /* C/N=22.0dB */
{ 230, 1095 }, /* C/N=23.0dB */
{ 240, 992 }, /* C/N=24.0dB */
{ 250, 900 }, /* C/N=25.0dB */
{ 260, 826 }, /* C/N=26.0dB */
{ 270, 758 }, /* C/N=27.0dB */
{ 280, 702 }, /* C/N=28.0dB */
{ 290, 653 }, /* C/N=29.0dB */
{ 300, 613 }, /* C/N=30.0dB */
{ 310, 579 }, /* C/N=31.0dB */
{ 320, 550 }, /* C/N=32.0dB */
{ 330, 526 }, /* C/N=33.0dB */
{ 350, 490 }, /* C/N=33.0dB */
{ 400, 445 }, /* C/N=40.0dB */
{ 450, 430 }, /* C/N=45.0dB */
{ 500, 426 }, /* C/N=50.0dB */
{ 510, 425 } /* C/N=51.0dB */
};
static const struct slookup s2_sn_lookup[] = {
{ -30, 13950 }, /* C/N=-2.5dB */
{ -25, 13580 }, /* C/N=-2.5dB */
{ -20, 13150 }, /* C/N=-2.0dB */
{ -15, 12760 }, /* C/N=-1.5dB */
{ -10, 12345 }, /* C/N=-1.0dB */
{ -5, 11900 }, /* C/N=-0.5dB */
{ 0, 11520 }, /* C/N= 0dB */
{ 5, 11080 }, /* C/N= 0.5dB */
{ 10, 10630 }, /* C/N= 1.0dB */
{ 15, 10210 }, /* C/N= 1.5dB */
{ 20, 9790 }, /* C/N= 2.0dB */
{ 25, 9390 }, /* C/N= 2.5dB */
{ 30, 8970 }, /* C/N= 3.0dB */
{ 35, 8575 }, /* C/N= 3.5dB */
{ 40, 8180 }, /* C/N= 4.0dB */
{ 45, 7800 }, /* C/N= 4.5dB */
{ 50, 7430 }, /* C/N= 5.0dB */
{ 55, 7080 }, /* C/N= 5.5dB */
{ 60, 6720 }, /* C/N= 6.0dB */
{ 65, 6320 }, /* C/N= 6.5dB */
{ 70, 6060 }, /* C/N= 7.0dB */
{ 75, 5760 }, /* C/N= 7.5dB */
{ 80, 5480 }, /* C/N= 8.0dB */
{ 85, 5200 }, /* C/N= 8.5dB */
{ 90, 4930 }, /* C/N= 9.0dB */
{ 95, 4680 }, /* C/N= 9.5dB */
{ 100, 4425 }, /* C/N=10.0dB */
{ 105, 4210 }, /* C/N=10.5dB */
{ 110, 3980 }, /* C/N=11.0dB */
{ 115, 3765 }, /* C/N=11.5dB */
{ 120, 3570 }, /* C/N=12.0dB */
{ 125, 3315 }, /* C/N=12.5dB */
{ 130, 3140 }, /* C/N=13.0dB */
{ 135, 2980 }, /* C/N=13.5dB */
{ 140, 2820 }, /* C/N=14.0dB */
{ 145, 2670 }, /* C/N=14.5dB */
{ 150, 2535 }, /* C/N=15.0dB */
{ 160, 2270 }, /* C/N=16.0dB */
{ 170, 2035 }, /* C/N=17.0dB */
{ 180, 1825 }, /* C/N=18.0dB */
{ 190, 1650 }, /* C/N=19.0dB */
{ 200, 1485 }, /* C/N=20.0dB */
{ 210, 1340 }, /* C/N=21.0dB */
{ 220, 1212 }, /* C/N=22.0dB */
{ 230, 1100 }, /* C/N=23.0dB */
{ 240, 1000 }, /* C/N=24.0dB */
{ 250, 910 }, /* C/N=25.0dB */
{ 260, 836 }, /* C/N=26.0dB */
{ 270, 772 }, /* C/N=27.0dB */
{ 280, 718 }, /* C/N=28.0dB */
{ 290, 671 }, /* C/N=29.0dB */
{ 300, 635 }, /* C/N=30.0dB */
{ 310, 602 }, /* C/N=31.0dB */
{ 320, 575 }, /* C/N=32.0dB */
{ 330, 550 }, /* C/N=33.0dB */
{ 350, 517 }, /* C/N=35.0dB */
{ 400, 480 }, /* C/N=40.0dB */
{ 450, 466 }, /* C/N=45.0dB */
{ 500, 464 }, /* C/N=50.0dB */
{ 510, 463 }, /* C/N=51.0dB */
};
static const struct slookup padc_lookup[] = {
{ 0, 118000 }, /* PADC= +0dBm */
{ -100, 93600 }, /* PADC= -1dBm */
{ -200, 74500 }, /* PADC= -2dBm */
{ -300, 59100 }, /* PADC= -3dBm */
{ -400, 47000 }, /* PADC= -4dBm */
{ -500, 37300 }, /* PADC= -5dBm */
{ -600, 29650 }, /* PADC= -6dBm */
{ -700, 23520 }, /* PADC= -7dBm */
{ -900, 14850 }, /* PADC= -9dBm */
{ -1100, 9380 }, /* PADC=-11dBm */
{ -1300, 5910 }, /* PADC=-13dBm */
{ -1500, 3730 }, /* PADC=-15dBm */
{ -1700, 2354 }, /* PADC=-17dBm */
{ -1900, 1485 }, /* PADC=-19dBm */
{ -2000, 1179 }, /* PADC=-20dBm */
{ -2100, 1000 }, /* PADC=-21dBm */
};
/*********************************************************************
* Tracking carrier loop carrier QPSK 1/4 to 8PSK 9/10 long Frame
*********************************************************************/
static const u8 s2car_loop[] = {
/*
* Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff
* 20MPon 20MPoff 30MPon 30MPoff
*/
/* FE_QPSK_14 */
0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x2A, 0x1C, 0x3A, 0x3B,
/* FE_QPSK_13 */
0x0C, 0x3C, 0x0B, 0x3C, 0x2A, 0x2C, 0x3A, 0x0C, 0x3A, 0x2B,
/* FE_QPSK_25 */
0x1C, 0x3C, 0x1B, 0x3C, 0x3A, 0x1C, 0x3A, 0x3B, 0x3A, 0x2B,
/* FE_QPSK_12 */
0x0C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
/* FE_QPSK_35 */
0x1C, 0x1C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
/* FE_QPSK_23 */
0x2C, 0x2C, 0x2B, 0x1C, 0x0B, 0x2C, 0x0B, 0x0C, 0x2A, 0x2B,
/* FE_QPSK_34 */
0x3C, 0x2C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
/* FE_QPSK_45 */
0x0D, 0x3C, 0x3B, 0x2C, 0x1B, 0x1C, 0x1B, 0x3B, 0x3A, 0x1B,
/* FE_QPSK_56 */
0x1D, 0x3C, 0x0C, 0x2C, 0x2B, 0x1C, 0x1B, 0x3B, 0x0B, 0x1B,
/* FE_QPSK_89 */
0x3D, 0x0D, 0x0C, 0x2C, 0x2B, 0x0C, 0x2B, 0x2B, 0x0B, 0x0B,
/* FE_QPSK_910 */
0x1E, 0x0D, 0x1C, 0x2C, 0x3B, 0x0C, 0x2B, 0x2B, 0x1B, 0x0B,
/* FE_8PSK_35 */
0x28, 0x09, 0x28, 0x09, 0x28, 0x09, 0x28, 0x08, 0x28, 0x27,
/* FE_8PSK_23 */
0x19, 0x29, 0x19, 0x29, 0x19, 0x29, 0x38, 0x19, 0x28, 0x09,
/* FE_8PSK_34 */
0x1A, 0x0B, 0x1A, 0x3A, 0x0A, 0x2A, 0x39, 0x2A, 0x39, 0x1A,
/* FE_8PSK_56 */
0x2B, 0x2B, 0x1B, 0x1B, 0x0B, 0x1B, 0x1A, 0x0B, 0x1A, 0x1A,
/* FE_8PSK_89 */
0x0C, 0x0C, 0x3B, 0x3B, 0x1B, 0x1B, 0x2A, 0x0B, 0x2A, 0x2A,
/* FE_8PSK_910 */
0x0C, 0x1C, 0x0C, 0x3B, 0x2B, 0x1B, 0x3A, 0x0B, 0x2A, 0x2A,
/**********************************************************************
* Tracking carrier loop carrier 16APSK 2/3 to 32APSK 9/10 long Frame
**********************************************************************/
/*
* Modcod 2MPon 2MPoff 5MPon 5MPoff 10MPon 10MPoff 20MPon
* 20MPoff 30MPon 30MPoff
*/
/* FE_16APSK_23 */
0x0A, 0x0A, 0x0A, 0x0A, 0x1A, 0x0A, 0x39, 0x0A, 0x29, 0x0A,
/* FE_16APSK_34 */
0x0A, 0x0A, 0x0A, 0x0A, 0x0B, 0x0A, 0x2A, 0x0A, 0x1A, 0x0A,
/* FE_16APSK_45 */
0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
/* FE_16APSK_56 */
0x0A, 0x0A, 0x0A, 0x0A, 0x1B, 0x0A, 0x3A, 0x0A, 0x2A, 0x0A,
/* FE_16APSK_89 */
0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
/* FE_16APSK_910 */
0x0A, 0x0A, 0x0A, 0x0A, 0x2B, 0x0A, 0x0B, 0x0A, 0x3A, 0x0A,
/* FE_32APSK_34 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
/* FE_32APSK_45 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
/* FE_32APSK_56 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
/* FE_32APSK_89 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
/* FE_32APSK_910 */
0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09, 0x09,
};
static u8 get_optim_cloop(struct stv *state,
enum fe_stv0910_mod_cod mod_cod, u32 pilots)
{
int i = 0;
if (mod_cod >= FE_32APSK_910)
i = ((int)FE_32APSK_910 - (int)FE_QPSK_14) * 10;
else if (mod_cod >= FE_QPSK_14)
i = ((int)mod_cod - (int)FE_QPSK_14) * 10;
if (state->symbol_rate <= 3000000)
i += 0;
else if (state->symbol_rate <= 7000000)
i += 2;
else if (state->symbol_rate <= 15000000)
i += 4;
else if (state->symbol_rate <= 25000000)
i += 6;
else
i += 8;
if (!pilots)
i += 1;
return s2car_loop[i];
}
static int get_cur_symbol_rate(struct stv *state, u32 *p_symbol_rate)
{
int status = 0;
u8 symb_freq0;
u8 symb_freq1;
u8 symb_freq2;
u8 symb_freq3;
u8 tim_offs0;
u8 tim_offs1;
u8 tim_offs2;
u32 symbol_rate;
s32 timing_offset;
*p_symbol_rate = 0;
if (!state->started)
return status;
read_reg(state, RSTV0910_P2_SFR3 + state->regoff, &symb_freq3);
read_reg(state, RSTV0910_P2_SFR2 + state->regoff, &symb_freq2);
read_reg(state, RSTV0910_P2_SFR1 + state->regoff, &symb_freq1);
read_reg(state, RSTV0910_P2_SFR0 + state->regoff, &symb_freq0);
read_reg(state, RSTV0910_P2_TMGREG2 + state->regoff, &tim_offs2);
read_reg(state, RSTV0910_P2_TMGREG1 + state->regoff, &tim_offs1);
read_reg(state, RSTV0910_P2_TMGREG0 + state->regoff, &tim_offs0);
symbol_rate = ((u32)symb_freq3 << 24) | ((u32)symb_freq2 << 16) |
((u32)symb_freq1 << 8) | (u32)symb_freq0;
timing_offset = ((u32)tim_offs2 << 16) | ((u32)tim_offs1 << 8) |
(u32)tim_offs0;
if ((timing_offset & (1 << 23)) != 0)
timing_offset |= 0xFF000000; /* Sign extent */
symbol_rate = (u32)(((u64)symbol_rate * state->base->mclk) >> 32);
timing_offset = (s32)(((s64)symbol_rate * (s64)timing_offset) >> 29);
*p_symbol_rate = symbol_rate + timing_offset;
return 0;
}
static int get_signal_parameters(struct stv *state)
{
u8 tmp;
if (!state->started)
return -EINVAL;
if (state->receive_mode == RCVMODE_DVBS2) {
read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
state->mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
state->pilots = (tmp & 0x01) != 0;
state->fectype = (enum dvbs2_fectype)((tmp & 0x02) >> 1);
} else if (state->receive_mode == RCVMODE_DVBS) {
read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
state->puncture_rate = FEC_NONE;
switch (tmp & 0x1F) {
case 0x0d:
state->puncture_rate = FEC_1_2;
break;
case 0x12:
state->puncture_rate = FEC_2_3;
break;
case 0x15:
state->puncture_rate = FEC_3_4;
break;
case 0x18:
state->puncture_rate = FEC_5_6;
break;
case 0x1a:
state->puncture_rate = FEC_7_8;
break;
}
state->is_vcm = 0;
state->is_standard_broadcast = 1;
state->feroll_off = FE_SAT_35;
}
return 0;
}
static int tracking_optimization(struct stv *state)
{
u8 tmp;
read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &tmp);
tmp &= ~0xC0;
switch (state->receive_mode) {
case RCVMODE_DVBS:
tmp |= 0x40;
break;
case RCVMODE_DVBS2:
tmp |= 0x80;
break;
default:
tmp |= 0xC0;
break;
}
write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, tmp);
if (state->receive_mode == RCVMODE_DVBS2) {
/* Disable Reed-Solomon */
write_shared_reg(state,
RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01,
0x03);
if (state->fectype == DVBS2_64K) {
u8 aclc = get_optim_cloop(state, state->mod_cod,
state->pilots);
if (state->mod_cod <= FE_QPSK_910) {
write_reg(state, RSTV0910_P2_ACLC2S2Q +
state->regoff, aclc);
} else if (state->mod_cod <= FE_8PSK_910) {
write_reg(state, RSTV0910_P2_ACLC2S2Q +
state->regoff, 0x2a);
write_reg(state, RSTV0910_P2_ACLC2S28 +
state->regoff, aclc);
} else if (state->mod_cod <= FE_16APSK_910) {
write_reg(state, RSTV0910_P2_ACLC2S2Q +
state->regoff, 0x2a);
write_reg(state, RSTV0910_P2_ACLC2S216A +
state->regoff, aclc);
} else if (state->mod_cod <= FE_32APSK_910) {
write_reg(state, RSTV0910_P2_ACLC2S2Q +
state->regoff, 0x2a);
write_reg(state, RSTV0910_P2_ACLC2S232A +
state->regoff, aclc);
}
}
}
return 0;
}
static s32 table_lookup(const struct slookup *table,
int table_size, u32 reg_value)
{
s32 value;
int imin = 0;
int imax = table_size - 1;
int i;
s32 reg_diff;
/* Assumes Table[0].RegValue > Table[imax].RegValue */
if (reg_value >= table[0].reg_value) {
value = table[0].value;
} else if (reg_value <= table[imax].reg_value) {
value = table[imax].value;
} else {
while ((imax - imin) > 1) {
i = (imax + imin) / 2;
if ((table[imin].reg_value >= reg_value) &&
(reg_value >= table[i].reg_value))
imax = i;
else
imin = i;
}
reg_diff = table[imax].reg_value - table[imin].reg_value;
value = table[imin].value;
if (reg_diff != 0)
value += ((s32)(reg_value - table[imin].reg_value) *
(s32)(table[imax].value
- table[imin].value))
/ (reg_diff);
}
return value;
}
static int get_signal_to_noise(struct stv *state, s32 *signal_to_noise)
{
u8 data0;
u8 data1;
u16 data;
int n_lookup;
const struct slookup *lookup;
*signal_to_noise = 0;
if (!state->started)
return -EINVAL;
if (state->receive_mode == RCVMODE_DVBS2) {
read_reg(state, RSTV0910_P2_NNOSPLHT1 + state->regoff,
&data1);
read_reg(state, RSTV0910_P2_NNOSPLHT0 + state->regoff,
&data0);
n_lookup = ARRAY_SIZE(s2_sn_lookup);
lookup = s2_sn_lookup;
} else {
read_reg(state, RSTV0910_P2_NNOSDATAT1 + state->regoff,
&data1);
read_reg(state, RSTV0910_P2_NNOSDATAT0 + state->regoff,
&data0);
n_lookup = ARRAY_SIZE(s1_sn_lookup);
lookup = s1_sn_lookup;
}
data = (((u16)data1) << 8) | (u16)data0;
*signal_to_noise = table_lookup(lookup, n_lookup, data);
return 0;
}
static int get_bit_error_rate_s(struct stv *state, u32 *bernumerator,
u32 *berdenominator)
{
u8 regs[3];
int status = read_regs(state,
RSTV0910_P2_ERRCNT12 + state->regoff,
regs, 3);
if (status)
return -EINVAL;
if ((regs[0] & 0x80) == 0) {
state->last_berdenominator = 1ULL << ((state->berscale * 2) +
10 + 3);
state->last_bernumerator = ((u32)(regs[0] & 0x7F) << 16) |
((u32)regs[1] << 8) | regs[2];
if (state->last_bernumerator < 256 && state->berscale < 6) {
state->berscale += 1;
status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
state->regoff,
0x20 | state->berscale);
} else if (state->last_bernumerator > 1024 &&
state->berscale > 2) {
state->berscale -= 1;
status = write_reg(state, RSTV0910_P2_ERRCTRL1 +
state->regoff, 0x20 |
state->berscale);
}
}
*bernumerator = state->last_bernumerator;
*berdenominator = state->last_berdenominator;
return 0;
}
static u32 dvbs2_nbch(enum dvbs2_mod_cod mod_cod, enum dvbs2_fectype fectype)
{
static const u32 nbch[][2] = {
{ 0, 0}, /* DUMMY_PLF */
{16200, 3240}, /* QPSK_1_4, */
{21600, 5400}, /* QPSK_1_3, */
{25920, 6480}, /* QPSK_2_5, */
{32400, 7200}, /* QPSK_1_2, */
{38880, 9720}, /* QPSK_3_5, */
{43200, 10800}, /* QPSK_2_3, */
{48600, 11880}, /* QPSK_3_4, */
{51840, 12600}, /* QPSK_4_5, */
{54000, 13320}, /* QPSK_5_6, */
{57600, 14400}, /* QPSK_8_9, */
{58320, 16000}, /* QPSK_9_10, */
{43200, 9720}, /* 8PSK_3_5, */
{48600, 10800}, /* 8PSK_2_3, */
{51840, 11880}, /* 8PSK_3_4, */
{54000, 13320}, /* 8PSK_5_6, */
{57600, 14400}, /* 8PSK_8_9, */
{58320, 16000}, /* 8PSK_9_10, */
{43200, 10800}, /* 16APSK_2_3, */
{48600, 11880}, /* 16APSK_3_4, */
{51840, 12600}, /* 16APSK_4_5, */
{54000, 13320}, /* 16APSK_5_6, */
{57600, 14400}, /* 16APSK_8_9, */
{58320, 16000}, /* 16APSK_9_10 */
{48600, 11880}, /* 32APSK_3_4, */
{51840, 12600}, /* 32APSK_4_5, */
{54000, 13320}, /* 32APSK_5_6, */
{57600, 14400}, /* 32APSK_8_9, */
{58320, 16000}, /* 32APSK_9_10 */
};
if (mod_cod >= DVBS2_QPSK_1_4 &&
mod_cod <= DVBS2_32APSK_9_10 && fectype <= DVBS2_16K)
return nbch[mod_cod][fectype];
return 64800;
}
static int get_bit_error_rate_s2(struct stv *state, u32 *bernumerator,
u32 *berdenominator)
{
u8 regs[3];
int status = read_regs(state, RSTV0910_P2_ERRCNT12 + state->regoff,
regs, 3);
if (status)
return -EINVAL;
if ((regs[0] & 0x80) == 0) {
state->last_berdenominator =
dvbs2_nbch((enum dvbs2_mod_cod)state->mod_cod,
state->fectype) <<
(state->berscale * 2);
state->last_bernumerator = (((u32)regs[0] & 0x7F) << 16) |
((u32)regs[1] << 8) | regs[2];
if (state->last_bernumerator < 256 && state->berscale < 6) {
state->berscale += 1;
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
0x20 | state->berscale);
} else if (state->last_bernumerator > 1024 &&
state->berscale > 2) {
state->berscale -= 1;
write_reg(state, RSTV0910_P2_ERRCTRL1 + state->regoff,
0x20 | state->berscale);
}
}
*bernumerator = state->last_bernumerator;
*berdenominator = state->last_berdenominator;
return status;
}
static int get_bit_error_rate(struct stv *state, u32 *bernumerator,
u32 *berdenominator)
{
*bernumerator = 0;
*berdenominator = 1;
switch (state->receive_mode) {
case RCVMODE_DVBS:
return get_bit_error_rate_s(state,
bernumerator, berdenominator);
case RCVMODE_DVBS2:
return get_bit_error_rate_s2(state,
bernumerator, berdenominator);
default:
break;
}
return 0;
}
static int set_mclock(struct stv *state, u32 master_clock)
{
u32 idf = 1;
u32 odf = 4;
u32 quartz = state->base->extclk / 1000000;
u32 fphi = master_clock / 1000000;
u32 ndiv = (fphi * odf * idf) / quartz;
u32 cp = 7;
u32 fvco;
if (ndiv >= 7 && ndiv <= 71)
cp = 7;
else if (ndiv >= 72 && ndiv <= 79)
cp = 8;
else if (ndiv >= 80 && ndiv <= 87)
cp = 9;
else if (ndiv >= 88 && ndiv <= 95)
cp = 10;
else if (ndiv >= 96 && ndiv <= 103)
cp = 11;
else if (ndiv >= 104 && ndiv <= 111)
cp = 12;
else if (ndiv >= 112 && ndiv <= 119)
cp = 13;
else if (ndiv >= 120 && ndiv <= 127)
cp = 14;
else if (ndiv >= 128 && ndiv <= 135)
cp = 15;
else if (ndiv >= 136 && ndiv <= 143)
cp = 16;
else if (ndiv >= 144 && ndiv <= 151)
cp = 17;
else if (ndiv >= 152 && ndiv <= 159)
cp = 18;
else if (ndiv >= 160 && ndiv <= 167)
cp = 19;
else if (ndiv >= 168 && ndiv <= 175)
cp = 20;
else if (ndiv >= 176 && ndiv <= 183)
cp = 21;
else if (ndiv >= 184 && ndiv <= 191)
cp = 22;
else if (ndiv >= 192 && ndiv <= 199)
cp = 23;
else if (ndiv >= 200 && ndiv <= 207)
cp = 24;
else if (ndiv >= 208 && ndiv <= 215)
cp = 25;
else if (ndiv >= 216 && ndiv <= 223)
cp = 26;
else if (ndiv >= 224 && ndiv <= 225)
cp = 27;
write_reg(state, RSTV0910_NCOARSE, (cp << 3) | idf);
write_reg(state, RSTV0910_NCOARSE2, odf);
write_reg(state, RSTV0910_NCOARSE1, ndiv);
fvco = (quartz * 2 * ndiv) / idf;
state->base->mclk = fvco / (2 * odf) * 1000000;
return 0;
}
static int stop(struct stv *state)
{
if (state->started) {
u8 tmp;
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
state->tscfgh | 0x01);
read_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, &tmp);
tmp &= ~0x01; /* release reset DVBS2 packet delin */
write_reg(state, RSTV0910_P2_PDELCTRL1 + state->regoff, tmp);
/* Blind optim*/
write_reg(state, RSTV0910_P2_AGC2O + state->regoff, 0x5B);
/* Stop the demod */
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5c);
state->started = 0;
}
state->receive_mode = RCVMODE_NONE;
return 0;
}
static void set_pls(struct stv *state, u32 pls_code)
{
if (pls_code == state->cur_scrambling_code)
return;
/* PLROOT2 bit 2 = gold code */
write_reg(state, RSTV0910_P2_PLROOT0 + state->regoff,
pls_code & 0xff);
write_reg(state, RSTV0910_P2_PLROOT1 + state->regoff,
(pls_code >> 8) & 0xff);
write_reg(state, RSTV0910_P2_PLROOT2 + state->regoff,
0x04 | ((pls_code >> 16) & 0x03));
state->cur_scrambling_code = pls_code;
}
static void set_isi(struct stv *state, u32 isi)
{
if (isi == NO_STREAM_ID_FILTER)
return;
if (isi == 0x80000000) {
SET_FIELD(FORCE_CONTINUOUS, 1);
SET_FIELD(TSOUT_NOSYNC, 1);
} else {
SET_FIELD(FILTER_EN, 1);
write_reg(state, RSTV0910_P2_ISIENTRY + state->regoff,
isi & 0xff);
write_reg(state, RSTV0910_P2_ISIBITENA + state->regoff, 0xff);
}
SET_FIELD(ALGOSWRST, 1);
SET_FIELD(ALGOSWRST, 0);
}
static void set_stream_modes(struct stv *state,
struct dtv_frontend_properties *p)
{
set_isi(state, p->stream_id);
set_pls(state, p->scrambling_sequence_index);
}
static int init_search_param(struct stv *state,
struct dtv_frontend_properties *p)
{
SET_FIELD(FORCE_CONTINUOUS, 0);
SET_FIELD(FRAME_MODE, 0);
SET_FIELD(FILTER_EN, 0);
SET_FIELD(TSOUT_NOSYNC, 0);
SET_FIELD(TSFIFO_EMBINDVB, 0);
SET_FIELD(TSDEL_SYNCBYTE, 0);
SET_REG(UPLCCST0, 0xe0);
SET_FIELD(TSINS_TOKEN, 0);
SET_FIELD(HYSTERESIS_THRESHOLD, 0);
SET_FIELD(ISIOBS_MODE, 1);
set_stream_modes(state, p);
return 0;
}
static int enable_puncture_rate(struct stv *state, enum fe_code_rate rate)
{
u8 val;
switch (rate) {
case FEC_1_2:
val = 0x01;
break;
case FEC_2_3:
val = 0x02;
break;
case FEC_3_4:
val = 0x04;
break;
case FEC_5_6:
val = 0x08;
break;
case FEC_7_8:
val = 0x20;
break;
case FEC_NONE:
default:
val = 0x2f;
break;
}
return write_reg(state, RSTV0910_P2_PRVIT + state->regoff, val);
}
static int set_vth_default(struct stv *state)
{
state->vth[0] = 0xd7;
state->vth[1] = 0x85;
state->vth[2] = 0x58;
state->vth[3] = 0x3a;
state->vth[4] = 0x34;
state->vth[5] = 0x28;
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
return 0;
}
static int set_vth(struct stv *state)
{
static const struct slookup vthlookup_table[] = {
{250, 8780}, /* C/N= 1.5dB */
{100, 7405}, /* C/N= 4.5dB */
{40, 6330}, /* C/N= 6.5dB */
{12, 5224}, /* C/N= 8.5dB */
{5, 4236} /* C/N=10.5dB */
};
int i;
u8 tmp[2];
int status = read_regs(state,
RSTV0910_P2_NNOSDATAT1 + state->regoff,
tmp, 2);
u16 reg_value = (tmp[0] << 8) | tmp[1];
s32 vth = table_lookup(vthlookup_table, ARRAY_SIZE(vthlookup_table),
reg_value);
for (i = 0; i < 6; i += 1)
if (state->vth[i] > vth)
state->vth[i] = vth;
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 0, state->vth[0]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 1, state->vth[1]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 2, state->vth[2]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 3, state->vth[3]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 4, state->vth[4]);
write_reg(state, RSTV0910_P2_VTH12 + state->regoff + 5, state->vth[5]);
return status;
}
static int start(struct stv *state, struct dtv_frontend_properties *p)
{
s32 freq;
u8 reg_dmdcfgmd;
u16 symb;
if (p->symbol_rate < 100000 || p->symbol_rate > 70000000)
return -EINVAL;
state->receive_mode = RCVMODE_NONE;
state->demod_lock_time = 0;
/* Demod Stop */
if (state->started)
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x5C);
init_search_param(state, p);
if (p->symbol_rate <= 1000000) { /* SR <=1Msps */
state->demod_timeout = 3000;
state->fec_timeout = 2000;
} else if (p->symbol_rate <= 2000000) { /* 1Msps < SR <=2Msps */
state->demod_timeout = 2500;
state->fec_timeout = 1300;
} else if (p->symbol_rate <= 5000000) { /* 2Msps< SR <=5Msps */
state->demod_timeout = 1000;
state->fec_timeout = 650;
} else if (p->symbol_rate <= 10000000) { /* 5Msps< SR <=10Msps */
state->demod_timeout = 700;
state->fec_timeout = 350;
} else if (p->symbol_rate < 20000000) { /* 10Msps< SR <=20Msps */
state->demod_timeout = 400;
state->fec_timeout = 200;
} else { /* SR >=20Msps */
state->demod_timeout = 300;
state->fec_timeout = 200;
}
/* Set the Init Symbol rate */
symb = muldiv32(p->symbol_rate, 65536, state->base->mclk);
write_reg(state, RSTV0910_P2_SFRINIT1 + state->regoff,
((symb >> 8) & 0x7F));
write_reg(state, RSTV0910_P2_SFRINIT0 + state->regoff, (symb & 0xFF));
state->demod_bits |= 0x80;
write_reg(state, RSTV0910_P2_DEMOD + state->regoff, state->demod_bits);
/* FE_STV0910_SetSearchStandard */
read_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff, &reg_dmdcfgmd);
write_reg(state, RSTV0910_P2_DMDCFGMD + state->regoff,
reg_dmdcfgmd |= 0xC0);
write_shared_reg(state,
RSTV0910_TSTTSRS, state->nr ? 0x02 : 0x01, 0x00);
/* Disable DSS */
write_reg(state, RSTV0910_P2_FECM + state->regoff, 0x00);
write_reg(state, RSTV0910_P2_PRVIT + state->regoff, 0x2F);
enable_puncture_rate(state, FEC_NONE);
/* 8PSK 3/5, 8PSK 2/3 Poff tracking optimization WA */
write_reg(state, RSTV0910_P2_ACLC2S2Q + state->regoff, 0x0B);
write_reg(state, RSTV0910_P2_ACLC2S28 + state->regoff, 0x0A);
write_reg(state, RSTV0910_P2_BCLC2S2Q + state->regoff, 0x84);
write_reg(state, RSTV0910_P2_BCLC2S28 + state->regoff, 0x84);
write_reg(state, RSTV0910_P2_CARHDR + state->regoff, 0x1C);
write_reg(state, RSTV0910_P2_CARFREQ + state->regoff, 0x79);
write_reg(state, RSTV0910_P2_ACLC2S216A + state->regoff, 0x29);
write_reg(state, RSTV0910_P2_ACLC2S232A + state->regoff, 0x09);
write_reg(state, RSTV0910_P2_BCLC2S216A + state->regoff, 0x84);
write_reg(state, RSTV0910_P2_BCLC2S232A + state->regoff, 0x84);
/*
* Reset CAR3, bug DVBS2->DVBS1 lock
* Note: The bit is only pulsed -> no lock on shared register needed
*/
write_reg(state, RSTV0910_TSTRES0, state->nr ? 0x04 : 0x08);
write_reg(state, RSTV0910_TSTRES0, 0);
set_vth_default(state);
/* Reset demod */
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
write_reg(state, RSTV0910_P2_CARCFG + state->regoff, 0x46);
if (p->symbol_rate <= 5000000)
freq = (state->search_range / 2000) + 80;
else
freq = (state->search_range / 2000) + 1600;
freq = (freq << 16) / (state->base->mclk / 1000);
write_reg(state, RSTV0910_P2_CFRUP1 + state->regoff,
(freq >> 8) & 0xff);
write_reg(state, RSTV0910_P2_CFRUP0 + state->regoff, (freq & 0xff));
/* CFR Low Setting */
freq = -freq;
write_reg(state, RSTV0910_P2_CFRLOW1 + state->regoff,
(freq >> 8) & 0xff);
write_reg(state, RSTV0910_P2_CFRLOW0 + state->regoff, (freq & 0xff));
/* init the demod frequency offset to 0 */
write_reg(state, RSTV0910_P2_CFRINIT1 + state->regoff, 0);
write_reg(state, RSTV0910_P2_CFRINIT0 + state->regoff, 0);
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x1F);
/* Trigger acq */
write_reg(state, RSTV0910_P2_DMDISTATE + state->regoff, 0x15);
state->demod_lock_time += TUNING_DELAY;
state->started = 1;
return 0;
}
static int init_diseqc(struct stv *state)
{
u16 offs = state->nr ? 0x40 : 0; /* Address offset */
u8 freq = ((state->base->mclk + 11000 * 32) / (22000 * 32));
/* Disable receiver */
write_reg(state, RSTV0910_P1_DISRXCFG + offs, 0x00);
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0xBA); /* Reset = 1 */
write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3A); /* Reset = 0 */
write_reg(state, RSTV0910_P1_DISTXF22 + offs, freq);
return 0;
}
static int probe(struct stv *state)
{
u8 id;
state->receive_mode = RCVMODE_NONE;
state->started = 0;
if (read_reg(state, RSTV0910_MID, &id) < 0)
return -ENODEV;
if (id != 0x51)
return -EINVAL;
/* Configure the I2C repeater to off */
write_reg(state, RSTV0910_P1_I2CRPT, 0x24);
/* Configure the I2C repeater to off */
write_reg(state, RSTV0910_P2_I2CRPT, 0x24);
/* Set the I2C to oversampling ratio */
write_reg(state, RSTV0910_I2CCFG, 0x88); /* state->i2ccfg */
write_reg(state, RSTV0910_OUTCFG, 0x00); /* OUTCFG */
write_reg(state, RSTV0910_PADCFG, 0x05); /* RFAGC Pads Dev = 05 */
write_reg(state, RSTV0910_SYNTCTRL, 0x02); /* SYNTCTRL */
write_reg(state, RSTV0910_TSGENERAL, state->tsgeneral); /* TSGENERAL */
write_reg(state, RSTV0910_CFGEXT, 0x02); /* CFGEXT */
if (state->single)
write_reg(state, RSTV0910_GENCFG, 0x14); /* GENCFG */
else
write_reg(state, RSTV0910_GENCFG, 0x15); /* GENCFG */
write_reg(state, RSTV0910_P1_TNRCFG2, 0x02); /* IQSWAP = 0 */
write_reg(state, RSTV0910_P2_TNRCFG2, 0x82); /* IQSWAP = 1 */
write_reg(state, RSTV0910_P1_CAR3CFG, 0x02);
write_reg(state, RSTV0910_P2_CAR3CFG, 0x02);
write_reg(state, RSTV0910_P1_DMDCFG4, 0x04);
write_reg(state, RSTV0910_P2_DMDCFG4, 0x04);
write_reg(state, RSTV0910_TSTRES0, 0x80); /* LDPC Reset */
write_reg(state, RSTV0910_TSTRES0, 0x00);
write_reg(state, RSTV0910_P1_TSPIDFLT1, 0x00);
write_reg(state, RSTV0910_P2_TSPIDFLT1, 0x00);
write_reg(state, RSTV0910_P1_TMGCFG2, 0x80);
write_reg(state, RSTV0910_P2_TMGCFG2, 0x80);
set_mclock(state, 135000000);
/* TS output */
write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
write_reg(state, RSTV0910_P1_TSCFGM, 0xC0); /* Manual speed */
write_reg(state, RSTV0910_P1_TSCFGL, 0x20);
write_reg(state, RSTV0910_P1_TSSPEED, state->tsspeed);
write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
write_reg(state, RSTV0910_P2_TSCFGM, 0xC0); /* Manual speed */
write_reg(state, RSTV0910_P2_TSCFGL, 0x20);
write_reg(state, RSTV0910_P2_TSSPEED, state->tsspeed);
/* Reset stream merger */
write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh | 0x01);
write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh | 0x01);
write_reg(state, RSTV0910_P1_TSCFGH, state->tscfgh);
write_reg(state, RSTV0910_P2_TSCFGH, state->tscfgh);
write_reg(state, RSTV0910_P1_I2CRPT, state->i2crpt);
write_reg(state, RSTV0910_P2_I2CRPT, state->i2crpt);
write_reg(state, RSTV0910_P1_TSINSDELM, 0x17);
write_reg(state, RSTV0910_P1_TSINSDELL, 0xff);
write_reg(state, RSTV0910_P2_TSINSDELM, 0x17);
write_reg(state, RSTV0910_P2_TSINSDELL, 0xff);
init_diseqc(state);
return 0;
}
static int gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct stv *state = fe->demodulator_priv;
u8 i2crpt = state->i2crpt & ~0x86;
/*
* mutex_lock note: Concurrent I2C gate bus accesses must be
* prevented (STV0910 = dual demod on a single IC with a single I2C
* gate/bus, and two tuners attached), similar to most (if not all)
* other I2C host interfaces/buses.
*
* enable=1 (open I2C gate) will grab the lock
* enable=0 (close I2C gate) releases the lock
*/
if (enable) {
mutex_lock(&state->base->i2c_lock);
i2crpt |= 0x80;
} else {
i2crpt |= 0x02;
}
if (write_reg(state, state->nr ? RSTV0910_P2_I2CRPT :
RSTV0910_P1_I2CRPT, i2crpt) < 0) {
/* don't hold the I2C bus lock on failure */
if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
mutex_unlock(&state->base->i2c_lock);
dev_err(&state->base->i2c->dev,
"%s() write_reg failure (enable=%d)\n",
__func__, enable);
return -EIO;
}
state->i2crpt = i2crpt;
if (!enable)
if (!WARN_ON(!mutex_is_locked(&state->base->i2c_lock)))
mutex_unlock(&state->base->i2c_lock);
return 0;
}
static void release(struct dvb_frontend *fe)
{
struct stv *state = fe->demodulator_priv;
state->base->count--;
if (state->base->count == 0) {
list_del(&state->base->stvlist);
kfree(state->base);
}
kfree(state);
}
static int set_parameters(struct dvb_frontend *fe)
{
int stat = 0;
struct stv *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
stop(state);
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
state->symbol_rate = p->symbol_rate;
stat = start(state, p);
return stat;
}
static int manage_matype_info(struct stv *state)
{
if (!state->started)
return -EINVAL;
if (state->receive_mode == RCVMODE_DVBS2) {
u8 bbheader[2];
read_regs(state, RSTV0910_P2_MATSTR1 + state->regoff,
bbheader, 2);
state->feroll_off =
(enum fe_stv0910_roll_off)(bbheader[0] & 0x03);
state->is_vcm = (bbheader[0] & 0x10) == 0;
state->is_standard_broadcast = (bbheader[0] & 0xFC) == 0xF0;
} else if (state->receive_mode == RCVMODE_DVBS) {
state->is_vcm = 0;
state->is_standard_broadcast = 1;
state->feroll_off = FE_SAT_35;
}
return 0;
}
static int read_snr(struct dvb_frontend *fe)
{
struct stv *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
s32 snrval;
if (!get_signal_to_noise(state, &snrval)) {
p->cnr.stat[0].scale = FE_SCALE_DECIBEL;
p->cnr.stat[0].svalue = 100 * snrval; /* fix scale */
} else {
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
}
return 0;
}
static int read_ber(struct dvb_frontend *fe)
{
struct stv *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u32 n, d;
get_bit_error_rate(state, &n, &d);
p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_error.stat[0].uvalue = n;
p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER;
p->pre_bit_count.stat[0].uvalue = d;
return 0;
}
static void read_signal_strength(struct dvb_frontend *fe)
{
struct stv *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
u8 reg[2];
u16 agc;
s32 padc, power = 0;
int i;
read_regs(state, RSTV0910_P2_AGCIQIN1 + state->regoff, reg, 2);
agc = (((u32)reg[0]) << 8) | reg[1];
for (i = 0; i < 5; i += 1) {
read_regs(state, RSTV0910_P2_POWERI + state->regoff, reg, 2);
power += (u32)reg[0] * (u32)reg[0]
+ (u32)reg[1] * (u32)reg[1];
usleep_range(3000, 4000);
}
power /= 5;
padc = table_lookup(padc_lookup, ARRAY_SIZE(padc_lookup), power) + 352;
p->strength.stat[0].scale = FE_SCALE_DECIBEL;
p->strength.stat[0].svalue = (padc - agc);
}
static int read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct stv *state = fe->demodulator_priv;
struct dtv_frontend_properties *p = &fe->dtv_property_cache;
u8 dmd_state = 0;
u8 dstatus = 0;
enum receive_mode cur_receive_mode = RCVMODE_NONE;
u32 feclock = 0;
*status = 0;
read_reg(state, RSTV0910_P2_DMDSTATE + state->regoff, &dmd_state);
if (dmd_state & 0x40) {
read_reg(state, RSTV0910_P2_DSTATUS + state->regoff, &dstatus);
if (dstatus & 0x08)
cur_receive_mode = (dmd_state & 0x20) ?
RCVMODE_DVBS : RCVMODE_DVBS2;
}
if (cur_receive_mode == RCVMODE_NONE) {
set_vth(state);
/* reset signal statistics */
p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
return 0;
}
*status |= (FE_HAS_SIGNAL
| FE_HAS_CARRIER
| FE_HAS_VITERBI
| FE_HAS_SYNC);
if (state->receive_mode == RCVMODE_NONE) {
state->receive_mode = cur_receive_mode;
state->demod_lock_time = jiffies;
state->first_time_lock = 1;
get_signal_parameters(state);
tracking_optimization(state);
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
state->tscfgh);
usleep_range(3000, 4000);
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
state->tscfgh | 0x01);
write_reg(state, RSTV0910_P2_TSCFGH + state->regoff,
state->tscfgh);
}
if (dmd_state & 0x40) {
if (state->receive_mode == RCVMODE_DVBS2) {
u8 pdelstatus;
read_reg(state,
RSTV0910_P2_PDELSTATUS1 + state->regoff,
&pdelstatus);
feclock = (pdelstatus & 0x02) != 0;
} else {
u8 vstatus;
read_reg(state,
RSTV0910_P2_VSTATUSVIT + state->regoff,
&vstatus);
feclock = (vstatus & 0x08) != 0;
}
}
if (feclock) {
*status |= FE_HAS_LOCK;
if (state->first_time_lock) {
u8 tmp;
state->first_time_lock = 0;
manage_matype_info(state);
if (state->receive_mode == RCVMODE_DVBS2) {
/*
* FSTV0910_P2_MANUALSX_ROLLOFF,
* FSTV0910_P2_MANUALS2_ROLLOFF = 0
*/
state->demod_bits &= ~0x84;
write_reg(state,
RSTV0910_P2_DEMOD + state->regoff,
state->demod_bits);
read_reg(state,
RSTV0910_P2_PDELCTRL2 + state->regoff,
&tmp);
/* reset DVBS2 packet delinator error counter */
tmp |= 0x40;
write_reg(state,
RSTV0910_P2_PDELCTRL2 + state->regoff,
tmp);
/* reset DVBS2 packet delinator error counter */
tmp &= ~0x40;
write_reg(state,
RSTV0910_P2_PDELCTRL2 + state->regoff,
tmp);
state->berscale = 2;
state->last_bernumerator = 0;
state->last_berdenominator = 1;
/* force to PRE BCH Rate */
write_reg(state,
RSTV0910_P2_ERRCTRL1 + state->regoff,
BER_SRC_S2 | state->berscale);
} else {
state->berscale = 2;
state->last_bernumerator = 0;
state->last_berdenominator = 1;
/* force to PRE RS Rate */
write_reg(state,
RSTV0910_P2_ERRCTRL1 + state->regoff,
BER_SRC_S | state->berscale);
}
/* Reset the Total packet counter */
write_reg(state,
RSTV0910_P2_FBERCPT4 + state->regoff, 0x00);
/*
* Reset the packet Error counter2 (and Set it to
* infinite error count mode)
*/
write_reg(state,
RSTV0910_P2_ERRCTRL2 + state->regoff, 0xc1);
set_vth_default(state);
if (state->receive_mode == RCVMODE_DVBS)
enable_puncture_rate(state,
state->puncture_rate);
}
/* Use highest signaled ModCod for quality */
if (state->is_vcm) {
u8 tmp;
enum fe_stv0910_mod_cod mod_cod;
read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff,
&tmp);
mod_cod = (enum fe_stv0910_mod_cod)((tmp & 0x7c) >> 2);
if (mod_cod > state->mod_cod)
state->mod_cod = mod_cod;
}
}
/* read signal statistics */
/* read signal strength */
read_signal_strength(fe);
/* read carrier/noise on FE_HAS_CARRIER */
if (*status & FE_HAS_CARRIER)
read_snr(fe);
else
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
/* read ber */
if (*status & FE_HAS_VITERBI) {
read_ber(fe);
} else {
p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
}
return 0;
}
static int get_frontend(struct dvb_frontend *fe,
struct dtv_frontend_properties *p)
{
struct stv *state = fe->demodulator_priv;
u8 tmp;
u32 symbolrate;
if (state->receive_mode == RCVMODE_DVBS2) {
u32 mc;
const enum fe_modulation modcod2mod[0x20] = {
QPSK, QPSK, QPSK, QPSK,
QPSK, QPSK, QPSK, QPSK,
QPSK, QPSK, QPSK, QPSK,
PSK_8, PSK_8, PSK_8, PSK_8,
PSK_8, PSK_8, APSK_16, APSK_16,
APSK_16, APSK_16, APSK_16, APSK_16,
APSK_32, APSK_32, APSK_32, APSK_32,
APSK_32,
};
const enum fe_code_rate modcod2fec[0x20] = {
FEC_NONE, FEC_NONE, FEC_NONE, FEC_2_5,
FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4,
FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
FEC_3_5, FEC_2_3, FEC_3_4, FEC_5_6,
FEC_8_9, FEC_9_10, FEC_2_3, FEC_3_4,
FEC_4_5, FEC_5_6, FEC_8_9, FEC_9_10,
FEC_3_4, FEC_4_5, FEC_5_6, FEC_8_9,
FEC_9_10
};
read_reg(state, RSTV0910_P2_DMDMODCOD + state->regoff, &tmp);
mc = ((tmp & 0x7c) >> 2);
p->pilot = (tmp & 0x01) ? PILOT_ON : PILOT_OFF;
p->modulation = modcod2mod[mc];
p->fec_inner = modcod2fec[mc];
} else if (state->receive_mode == RCVMODE_DVBS) {
read_reg(state, RSTV0910_P2_VITCURPUN + state->regoff, &tmp);
switch (tmp & 0x1F) {
case 0x0d:
p->fec_inner = FEC_1_2;
break;
case 0x12:
p->fec_inner = FEC_2_3;
break;
case 0x15:
p->fec_inner = FEC_3_4;
break;
case 0x18:
p->fec_inner = FEC_5_6;
break;
case 0x1a:
p->fec_inner = FEC_7_8;
break;
default:
p->fec_inner = FEC_NONE;
break;
}
p->rolloff = ROLLOFF_35;
}
if (state->receive_mode != RCVMODE_NONE) {
get_cur_symbol_rate(state, &symbolrate);
p->symbol_rate = symbolrate;
}
return 0;
}
static int tune(struct dvb_frontend *fe, bool re_tune,
unsigned int mode_flags,
unsigned int *delay, enum fe_status *status)
{
struct stv *state = fe->demodulator_priv;
int r;
if (re_tune) {
r = set_parameters(fe);
if (r)
return r;
state->tune_time = jiffies;
}
r = read_status(fe, status);
if (r)
return r;
if (*status & FE_HAS_LOCK)
return 0;
*delay = HZ;
return 0;
}
static enum dvbfe_algo get_algo(struct dvb_frontend *fe)
{
return DVBFE_ALGO_HW;
}
static int set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
{
struct stv *state = fe->demodulator_priv;
u16 offs = state->nr ? 0x40 : 0;
switch (tone) {
case SEC_TONE_ON:
return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x38);
case SEC_TONE_OFF:
return write_reg(state, RSTV0910_P1_DISTXCFG + offs, 0x3a);
default:
break;
}
return -EINVAL;
}
static int wait_dis(struct stv *state, u8 flag, u8 val)
{
int i;
u8 stat;
u16 offs = state->nr ? 0x40 : 0;
for (i = 0; i < 10; i++) {
read_reg(state, RSTV0910_P1_DISTXSTATUS + offs, &stat);
if ((stat & flag) == val)
return 0;
usleep_range(10000, 11000);
}
return -ETIMEDOUT;
}
static int send_master_cmd(struct dvb_frontend *fe,
struct dvb_diseqc_master_cmd *cmd)
{
struct stv *state = fe->demodulator_priv;
int i;
SET_FIELD(DISEQC_MODE, 2);
SET_FIELD(DIS_PRECHARGE, 1);
for (i = 0; i < cmd->msg_len; i++) {
wait_dis(state, 0x40, 0x00);
SET_REG(DISTXFIFO, cmd->msg[i]);
}
SET_FIELD(DIS_PRECHARGE, 0);
wait_dis(state, 0x20, 0x20);
return 0;
}
static int send_burst(struct dvb_frontend *fe, enum fe_sec_mini_cmd burst)
{
struct stv *state = fe->demodulator_priv;
u8 value;
if (burst == SEC_MINI_A) {
SET_FIELD(DISEQC_MODE, 3);
value = 0x00;
} else {
SET_FIELD(DISEQC_MODE, 2);
value = 0xFF;
}
SET_FIELD(DIS_PRECHARGE, 1);
wait_dis(state, 0x40, 0x00);
SET_REG(DISTXFIFO, value);
SET_FIELD(DIS_PRECHARGE, 0);
wait_dis(state, 0x20, 0x20);
return 0;
}
static int sleep(struct dvb_frontend *fe)
{
struct stv *state = fe->demodulator_priv;
stop(state);
return 0;
}
static const struct dvb_frontend_ops stv0910_ops = {
.delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS },
.info = {
.name = "ST STV0910",
.frequency_min_hz = 950 * MHz,
.frequency_max_hz = 2150 * MHz,
.symbol_rate_min = 100000,
.symbol_rate_max = 70000000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_AUTO |
FE_CAN_QPSK |
FE_CAN_2G_MODULATION |
FE_CAN_MULTISTREAM
},
.sleep = sleep,
.release = release,
.i2c_gate_ctrl = gate_ctrl,
.set_frontend = set_parameters,
.get_frontend_algo = get_algo,
.get_frontend = get_frontend,
.tune = tune,
.read_status = read_status,
.set_tone = set_tone,
.diseqc_send_master_cmd = send_master_cmd,
.diseqc_send_burst = send_burst,
};
static struct stv_base *match_base(struct i2c_adapter *i2c, u8 adr)
{
struct stv_base *p;
list_for_each_entry(p, &stvlist, stvlist)
if (p->i2c == i2c && p->adr == adr)
return p;
return NULL;
}
static void stv0910_init_stats(struct stv *state)
{
struct dtv_frontend_properties *p = &state->fe.dtv_property_cache;
p->strength.len = 1;
p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->cnr.len = 1;
p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_error.len = 1;
p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
p->pre_bit_count.len = 1;
p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE;
}
struct dvb_frontend *stv0910_attach(struct i2c_adapter *i2c,
struct stv0910_cfg *cfg,
int nr)
{
struct stv *state;
struct stv_base *base;
state = kzalloc(sizeof(*state), GFP_KERNEL);
if (!state)
return NULL;
state->tscfgh = 0x20 | (cfg->parallel ? 0 : 0x40);
state->tsgeneral = (cfg->parallel == 2) ? 0x02 : 0x00;
state->i2crpt = 0x0A | ((cfg->rptlvl & 0x07) << 4);
/* use safe tsspeed value if unspecified through stv0910_cfg */
state->tsspeed = (cfg->tsspeed ? cfg->tsspeed : 0x28);
state->nr = nr;
state->regoff = state->nr ? 0 : 0x200;
state->search_range = 16000000;
state->demod_bits = 0x10; /* Inversion : Auto with reset to 0 */
state->receive_mode = RCVMODE_NONE;
state->cur_scrambling_code = (~0U);
state->single = cfg->single ? 1 : 0;
base = match_base(i2c, cfg->adr);
if (base) {
base->count++;
state->base = base;
} else {
base = kzalloc(sizeof(*base), GFP_KERNEL);
if (!base)
goto fail;
base->i2c = i2c;
base->adr = cfg->adr;
base->count = 1;
base->extclk = cfg->clk ? cfg->clk : 30000000;
mutex_init(&base->i2c_lock);
mutex_init(&base->reg_lock);
state->base = base;
if (probe(state) < 0) {
dev_info(&i2c->dev, "No demod found at adr %02X on %s\n",
cfg->adr, dev_name(&i2c->dev));
kfree(base);
goto fail;
}
list_add(&base->stvlist, &stvlist);
}
state->fe.ops = stv0910_ops;
state->fe.demodulator_priv = state;
state->nr = nr;
dev_info(&i2c->dev, "%s demod found at adr %02X on %s\n",
state->fe.ops.info.name, cfg->adr, dev_name(&i2c->dev));
stv0910_init_stats(state);
return &state->fe;
fail:
kfree(state);
return NULL;
}
EXPORT_SYMBOL_GPL(stv0910_attach);
MODULE_DESCRIPTION("ST STV0910 multistandard frontend driver");
MODULE_AUTHOR("Ralph and Marcus Metzler, Manfred Voelkel");
MODULE_LICENSE("GPL v2");