linux-stable/drivers/fsi/fsi-master-gpio.c
Jeremy Kerr e5538139e0 fsi: gpio: Use a mutex to protect transfers
Reduce time spent with interrupts disabled by limiting the critical
sections to bitbanging FSI symbols. We only need to ensure exclusive use
of the bus for an entire transfer, not that the transfer be performed in
atomic context.

Signed-off-by: Jeremy Kerr <jk@ozlabs.org>
Signed-off-by: Benjamin Herrenschmidt <benh@kernel.crashing.org>
Tested-by: Joel Stanley <joel@jms.id.au>
2018-06-12 14:04:26 +10:00

734 lines
18 KiB
C

/*
* A FSI master controller, using a simple GPIO bit-banging interface
*/
#include <linux/crc4.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/fsi.h>
#include <linux/gpio/consumer.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include "fsi-master.h"
#define FSI_GPIO_STD_DLY 1 /* Standard pin delay in nS */
#define FSI_ECHO_DELAY_CLOCKS 16 /* Number clocks for echo delay */
#define FSI_PRE_BREAK_CLOCKS 50 /* Number clocks to prep for break */
#define FSI_BREAK_CLOCKS 256 /* Number of clocks to issue break */
#define FSI_POST_BREAK_CLOCKS 16000 /* Number clocks to set up cfam */
#define FSI_INIT_CLOCKS 5000 /* Clock out any old data */
#define FSI_GPIO_STD_DELAY 10 /* Standard GPIO delay in nS */
/* todo: adjust down as low as */
/* possible or eliminate */
#define FSI_GPIO_CMD_DPOLL 0x2
#define FSI_GPIO_CMD_TERM 0x3f
#define FSI_GPIO_CMD_ABS_AR 0x4
#define FSI_GPIO_DPOLL_CLOCKS 100 /* < 21 will cause slave to hang */
/* Bus errors */
#define FSI_GPIO_ERR_BUSY 1 /* Slave stuck in busy state */
#define FSI_GPIO_RESP_ERRA 2 /* Any (misc) Error */
#define FSI_GPIO_RESP_ERRC 3 /* Slave reports master CRC error */
#define FSI_GPIO_MTOE 4 /* Master time out error */
#define FSI_GPIO_CRC_INVAL 5 /* Master reports slave CRC error */
/* Normal slave responses */
#define FSI_GPIO_RESP_BUSY 1
#define FSI_GPIO_RESP_ACK 0
#define FSI_GPIO_RESP_ACKD 4
#define FSI_GPIO_MAX_BUSY 100
#define FSI_GPIO_MTOE_COUNT 1000
#define FSI_GPIO_DRAIN_BITS 20
#define FSI_GPIO_CRC_SIZE 4
#define FSI_GPIO_MSG_ID_SIZE 2
#define FSI_GPIO_MSG_RESPID_SIZE 2
#define FSI_GPIO_PRIME_SLAVE_CLOCKS 100
struct fsi_master_gpio {
struct fsi_master master;
struct device *dev;
struct mutex cmd_lock; /* mutex for command ordering */
spinlock_t bit_lock; /* lock for clocking bits out */
struct gpio_desc *gpio_clk;
struct gpio_desc *gpio_data;
struct gpio_desc *gpio_trans; /* Voltage translator */
struct gpio_desc *gpio_enable; /* FSI enable */
struct gpio_desc *gpio_mux; /* Mux control */
bool external_mode;
};
#define CREATE_TRACE_POINTS
#include <trace/events/fsi_master_gpio.h>
#define to_fsi_master_gpio(m) container_of(m, struct fsi_master_gpio, master)
struct fsi_gpio_msg {
uint64_t msg;
uint8_t bits;
};
static void clock_toggle(struct fsi_master_gpio *master, int count)
{
int i;
for (i = 0; i < count; i++) {
ndelay(FSI_GPIO_STD_DLY);
gpiod_set_value(master->gpio_clk, 0);
ndelay(FSI_GPIO_STD_DLY);
gpiod_set_value(master->gpio_clk, 1);
}
}
static int sda_in(struct fsi_master_gpio *master)
{
int in;
ndelay(FSI_GPIO_STD_DLY);
in = gpiod_get_value(master->gpio_data);
return in ? 1 : 0;
}
static void sda_out(struct fsi_master_gpio *master, int value)
{
gpiod_set_value(master->gpio_data, value);
}
static void set_sda_input(struct fsi_master_gpio *master)
{
gpiod_direction_input(master->gpio_data);
gpiod_set_value(master->gpio_trans, 0);
}
static void set_sda_output(struct fsi_master_gpio *master, int value)
{
gpiod_set_value(master->gpio_trans, 1);
gpiod_direction_output(master->gpio_data, value);
}
static void clock_zeros(struct fsi_master_gpio *master, int count)
{
set_sda_output(master, 1);
clock_toggle(master, count);
}
static void serial_in(struct fsi_master_gpio *master, struct fsi_gpio_msg *msg,
uint8_t num_bits)
{
uint8_t bit, in_bit;
set_sda_input(master);
for (bit = 0; bit < num_bits; bit++) {
clock_toggle(master, 1);
in_bit = sda_in(master);
msg->msg <<= 1;
msg->msg |= ~in_bit & 0x1; /* Data is active low */
}
msg->bits += num_bits;
trace_fsi_master_gpio_in(master, num_bits, msg->msg);
}
static void serial_out(struct fsi_master_gpio *master,
const struct fsi_gpio_msg *cmd)
{
uint8_t bit;
uint64_t msg = ~cmd->msg; /* Data is active low */
uint64_t sda_mask = 0x1ULL << (cmd->bits - 1);
uint64_t last_bit = ~0;
int next_bit;
trace_fsi_master_gpio_out(master, cmd->bits, cmd->msg);
if (!cmd->bits) {
dev_warn(master->dev, "trying to output 0 bits\n");
return;
}
set_sda_output(master, 0);
/* Send the start bit */
sda_out(master, 0);
clock_toggle(master, 1);
/* Send the message */
for (bit = 0; bit < cmd->bits; bit++) {
next_bit = (msg & sda_mask) >> (cmd->bits - 1);
if (last_bit ^ next_bit) {
sda_out(master, next_bit);
last_bit = next_bit;
}
clock_toggle(master, 1);
msg <<= 1;
}
}
static void msg_push_bits(struct fsi_gpio_msg *msg, uint64_t data, int bits)
{
msg->msg <<= bits;
msg->msg |= data & ((1ull << bits) - 1);
msg->bits += bits;
}
static void msg_push_crc(struct fsi_gpio_msg *msg)
{
uint8_t crc;
int top;
top = msg->bits & 0x3;
/* start bit, and any non-aligned top bits */
crc = crc4(0, 1 << top | msg->msg >> (msg->bits - top), top + 1);
/* aligned bits */
crc = crc4(crc, msg->msg, msg->bits - top);
msg_push_bits(msg, crc, 4);
}
/*
* Encode an Absolute Address command
*/
static void build_abs_ar_command(struct fsi_gpio_msg *cmd,
uint8_t id, uint32_t addr, size_t size, const void *data)
{
bool write = !!data;
uint8_t ds;
int i;
cmd->bits = 0;
cmd->msg = 0;
msg_push_bits(cmd, id, 2);
msg_push_bits(cmd, FSI_GPIO_CMD_ABS_AR, 3);
msg_push_bits(cmd, write ? 0 : 1, 1);
/*
* The read/write size is encoded in the lower bits of the address
* (as it must be naturally-aligned), and the following ds bit.
*
* size addr:1 addr:0 ds
* 1 x x 0
* 2 x 0 1
* 4 0 1 1
*
*/
ds = size > 1 ? 1 : 0;
addr &= ~(size - 1);
if (size == 4)
addr |= 1;
msg_push_bits(cmd, addr & ((1 << 21) - 1), 21);
msg_push_bits(cmd, ds, 1);
for (i = 0; write && i < size; i++)
msg_push_bits(cmd, ((uint8_t *)data)[i], 8);
msg_push_crc(cmd);
}
static void build_dpoll_command(struct fsi_gpio_msg *cmd, uint8_t slave_id)
{
cmd->bits = 0;
cmd->msg = 0;
msg_push_bits(cmd, slave_id, 2);
msg_push_bits(cmd, FSI_GPIO_CMD_DPOLL, 3);
msg_push_crc(cmd);
}
static void echo_delay(struct fsi_master_gpio *master)
{
set_sda_output(master, 1);
clock_toggle(master, FSI_ECHO_DELAY_CLOCKS);
}
static void build_term_command(struct fsi_gpio_msg *cmd, uint8_t slave_id)
{
cmd->bits = 0;
cmd->msg = 0;
msg_push_bits(cmd, slave_id, 2);
msg_push_bits(cmd, FSI_GPIO_CMD_TERM, 6);
msg_push_crc(cmd);
}
/*
* Store information on master errors so handler can detect and clean
* up the bus
*/
static void fsi_master_gpio_error(struct fsi_master_gpio *master, int error)
{
}
static int read_one_response(struct fsi_master_gpio *master,
uint8_t data_size, struct fsi_gpio_msg *msgp, uint8_t *tagp)
{
struct fsi_gpio_msg msg;
unsigned long flags;
uint32_t crc;
uint8_t tag;
int i;
spin_lock_irqsave(&master->bit_lock, flags);
/* wait for the start bit */
for (i = 0; i < FSI_GPIO_MTOE_COUNT; i++) {
msg.bits = 0;
msg.msg = 0;
serial_in(master, &msg, 1);
if (msg.msg)
break;
}
if (i == FSI_GPIO_MTOE_COUNT) {
dev_dbg(master->dev,
"Master time out waiting for response\n");
fsi_master_gpio_error(master, FSI_GPIO_MTOE);
spin_unlock_irqrestore(&master->bit_lock, flags);
return -EIO;
}
msg.bits = 0;
msg.msg = 0;
/* Read slave ID & response tag */
serial_in(master, &msg, 4);
tag = msg.msg & 0x3;
/* If we have an ACK and we're expecting data, clock the data in too */
if (tag == FSI_GPIO_RESP_ACK && data_size)
serial_in(master, &msg, data_size * 8);
/* read CRC */
serial_in(master, &msg, FSI_GPIO_CRC_SIZE);
spin_unlock_irqrestore(&master->bit_lock, flags);
/* we have a whole message now; check CRC */
crc = crc4(0, 1, 1);
crc = crc4(crc, msg.msg, msg.bits);
if (crc) {
dev_dbg(master->dev, "ERR response CRC\n");
fsi_master_gpio_error(master, FSI_GPIO_CRC_INVAL);
return -EIO;
}
if (msgp)
*msgp = msg;
if (tagp)
*tagp = tag;
return 0;
}
static int issue_term(struct fsi_master_gpio *master, uint8_t slave)
{
struct fsi_gpio_msg cmd;
unsigned long flags;
uint8_t tag;
int rc;
build_term_command(&cmd, slave);
spin_lock_irqsave(&master->bit_lock, flags);
serial_out(master, &cmd);
echo_delay(master);
spin_unlock_irqrestore(&master->bit_lock, flags);
rc = read_one_response(master, 0, NULL, &tag);
if (rc < 0) {
dev_err(master->dev,
"TERM failed; lost communication with slave\n");
return -EIO;
} else if (tag != FSI_GPIO_RESP_ACK) {
dev_err(master->dev, "TERM failed; response %d\n", tag);
return -EIO;
}
return 0;
}
static int poll_for_response(struct fsi_master_gpio *master,
uint8_t slave, uint8_t size, void *data)
{
struct fsi_gpio_msg response, cmd;
int busy_count = 0, rc, i;
unsigned long flags;
uint8_t tag;
uint8_t *data_byte = data;
retry:
rc = read_one_response(master, size, &response, &tag);
if (rc)
return rc;
switch (tag) {
case FSI_GPIO_RESP_ACK:
if (size && data) {
uint64_t val = response.msg;
/* clear crc & mask */
val >>= 4;
val &= (1ull << (size * 8)) - 1;
for (i = 0; i < size; i++) {
data_byte[size-i-1] = val;
val >>= 8;
}
}
break;
case FSI_GPIO_RESP_BUSY:
/*
* Its necessary to clock slave before issuing
* d-poll, not indicated in the hardware protocol
* spec. < 20 clocks causes slave to hang, 21 ok.
*/
if (busy_count++ < FSI_GPIO_MAX_BUSY) {
build_dpoll_command(&cmd, slave);
spin_lock_irqsave(&master->bit_lock, flags);
clock_zeros(master, FSI_GPIO_DPOLL_CLOCKS);
serial_out(master, &cmd);
echo_delay(master);
spin_unlock_irqrestore(&master->bit_lock, flags);
goto retry;
}
dev_warn(master->dev,
"ERR slave is stuck in busy state, issuing TERM\n");
spin_lock_irqsave(&master->bit_lock, flags);
clock_zeros(master, FSI_GPIO_DPOLL_CLOCKS);
spin_unlock_irqrestore(&master->bit_lock, flags);
issue_term(master, slave);
rc = -EIO;
break;
case FSI_GPIO_RESP_ERRA:
case FSI_GPIO_RESP_ERRC:
dev_dbg(master->dev, "ERR%c received: 0x%x\n",
tag == FSI_GPIO_RESP_ERRA ? 'A' : 'C',
(int)response.msg);
fsi_master_gpio_error(master, response.msg);
rc = -EIO;
break;
}
if (busy_count > 0)
trace_fsi_master_gpio_poll_response_busy(master, busy_count);
/* Clock the slave enough to be ready for next operation */
spin_lock_irqsave(&master->bit_lock, flags);
clock_zeros(master, FSI_GPIO_PRIME_SLAVE_CLOCKS);
spin_unlock_irqrestore(&master->bit_lock, flags);
return rc;
}
static int send_request(struct fsi_master_gpio *master,
struct fsi_gpio_msg *cmd)
{
unsigned long flags;
spin_lock_irqsave(&master->bit_lock, flags);
if (master->external_mode) {
spin_unlock_irqrestore(&master->bit_lock, flags);
return -EBUSY;
}
serial_out(master, cmd);
echo_delay(master);
spin_unlock_irqrestore(&master->bit_lock, flags);
return 0;
}
static int fsi_master_gpio_xfer(struct fsi_master_gpio *master, uint8_t slave,
struct fsi_gpio_msg *cmd, size_t resp_len, void *resp)
{
int rc;
mutex_lock(&master->cmd_lock);
rc = send_request(master, cmd);
if (!rc)
rc = poll_for_response(master, slave, resp_len, resp);
mutex_unlock(&master->cmd_lock);
return rc;
}
static int fsi_master_gpio_read(struct fsi_master *_master, int link,
uint8_t id, uint32_t addr, void *val, size_t size)
{
struct fsi_master_gpio *master = to_fsi_master_gpio(_master);
struct fsi_gpio_msg cmd;
if (link != 0)
return -ENODEV;
build_abs_ar_command(&cmd, id, addr, size, NULL);
return fsi_master_gpio_xfer(master, id, &cmd, size, val);
}
static int fsi_master_gpio_write(struct fsi_master *_master, int link,
uint8_t id, uint32_t addr, const void *val, size_t size)
{
struct fsi_master_gpio *master = to_fsi_master_gpio(_master);
struct fsi_gpio_msg cmd;
if (link != 0)
return -ENODEV;
build_abs_ar_command(&cmd, id, addr, size, val);
return fsi_master_gpio_xfer(master, id, &cmd, 0, NULL);
}
static int fsi_master_gpio_term(struct fsi_master *_master,
int link, uint8_t id)
{
struct fsi_master_gpio *master = to_fsi_master_gpio(_master);
struct fsi_gpio_msg cmd;
if (link != 0)
return -ENODEV;
build_term_command(&cmd, id);
return fsi_master_gpio_xfer(master, id, &cmd, 0, NULL);
}
static int fsi_master_gpio_break(struct fsi_master *_master, int link)
{
struct fsi_master_gpio *master = to_fsi_master_gpio(_master);
unsigned long flags;
if (link != 0)
return -ENODEV;
trace_fsi_master_gpio_break(master);
mutex_lock(&master->cmd_lock);
if (master->external_mode) {
mutex_unlock(&master->cmd_lock);
return -EBUSY;
}
spin_lock_irqsave(&master->bit_lock, flags);
set_sda_output(master, 1);
sda_out(master, 1);
clock_toggle(master, FSI_PRE_BREAK_CLOCKS);
sda_out(master, 0);
clock_toggle(master, FSI_BREAK_CLOCKS);
echo_delay(master);
sda_out(master, 1);
clock_toggle(master, FSI_POST_BREAK_CLOCKS);
spin_unlock_irqrestore(&master->bit_lock, flags);
mutex_unlock(&master->cmd_lock);
/* Wait for logic reset to take effect */
udelay(200);
return 0;
}
static void fsi_master_gpio_init(struct fsi_master_gpio *master)
{
unsigned long flags;
gpiod_direction_output(master->gpio_mux, 1);
gpiod_direction_output(master->gpio_trans, 1);
gpiod_direction_output(master->gpio_enable, 1);
gpiod_direction_output(master->gpio_clk, 1);
gpiod_direction_output(master->gpio_data, 1);
/* todo: evaluate if clocks can be reduced */
spin_lock_irqsave(&master->bit_lock, flags);
clock_zeros(master, FSI_INIT_CLOCKS);
spin_unlock_irqrestore(&master->bit_lock, flags);
}
static void fsi_master_gpio_init_external(struct fsi_master_gpio *master)
{
gpiod_direction_output(master->gpio_mux, 0);
gpiod_direction_output(master->gpio_trans, 0);
gpiod_direction_output(master->gpio_enable, 1);
gpiod_direction_input(master->gpio_clk);
gpiod_direction_input(master->gpio_data);
}
static int fsi_master_gpio_link_enable(struct fsi_master *_master, int link)
{
struct fsi_master_gpio *master = to_fsi_master_gpio(_master);
int rc = -EBUSY;
if (link != 0)
return -ENODEV;
mutex_lock(&master->cmd_lock);
if (!master->external_mode) {
gpiod_set_value(master->gpio_enable, 1);
rc = 0;
}
mutex_unlock(&master->cmd_lock);
return rc;
}
static ssize_t external_mode_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct fsi_master_gpio *master = dev_get_drvdata(dev);
return snprintf(buf, PAGE_SIZE - 1, "%u\n",
master->external_mode ? 1 : 0);
}
static ssize_t external_mode_store(struct device *dev,
struct device_attribute *attr, const char *buf, size_t count)
{
struct fsi_master_gpio *master = dev_get_drvdata(dev);
unsigned long val;
bool external_mode;
int err;
err = kstrtoul(buf, 0, &val);
if (err)
return err;
external_mode = !!val;
mutex_lock(&master->cmd_lock);
if (external_mode == master->external_mode) {
mutex_unlock(&master->cmd_lock);
return count;
}
master->external_mode = external_mode;
if (master->external_mode)
fsi_master_gpio_init_external(master);
else
fsi_master_gpio_init(master);
mutex_unlock(&master->cmd_lock);
fsi_master_rescan(&master->master);
return count;
}
static DEVICE_ATTR(external_mode, 0664,
external_mode_show, external_mode_store);
static int fsi_master_gpio_probe(struct platform_device *pdev)
{
struct fsi_master_gpio *master;
struct gpio_desc *gpio;
int rc;
master = devm_kzalloc(&pdev->dev, sizeof(*master), GFP_KERNEL);
if (!master)
return -ENOMEM;
master->dev = &pdev->dev;
master->master.dev.parent = master->dev;
master->master.dev.of_node = of_node_get(dev_of_node(master->dev));
gpio = devm_gpiod_get(&pdev->dev, "clock", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get clock gpio\n");
return PTR_ERR(gpio);
}
master->gpio_clk = gpio;
gpio = devm_gpiod_get(&pdev->dev, "data", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get data gpio\n");
return PTR_ERR(gpio);
}
master->gpio_data = gpio;
/* Optional GPIOs */
gpio = devm_gpiod_get_optional(&pdev->dev, "trans", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get trans gpio\n");
return PTR_ERR(gpio);
}
master->gpio_trans = gpio;
gpio = devm_gpiod_get_optional(&pdev->dev, "enable", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get enable gpio\n");
return PTR_ERR(gpio);
}
master->gpio_enable = gpio;
gpio = devm_gpiod_get_optional(&pdev->dev, "mux", 0);
if (IS_ERR(gpio)) {
dev_err(&pdev->dev, "failed to get mux gpio\n");
return PTR_ERR(gpio);
}
master->gpio_mux = gpio;
master->master.n_links = 1;
master->master.flags = FSI_MASTER_FLAG_SWCLOCK;
master->master.read = fsi_master_gpio_read;
master->master.write = fsi_master_gpio_write;
master->master.term = fsi_master_gpio_term;
master->master.send_break = fsi_master_gpio_break;
master->master.link_enable = fsi_master_gpio_link_enable;
platform_set_drvdata(pdev, master);
spin_lock_init(&master->bit_lock);
mutex_init(&master->cmd_lock);
fsi_master_gpio_init(master);
rc = device_create_file(&pdev->dev, &dev_attr_external_mode);
if (rc)
return rc;
return fsi_master_register(&master->master);
}
static int fsi_master_gpio_remove(struct platform_device *pdev)
{
struct fsi_master_gpio *master = platform_get_drvdata(pdev);
devm_gpiod_put(&pdev->dev, master->gpio_clk);
devm_gpiod_put(&pdev->dev, master->gpio_data);
if (master->gpio_trans)
devm_gpiod_put(&pdev->dev, master->gpio_trans);
if (master->gpio_enable)
devm_gpiod_put(&pdev->dev, master->gpio_enable);
if (master->gpio_mux)
devm_gpiod_put(&pdev->dev, master->gpio_mux);
fsi_master_unregister(&master->master);
of_node_put(master->master.dev.of_node);
return 0;
}
static const struct of_device_id fsi_master_gpio_match[] = {
{ .compatible = "fsi-master-gpio" },
{ },
};
static struct platform_driver fsi_master_gpio_driver = {
.driver = {
.name = "fsi-master-gpio",
.of_match_table = fsi_master_gpio_match,
},
.probe = fsi_master_gpio_probe,
.remove = fsi_master_gpio_remove,
};
module_platform_driver(fsi_master_gpio_driver);
MODULE_LICENSE("GPL");