mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-20 04:24:13 +00:00
e65f152e43
Btrfs has two endio functions to mark certain io range finished for ordered extents: - __endio_write_update_ordered() This is for direct IO - btrfs_writepage_endio_finish_ordered() This for buffered IO. However they go different routines to handle ordered extent io: - Whether to iterate through all ordered extents __endio_write_update_ordered() will but btrfs_writepage_endio_finish_ordered() will not. In fact, iterating through all ordered extents will benefit later subpage support, while for current PAGE_SIZE == sectorsize requirement this behavior makes no difference. - Whether to update page Private2 flag __endio_write_update_ordered() will not update page Private2 flag as for iomap direct IO, the page can not be even mapped. While btrfs_writepage_endio_finish_ordered() will clear Private2 to prevent double accounting against btrfs_invalidatepage(). Those differences are pretty subtle, and the ordered extent iterations code in callers makes code much harder to read. So this patch will introduce a new function, btrfs_mark_ordered_io_finished(), to do the heavy lifting: - Iterate through all ordered extents in the range - Do the ordered extent accounting - Queue the work for finished ordered extent This function has two new feature: - Proper underflow detection and recovery The old underflow detection will only detect the problem, then continue. No proper info like root/inode/ordered extent info, nor noisy enough to be caught by fstests. Furthermore when underflow happens, the ordered extent will never finish. New error detection will reset the bytes_left to 0, do proper kernel warning, and output extra info including root, ino, ordered extent range, the underflow value. - Prevent double accounting based on Private2 flag Now if we find a range without Private2 flag, we will skip to next range. As that means someone else has already finished the accounting of ordered extent. This makes no difference for current code, but will be a critical part for incoming subpage support, as we can call btrfs_mark_ordered_io_finished() for multiple sectors if they are beyond inode size. Thus such double accounting prevention is a key feature for subpage. Now both endio functions only need to call that new function. And since the only caller of btrfs_dec_test_first_ordered_pending() is removed, also remove btrfs_dec_test_first_ordered_pending() completely. Signed-off-by: Qu Wenruo <wqu@suse.com> Signed-off-by: David Sterba <dsterba@suse.com>
1071 lines
29 KiB
C
1071 lines
29 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright (C) 2007 Oracle. All rights reserved.
|
|
*/
|
|
|
|
#include <linux/slab.h>
|
|
#include <linux/blkdev.h>
|
|
#include <linux/writeback.h>
|
|
#include <linux/sched/mm.h>
|
|
#include "misc.h"
|
|
#include "ctree.h"
|
|
#include "transaction.h"
|
|
#include "btrfs_inode.h"
|
|
#include "extent_io.h"
|
|
#include "disk-io.h"
|
|
#include "compression.h"
|
|
#include "delalloc-space.h"
|
|
#include "qgroup.h"
|
|
|
|
static struct kmem_cache *btrfs_ordered_extent_cache;
|
|
|
|
static u64 entry_end(struct btrfs_ordered_extent *entry)
|
|
{
|
|
if (entry->file_offset + entry->num_bytes < entry->file_offset)
|
|
return (u64)-1;
|
|
return entry->file_offset + entry->num_bytes;
|
|
}
|
|
|
|
/* returns NULL if the insertion worked, or it returns the node it did find
|
|
* in the tree
|
|
*/
|
|
static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
|
|
struct rb_node *node)
|
|
{
|
|
struct rb_node **p = &root->rb_node;
|
|
struct rb_node *parent = NULL;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
while (*p) {
|
|
parent = *p;
|
|
entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (file_offset < entry->file_offset)
|
|
p = &(*p)->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
p = &(*p)->rb_right;
|
|
else
|
|
return parent;
|
|
}
|
|
|
|
rb_link_node(node, parent, p);
|
|
rb_insert_color(node, root);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* look for a given offset in the tree, and if it can't be found return the
|
|
* first lesser offset
|
|
*/
|
|
static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
|
|
struct rb_node **prev_ret)
|
|
{
|
|
struct rb_node *n = root->rb_node;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *test;
|
|
struct btrfs_ordered_extent *entry;
|
|
struct btrfs_ordered_extent *prev_entry = NULL;
|
|
|
|
while (n) {
|
|
entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
prev = n;
|
|
prev_entry = entry;
|
|
|
|
if (file_offset < entry->file_offset)
|
|
n = n->rb_left;
|
|
else if (file_offset >= entry_end(entry))
|
|
n = n->rb_right;
|
|
else
|
|
return n;
|
|
}
|
|
if (!prev_ret)
|
|
return NULL;
|
|
|
|
while (prev && file_offset >= entry_end(prev_entry)) {
|
|
test = rb_next(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (file_offset < entry_end(prev_entry))
|
|
break;
|
|
|
|
prev = test;
|
|
}
|
|
if (prev)
|
|
prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
while (prev && file_offset < entry_end(prev_entry)) {
|
|
test = rb_prev(prev);
|
|
if (!test)
|
|
break;
|
|
prev_entry = rb_entry(test, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
prev = test;
|
|
}
|
|
*prev_ret = prev;
|
|
return NULL;
|
|
}
|
|
|
|
static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
|
|
u64 len)
|
|
{
|
|
if (file_offset + len <= entry->file_offset ||
|
|
entry->file_offset + entry->num_bytes <= file_offset)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* look find the first ordered struct that has this offset, otherwise
|
|
* the first one less than this offset
|
|
*/
|
|
static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
|
|
u64 file_offset)
|
|
{
|
|
struct rb_root *root = &tree->tree;
|
|
struct rb_node *prev = NULL;
|
|
struct rb_node *ret;
|
|
struct btrfs_ordered_extent *entry;
|
|
|
|
if (tree->last) {
|
|
entry = rb_entry(tree->last, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
if (in_range(file_offset, entry->file_offset, entry->num_bytes))
|
|
return tree->last;
|
|
}
|
|
ret = __tree_search(root, file_offset, &prev);
|
|
if (!ret)
|
|
ret = prev;
|
|
if (ret)
|
|
tree->last = ret;
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Allocate and add a new ordered_extent into the per-inode tree.
|
|
*
|
|
* The tree is given a single reference on the ordered extent that was
|
|
* inserted.
|
|
*/
|
|
static int __btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
|
|
u64 disk_bytenr, u64 num_bytes,
|
|
u64 disk_num_bytes, int type, int dio,
|
|
int compress_type)
|
|
{
|
|
struct btrfs_root *root = inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry;
|
|
int ret;
|
|
|
|
if (type == BTRFS_ORDERED_NOCOW || type == BTRFS_ORDERED_PREALLOC) {
|
|
/* For nocow write, we can release the qgroup rsv right now */
|
|
ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
|
|
if (ret < 0)
|
|
return ret;
|
|
ret = 0;
|
|
} else {
|
|
/*
|
|
* The ordered extent has reserved qgroup space, release now
|
|
* and pass the reserved number for qgroup_record to free.
|
|
*/
|
|
ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
|
|
if (!entry)
|
|
return -ENOMEM;
|
|
|
|
entry->file_offset = file_offset;
|
|
entry->disk_bytenr = disk_bytenr;
|
|
entry->num_bytes = num_bytes;
|
|
entry->disk_num_bytes = disk_num_bytes;
|
|
entry->bytes_left = num_bytes;
|
|
entry->inode = igrab(&inode->vfs_inode);
|
|
entry->compress_type = compress_type;
|
|
entry->truncated_len = (u64)-1;
|
|
entry->qgroup_rsv = ret;
|
|
entry->physical = (u64)-1;
|
|
entry->disk = NULL;
|
|
entry->partno = (u8)-1;
|
|
|
|
ASSERT(type == BTRFS_ORDERED_REGULAR ||
|
|
type == BTRFS_ORDERED_NOCOW ||
|
|
type == BTRFS_ORDERED_PREALLOC ||
|
|
type == BTRFS_ORDERED_COMPRESSED);
|
|
set_bit(type, &entry->flags);
|
|
|
|
percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
|
|
fs_info->delalloc_batch);
|
|
|
|
if (dio)
|
|
set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
|
|
|
|
/* one ref for the tree */
|
|
refcount_set(&entry->refs, 1);
|
|
init_waitqueue_head(&entry->wait);
|
|
INIT_LIST_HEAD(&entry->list);
|
|
INIT_LIST_HEAD(&entry->log_list);
|
|
INIT_LIST_HEAD(&entry->root_extent_list);
|
|
INIT_LIST_HEAD(&entry->work_list);
|
|
init_completion(&entry->completion);
|
|
|
|
trace_btrfs_ordered_extent_add(inode, entry);
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_insert(&tree->tree, file_offset,
|
|
&entry->rb_node);
|
|
if (node)
|
|
btrfs_panic(fs_info, -EEXIST,
|
|
"inconsistency in ordered tree at offset %llu",
|
|
file_offset);
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_add_tail(&entry->root_extent_list,
|
|
&root->ordered_extents);
|
|
root->nr_ordered_extents++;
|
|
if (root->nr_ordered_extents == 1) {
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
BUG_ON(!list_empty(&root->ordered_root));
|
|
list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
/*
|
|
* We don't need the count_max_extents here, we can assume that all of
|
|
* that work has been done at higher layers, so this is truly the
|
|
* smallest the extent is going to get.
|
|
*/
|
|
spin_lock(&inode->lock);
|
|
btrfs_mod_outstanding_extents(inode, 1);
|
|
spin_unlock(&inode->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
|
|
u64 disk_bytenr, u64 num_bytes, u64 disk_num_bytes,
|
|
int type)
|
|
{
|
|
ASSERT(type == BTRFS_ORDERED_REGULAR ||
|
|
type == BTRFS_ORDERED_NOCOW ||
|
|
type == BTRFS_ORDERED_PREALLOC);
|
|
return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
|
|
num_bytes, disk_num_bytes, type, 0,
|
|
BTRFS_COMPRESS_NONE);
|
|
}
|
|
|
|
int btrfs_add_ordered_extent_dio(struct btrfs_inode *inode, u64 file_offset,
|
|
u64 disk_bytenr, u64 num_bytes,
|
|
u64 disk_num_bytes, int type)
|
|
{
|
|
ASSERT(type == BTRFS_ORDERED_REGULAR ||
|
|
type == BTRFS_ORDERED_NOCOW ||
|
|
type == BTRFS_ORDERED_PREALLOC);
|
|
return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
|
|
num_bytes, disk_num_bytes, type, 1,
|
|
BTRFS_COMPRESS_NONE);
|
|
}
|
|
|
|
int btrfs_add_ordered_extent_compress(struct btrfs_inode *inode, u64 file_offset,
|
|
u64 disk_bytenr, u64 num_bytes,
|
|
u64 disk_num_bytes, int compress_type)
|
|
{
|
|
ASSERT(compress_type != BTRFS_COMPRESS_NONE);
|
|
return __btrfs_add_ordered_extent(inode, file_offset, disk_bytenr,
|
|
num_bytes, disk_num_bytes,
|
|
BTRFS_ORDERED_COMPRESSED, 0,
|
|
compress_type);
|
|
}
|
|
|
|
/*
|
|
* Add a struct btrfs_ordered_sum into the list of checksums to be inserted
|
|
* when an ordered extent is finished. If the list covers more than one
|
|
* ordered extent, it is split across multiples.
|
|
*/
|
|
void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
|
|
struct btrfs_ordered_sum *sum)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
|
|
tree = &BTRFS_I(entry->inode)->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
list_add_tail(&sum->list, &entry->list);
|
|
spin_unlock_irq(&tree->lock);
|
|
}
|
|
|
|
/*
|
|
* Mark all ordered extents io inside the specified range finished.
|
|
*
|
|
* @page: The invovled page for the opeartion.
|
|
* For uncompressed buffered IO, the page status also needs to be
|
|
* updated to indicate whether the pending ordered io is finished.
|
|
* Can be NULL for direct IO and compressed write.
|
|
* For these cases, callers are ensured they won't execute the
|
|
* endio function twice.
|
|
* @finish_func: The function to be executed when all the IO of an ordered
|
|
* extent are finished.
|
|
*
|
|
* This function is called for endio, thus the range must have ordered
|
|
* extent(s) coveri it.
|
|
*/
|
|
void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
|
|
struct page *page, u64 file_offset,
|
|
u64 num_bytes, btrfs_func_t finish_func,
|
|
bool uptodate)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
|
|
struct btrfs_fs_info *fs_info = inode->root->fs_info;
|
|
struct btrfs_workqueue *wq;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
u64 cur = file_offset;
|
|
|
|
if (btrfs_is_free_space_inode(inode))
|
|
wq = fs_info->endio_freespace_worker;
|
|
else
|
|
wq = fs_info->endio_write_workers;
|
|
|
|
if (page)
|
|
ASSERT(page->mapping && page_offset(page) <= file_offset &&
|
|
file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
|
|
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
while (cur < file_offset + num_bytes) {
|
|
u64 entry_end;
|
|
u64 end;
|
|
u32 len;
|
|
|
|
node = tree_search(tree, cur);
|
|
/* No ordered extents at all */
|
|
if (!node)
|
|
break;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
entry_end = entry->file_offset + entry->num_bytes;
|
|
/*
|
|
* |<-- OE --->| |
|
|
* cur
|
|
* Go to next OE.
|
|
*/
|
|
if (cur >= entry_end) {
|
|
node = rb_next(node);
|
|
/* No more ordered extents, exit */
|
|
if (!node)
|
|
break;
|
|
entry = rb_entry(node, struct btrfs_ordered_extent,
|
|
rb_node);
|
|
|
|
/* Go to next ordered extent and continue */
|
|
cur = entry->file_offset;
|
|
continue;
|
|
}
|
|
/*
|
|
* | |<--- OE --->|
|
|
* cur
|
|
* Go to the start of OE.
|
|
*/
|
|
if (cur < entry->file_offset) {
|
|
cur = entry->file_offset;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Now we are definitely inside one ordered extent.
|
|
*
|
|
* |<--- OE --->|
|
|
* |
|
|
* cur
|
|
*/
|
|
end = min(entry->file_offset + entry->num_bytes,
|
|
file_offset + num_bytes) - 1;
|
|
ASSERT(end + 1 - cur < U32_MAX);
|
|
len = end + 1 - cur;
|
|
|
|
if (page) {
|
|
/*
|
|
* Private2 bit indicates whether we still have pending
|
|
* io unfinished for the ordered extent.
|
|
*
|
|
* If there's no such bit, we need to skip to next range.
|
|
*/
|
|
if (!PagePrivate2(page)) {
|
|
cur += len;
|
|
continue;
|
|
}
|
|
ClearPagePrivate2(page);
|
|
}
|
|
|
|
/* Now we're fine to update the accounting */
|
|
if (unlikely(len > entry->bytes_left)) {
|
|
WARN_ON(1);
|
|
btrfs_crit(fs_info,
|
|
"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
|
|
inode->root->root_key.objectid,
|
|
btrfs_ino(inode),
|
|
entry->file_offset,
|
|
entry->num_bytes,
|
|
len, entry->bytes_left);
|
|
entry->bytes_left = 0;
|
|
} else {
|
|
entry->bytes_left -= len;
|
|
}
|
|
|
|
if (!uptodate)
|
|
set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
|
|
|
|
/*
|
|
* All the IO of the ordered extent is finished, we need to queue
|
|
* the finish_func to be executed.
|
|
*/
|
|
if (entry->bytes_left == 0) {
|
|
set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
cond_wake_up(&entry->wait);
|
|
refcount_inc(&entry->refs);
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
btrfs_init_work(&entry->work, finish_func, NULL, NULL);
|
|
btrfs_queue_work(wq, &entry->work);
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
}
|
|
cur += len;
|
|
}
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
}
|
|
|
|
/*
|
|
* Finish IO for one ordered extent across a given range. The range can only
|
|
* contain one ordered extent.
|
|
*
|
|
* @cached: The cached ordered extent. If not NULL, we can skip the tree
|
|
* search and use the ordered extent directly.
|
|
* Will be also used to store the finished ordered extent.
|
|
* @file_offset: File offset for the finished IO
|
|
* @io_size: Length of the finish IO range
|
|
* @uptodate: If the IO finishes without problem
|
|
*
|
|
* Return true if the ordered extent is finished in the range, and update
|
|
* @cached.
|
|
* Return false otherwise.
|
|
*
|
|
* NOTE: The range can NOT cross multiple ordered extents.
|
|
* Thus caller should ensure the range doesn't cross ordered extents.
|
|
*/
|
|
bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
|
|
struct btrfs_ordered_extent **cached,
|
|
u64 file_offset, u64 io_size, int uptodate)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
bool finished = false;
|
|
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
if (cached && *cached) {
|
|
entry = *cached;
|
|
goto have_entry;
|
|
}
|
|
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
have_entry:
|
|
if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
|
|
goto out;
|
|
|
|
if (io_size > entry->bytes_left)
|
|
btrfs_crit(inode->root->fs_info,
|
|
"bad ordered accounting left %llu size %llu",
|
|
entry->bytes_left, io_size);
|
|
|
|
entry->bytes_left -= io_size;
|
|
if (!uptodate)
|
|
set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
|
|
|
|
if (entry->bytes_left == 0) {
|
|
/*
|
|
* Ensure only one caller can set the flag and finished_ret
|
|
* accordingly
|
|
*/
|
|
finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
|
|
/* test_and_set_bit implies a barrier */
|
|
cond_wake_up_nomb(&entry->wait);
|
|
}
|
|
out:
|
|
if (finished && cached && entry) {
|
|
*cached = entry;
|
|
refcount_inc(&entry->refs);
|
|
}
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
return finished;
|
|
}
|
|
|
|
/*
|
|
* used to drop a reference on an ordered extent. This will free
|
|
* the extent if the last reference is dropped
|
|
*/
|
|
void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct list_head *cur;
|
|
struct btrfs_ordered_sum *sum;
|
|
|
|
trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
|
|
|
|
if (refcount_dec_and_test(&entry->refs)) {
|
|
ASSERT(list_empty(&entry->root_extent_list));
|
|
ASSERT(list_empty(&entry->log_list));
|
|
ASSERT(RB_EMPTY_NODE(&entry->rb_node));
|
|
if (entry->inode)
|
|
btrfs_add_delayed_iput(entry->inode);
|
|
while (!list_empty(&entry->list)) {
|
|
cur = entry->list.next;
|
|
sum = list_entry(cur, struct btrfs_ordered_sum, list);
|
|
list_del(&sum->list);
|
|
kvfree(sum);
|
|
}
|
|
kmem_cache_free(btrfs_ordered_extent_cache, entry);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* remove an ordered extent from the tree. No references are dropped
|
|
* and waiters are woken up.
|
|
*/
|
|
void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
|
|
struct btrfs_ordered_extent *entry)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct btrfs_root *root = btrfs_inode->root;
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
struct rb_node *node;
|
|
bool pending;
|
|
|
|
/* This is paired with btrfs_add_ordered_extent. */
|
|
spin_lock(&btrfs_inode->lock);
|
|
btrfs_mod_outstanding_extents(btrfs_inode, -1);
|
|
spin_unlock(&btrfs_inode->lock);
|
|
if (root != fs_info->tree_root)
|
|
btrfs_delalloc_release_metadata(btrfs_inode, entry->num_bytes,
|
|
false);
|
|
|
|
percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
|
|
fs_info->delalloc_batch);
|
|
|
|
tree = &btrfs_inode->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = &entry->rb_node;
|
|
rb_erase(node, &tree->tree);
|
|
RB_CLEAR_NODE(node);
|
|
if (tree->last == node)
|
|
tree->last = NULL;
|
|
set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
|
|
pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
/*
|
|
* The current running transaction is waiting on us, we need to let it
|
|
* know that we're complete and wake it up.
|
|
*/
|
|
if (pending) {
|
|
struct btrfs_transaction *trans;
|
|
|
|
/*
|
|
* The checks for trans are just a formality, it should be set,
|
|
* but if it isn't we don't want to deref/assert under the spin
|
|
* lock, so be nice and check if trans is set, but ASSERT() so
|
|
* if it isn't set a developer will notice.
|
|
*/
|
|
spin_lock(&fs_info->trans_lock);
|
|
trans = fs_info->running_transaction;
|
|
if (trans)
|
|
refcount_inc(&trans->use_count);
|
|
spin_unlock(&fs_info->trans_lock);
|
|
|
|
ASSERT(trans);
|
|
if (trans) {
|
|
if (atomic_dec_and_test(&trans->pending_ordered))
|
|
wake_up(&trans->pending_wait);
|
|
btrfs_put_transaction(trans);
|
|
}
|
|
}
|
|
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_del_init(&entry->root_extent_list);
|
|
root->nr_ordered_extents--;
|
|
|
|
trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
|
|
|
|
if (!root->nr_ordered_extents) {
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
BUG_ON(list_empty(&root->ordered_root));
|
|
list_del_init(&root->ordered_root);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
}
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
wake_up(&entry->wait);
|
|
}
|
|
|
|
static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
complete(&ordered->completion);
|
|
}
|
|
|
|
/*
|
|
* wait for all the ordered extents in a root. This is done when balancing
|
|
* space between drives.
|
|
*/
|
|
u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
|
|
const u64 range_start, const u64 range_len)
|
|
{
|
|
struct btrfs_fs_info *fs_info = root->fs_info;
|
|
LIST_HEAD(splice);
|
|
LIST_HEAD(skipped);
|
|
LIST_HEAD(works);
|
|
struct btrfs_ordered_extent *ordered, *next;
|
|
u64 count = 0;
|
|
const u64 range_end = range_start + range_len;
|
|
|
|
mutex_lock(&root->ordered_extent_mutex);
|
|
spin_lock(&root->ordered_extent_lock);
|
|
list_splice_init(&root->ordered_extents, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
|
|
root_extent_list);
|
|
|
|
if (range_end <= ordered->disk_bytenr ||
|
|
ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
|
|
list_move_tail(&ordered->root_extent_list, &skipped);
|
|
cond_resched_lock(&root->ordered_extent_lock);
|
|
continue;
|
|
}
|
|
|
|
list_move_tail(&ordered->root_extent_list,
|
|
&root->ordered_extents);
|
|
refcount_inc(&ordered->refs);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
btrfs_init_work(&ordered->flush_work,
|
|
btrfs_run_ordered_extent_work, NULL, NULL);
|
|
list_add_tail(&ordered->work_list, &works);
|
|
btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
|
|
|
|
cond_resched();
|
|
spin_lock(&root->ordered_extent_lock);
|
|
if (nr != U64_MAX)
|
|
nr--;
|
|
count++;
|
|
}
|
|
list_splice_tail(&skipped, &root->ordered_extents);
|
|
list_splice_tail(&splice, &root->ordered_extents);
|
|
spin_unlock(&root->ordered_extent_lock);
|
|
|
|
list_for_each_entry_safe(ordered, next, &works, work_list) {
|
|
list_del_init(&ordered->work_list);
|
|
wait_for_completion(&ordered->completion);
|
|
btrfs_put_ordered_extent(ordered);
|
|
cond_resched();
|
|
}
|
|
mutex_unlock(&root->ordered_extent_mutex);
|
|
|
|
return count;
|
|
}
|
|
|
|
void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
|
|
const u64 range_start, const u64 range_len)
|
|
{
|
|
struct btrfs_root *root;
|
|
struct list_head splice;
|
|
u64 done;
|
|
|
|
INIT_LIST_HEAD(&splice);
|
|
|
|
mutex_lock(&fs_info->ordered_operations_mutex);
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
list_splice_init(&fs_info->ordered_roots, &splice);
|
|
while (!list_empty(&splice) && nr) {
|
|
root = list_first_entry(&splice, struct btrfs_root,
|
|
ordered_root);
|
|
root = btrfs_grab_root(root);
|
|
BUG_ON(!root);
|
|
list_move_tail(&root->ordered_root,
|
|
&fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
|
|
done = btrfs_wait_ordered_extents(root, nr,
|
|
range_start, range_len);
|
|
btrfs_put_root(root);
|
|
|
|
spin_lock(&fs_info->ordered_root_lock);
|
|
if (nr != U64_MAX) {
|
|
nr -= done;
|
|
}
|
|
}
|
|
list_splice_tail(&splice, &fs_info->ordered_roots);
|
|
spin_unlock(&fs_info->ordered_root_lock);
|
|
mutex_unlock(&fs_info->ordered_operations_mutex);
|
|
}
|
|
|
|
/*
|
|
* Used to start IO or wait for a given ordered extent to finish.
|
|
*
|
|
* If wait is one, this effectively waits on page writeback for all the pages
|
|
* in the extent, and it waits on the io completion code to insert
|
|
* metadata into the btree corresponding to the extent
|
|
*/
|
|
void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
|
|
{
|
|
u64 start = entry->file_offset;
|
|
u64 end = start + entry->num_bytes - 1;
|
|
struct btrfs_inode *inode = BTRFS_I(entry->inode);
|
|
|
|
trace_btrfs_ordered_extent_start(inode, entry);
|
|
|
|
/*
|
|
* pages in the range can be dirty, clean or writeback. We
|
|
* start IO on any dirty ones so the wait doesn't stall waiting
|
|
* for the flusher thread to find them
|
|
*/
|
|
if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
|
|
filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
|
|
if (wait) {
|
|
wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
|
|
&entry->flags));
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Used to wait on ordered extents across a large range of bytes.
|
|
*/
|
|
int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
|
|
{
|
|
int ret = 0;
|
|
int ret_wb = 0;
|
|
u64 end;
|
|
u64 orig_end;
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
if (start + len < start) {
|
|
orig_end = INT_LIMIT(loff_t);
|
|
} else {
|
|
orig_end = start + len - 1;
|
|
if (orig_end > INT_LIMIT(loff_t))
|
|
orig_end = INT_LIMIT(loff_t);
|
|
}
|
|
|
|
/* start IO across the range first to instantiate any delalloc
|
|
* extents
|
|
*/
|
|
ret = btrfs_fdatawrite_range(inode, start, orig_end);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* If we have a writeback error don't return immediately. Wait first
|
|
* for any ordered extents that haven't completed yet. This is to make
|
|
* sure no one can dirty the same page ranges and call writepages()
|
|
* before the ordered extents complete - to avoid failures (-EEXIST)
|
|
* when adding the new ordered extents to the ordered tree.
|
|
*/
|
|
ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
|
|
|
|
end = orig_end;
|
|
while (1) {
|
|
ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
|
|
if (!ordered)
|
|
break;
|
|
if (ordered->file_offset > orig_end) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
if (ordered->file_offset + ordered->num_bytes <= start) {
|
|
btrfs_put_ordered_extent(ordered);
|
|
break;
|
|
}
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
end = ordered->file_offset;
|
|
/*
|
|
* If the ordered extent had an error save the error but don't
|
|
* exit without waiting first for all other ordered extents in
|
|
* the range to complete.
|
|
*/
|
|
if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
|
|
ret = -EIO;
|
|
btrfs_put_ordered_extent(ordered);
|
|
if (end == 0 || end == start)
|
|
break;
|
|
end--;
|
|
}
|
|
return ret_wb ? ret_wb : ret;
|
|
}
|
|
|
|
/*
|
|
* find an ordered extent corresponding to file_offset. return NULL if
|
|
* nothing is found, otherwise take a reference on the extent and return it
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
|
|
u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
unsigned long flags;
|
|
|
|
tree = &inode->ordered_tree;
|
|
spin_lock_irqsave(&tree->lock, flags);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
|
|
entry = NULL;
|
|
if (entry)
|
|
refcount_inc(&entry->refs);
|
|
out:
|
|
spin_unlock_irqrestore(&tree->lock, flags);
|
|
return entry;
|
|
}
|
|
|
|
/* Since the DIO code tries to lock a wide area we need to look for any ordered
|
|
* extents that exist in the range, rather than just the start of the range.
|
|
*/
|
|
struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
|
|
struct btrfs_inode *inode, u64 file_offset, u64 len)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &inode->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node) {
|
|
node = tree_search(tree, file_offset + len);
|
|
if (!node)
|
|
goto out;
|
|
}
|
|
|
|
while (1) {
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
if (range_overlaps(entry, file_offset, len))
|
|
break;
|
|
|
|
if (entry->file_offset >= file_offset + len) {
|
|
entry = NULL;
|
|
break;
|
|
}
|
|
entry = NULL;
|
|
node = rb_next(node);
|
|
if (!node)
|
|
break;
|
|
}
|
|
out:
|
|
if (entry)
|
|
refcount_inc(&entry->refs);
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* Adds all ordered extents to the given list. The list ends up sorted by the
|
|
* file_offset of the ordered extents.
|
|
*/
|
|
void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
|
|
struct list_head *list)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
|
|
struct rb_node *n;
|
|
|
|
ASSERT(inode_is_locked(&inode->vfs_inode));
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
|
|
struct btrfs_ordered_extent *ordered;
|
|
|
|
ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
|
|
|
|
if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
|
|
continue;
|
|
|
|
ASSERT(list_empty(&ordered->log_list));
|
|
list_add_tail(&ordered->log_list, list);
|
|
refcount_inc(&ordered->refs);
|
|
}
|
|
spin_unlock_irq(&tree->lock);
|
|
}
|
|
|
|
/*
|
|
* lookup and return any extent before 'file_offset'. NULL is returned
|
|
* if none is found
|
|
*/
|
|
struct btrfs_ordered_extent *
|
|
btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
|
|
{
|
|
struct btrfs_ordered_inode_tree *tree;
|
|
struct rb_node *node;
|
|
struct btrfs_ordered_extent *entry = NULL;
|
|
|
|
tree = &inode->ordered_tree;
|
|
spin_lock_irq(&tree->lock);
|
|
node = tree_search(tree, file_offset);
|
|
if (!node)
|
|
goto out;
|
|
|
|
entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
|
|
refcount_inc(&entry->refs);
|
|
out:
|
|
spin_unlock_irq(&tree->lock);
|
|
return entry;
|
|
}
|
|
|
|
/*
|
|
* btrfs_flush_ordered_range - Lock the passed range and ensures all pending
|
|
* ordered extents in it are run to completion.
|
|
*
|
|
* @inode: Inode whose ordered tree is to be searched
|
|
* @start: Beginning of range to flush
|
|
* @end: Last byte of range to lock
|
|
* @cached_state: If passed, will return the extent state responsible for the
|
|
* locked range. It's the caller's responsibility to free the cached state.
|
|
*
|
|
* This function always returns with the given range locked, ensuring after it's
|
|
* called no order extent can be pending.
|
|
*/
|
|
void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
|
|
u64 end,
|
|
struct extent_state **cached_state)
|
|
{
|
|
struct btrfs_ordered_extent *ordered;
|
|
struct extent_state *cache = NULL;
|
|
struct extent_state **cachedp = &cache;
|
|
|
|
if (cached_state)
|
|
cachedp = cached_state;
|
|
|
|
while (1) {
|
|
lock_extent_bits(&inode->io_tree, start, end, cachedp);
|
|
ordered = btrfs_lookup_ordered_range(inode, start,
|
|
end - start + 1);
|
|
if (!ordered) {
|
|
/*
|
|
* If no external cached_state has been passed then
|
|
* decrement the extra ref taken for cachedp since we
|
|
* aren't exposing it outside of this function
|
|
*/
|
|
if (!cached_state)
|
|
refcount_dec(&cache->refs);
|
|
break;
|
|
}
|
|
unlock_extent_cached(&inode->io_tree, start, end, cachedp);
|
|
btrfs_start_ordered_extent(ordered, 1);
|
|
btrfs_put_ordered_extent(ordered);
|
|
}
|
|
}
|
|
|
|
static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
|
|
u64 len)
|
|
{
|
|
struct inode *inode = ordered->inode;
|
|
u64 file_offset = ordered->file_offset + pos;
|
|
u64 disk_bytenr = ordered->disk_bytenr + pos;
|
|
u64 num_bytes = len;
|
|
u64 disk_num_bytes = len;
|
|
int type;
|
|
unsigned long flags_masked = ordered->flags & ~(1 << BTRFS_ORDERED_DIRECT);
|
|
int compress_type = ordered->compress_type;
|
|
unsigned long weight;
|
|
int ret;
|
|
|
|
weight = hweight_long(flags_masked);
|
|
WARN_ON_ONCE(weight > 1);
|
|
if (!weight)
|
|
type = 0;
|
|
else
|
|
type = __ffs(flags_masked);
|
|
|
|
if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered->flags)) {
|
|
WARN_ON_ONCE(1);
|
|
ret = btrfs_add_ordered_extent_compress(BTRFS_I(inode),
|
|
file_offset, disk_bytenr, num_bytes,
|
|
disk_num_bytes, compress_type);
|
|
} else if (test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
|
|
ret = btrfs_add_ordered_extent_dio(BTRFS_I(inode), file_offset,
|
|
disk_bytenr, num_bytes, disk_num_bytes, type);
|
|
} else {
|
|
ret = btrfs_add_ordered_extent(BTRFS_I(inode), file_offset,
|
|
disk_bytenr, num_bytes, disk_num_bytes, type);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
|
|
u64 post)
|
|
{
|
|
struct inode *inode = ordered->inode;
|
|
struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
|
|
struct rb_node *node;
|
|
struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
|
|
int ret = 0;
|
|
|
|
spin_lock_irq(&tree->lock);
|
|
/* Remove from tree once */
|
|
node = &ordered->rb_node;
|
|
rb_erase(node, &tree->tree);
|
|
RB_CLEAR_NODE(node);
|
|
if (tree->last == node)
|
|
tree->last = NULL;
|
|
|
|
ordered->file_offset += pre;
|
|
ordered->disk_bytenr += pre;
|
|
ordered->num_bytes -= (pre + post);
|
|
ordered->disk_num_bytes -= (pre + post);
|
|
ordered->bytes_left -= (pre + post);
|
|
|
|
/* Re-insert the node */
|
|
node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
|
|
if (node)
|
|
btrfs_panic(fs_info, -EEXIST,
|
|
"zoned: inconsistency in ordered tree at offset %llu",
|
|
ordered->file_offset);
|
|
|
|
spin_unlock_irq(&tree->lock);
|
|
|
|
if (pre)
|
|
ret = clone_ordered_extent(ordered, 0, pre);
|
|
if (ret == 0 && post)
|
|
ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
|
|
post);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int __init ordered_data_init(void)
|
|
{
|
|
btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
|
|
sizeof(struct btrfs_ordered_extent), 0,
|
|
SLAB_MEM_SPREAD,
|
|
NULL);
|
|
if (!btrfs_ordered_extent_cache)
|
|
return -ENOMEM;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void __cold ordered_data_exit(void)
|
|
{
|
|
kmem_cache_destroy(btrfs_ordered_extent_cache);
|
|
}
|