mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
7269ed4af3
pud_init(), pmd_init() and kernel_pte_init() are duplicated defined in file kasan.c and sparse-vmemmap.c as weak functions. Move them to generic header file pgtable.h, architecture can redefine them. Link: https://lkml.kernel.org/r/20241104070712.52902-1-maobibo@loongson.cn Signed-off-by: Bibo Mao <maobibo@loongson.cn> Reviewed-by: Huacai Chen <chenhuacai@loongson.cn> Cc: Alexander Potapenko <glider@google.com> Cc: Andrey Konovalov <andreyknvl@gmail.com> Cc: Andrey Ryabinin <ryabinin.a.a@gmail.com> Cc: Dmitry Vyukov <dvyukov@google.com> Cc: Thomas Bogendoerfer <tsbogend@alpha.franken.de> Cc: Vincenzo Frascino <vincenzo.frascino@arm.com> Cc: WANG Xuerui <kernel@xen0n.name> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
472 lines
12 KiB
C
472 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Virtual Memory Map support
|
|
*
|
|
* (C) 2007 sgi. Christoph Lameter.
|
|
*
|
|
* Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
|
|
* virt_to_page, page_address() to be implemented as a base offset
|
|
* calculation without memory access.
|
|
*
|
|
* However, virtual mappings need a page table and TLBs. Many Linux
|
|
* architectures already map their physical space using 1-1 mappings
|
|
* via TLBs. For those arches the virtual memory map is essentially
|
|
* for free if we use the same page size as the 1-1 mappings. In that
|
|
* case the overhead consists of a few additional pages that are
|
|
* allocated to create a view of memory for vmemmap.
|
|
*
|
|
* The architecture is expected to provide a vmemmap_populate() function
|
|
* to instantiate the mapping.
|
|
*/
|
|
#include <linux/mm.h>
|
|
#include <linux/mmzone.h>
|
|
#include <linux/memblock.h>
|
|
#include <linux/memremap.h>
|
|
#include <linux/highmem.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/spinlock.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/sched.h>
|
|
|
|
#include <asm/dma.h>
|
|
#include <asm/pgalloc.h>
|
|
|
|
/*
|
|
* Allocate a block of memory to be used to back the virtual memory map
|
|
* or to back the page tables that are used to create the mapping.
|
|
* Uses the main allocators if they are available, else bootmem.
|
|
*/
|
|
|
|
static void * __ref __earlyonly_bootmem_alloc(int node,
|
|
unsigned long size,
|
|
unsigned long align,
|
|
unsigned long goal)
|
|
{
|
|
return memblock_alloc_try_nid_raw(size, align, goal,
|
|
MEMBLOCK_ALLOC_ACCESSIBLE, node);
|
|
}
|
|
|
|
void * __meminit vmemmap_alloc_block(unsigned long size, int node)
|
|
{
|
|
/* If the main allocator is up use that, fallback to bootmem. */
|
|
if (slab_is_available()) {
|
|
gfp_t gfp_mask = GFP_KERNEL|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
|
|
int order = get_order(size);
|
|
static bool warned;
|
|
struct page *page;
|
|
|
|
page = alloc_pages_node(node, gfp_mask, order);
|
|
if (page)
|
|
return page_address(page);
|
|
|
|
if (!warned) {
|
|
warn_alloc(gfp_mask & ~__GFP_NOWARN, NULL,
|
|
"vmemmap alloc failure: order:%u", order);
|
|
warned = true;
|
|
}
|
|
return NULL;
|
|
} else
|
|
return __earlyonly_bootmem_alloc(node, size, size,
|
|
__pa(MAX_DMA_ADDRESS));
|
|
}
|
|
|
|
static void * __meminit altmap_alloc_block_buf(unsigned long size,
|
|
struct vmem_altmap *altmap);
|
|
|
|
/* need to make sure size is all the same during early stage */
|
|
void * __meminit vmemmap_alloc_block_buf(unsigned long size, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
void *ptr;
|
|
|
|
if (altmap)
|
|
return altmap_alloc_block_buf(size, altmap);
|
|
|
|
ptr = sparse_buffer_alloc(size);
|
|
if (!ptr)
|
|
ptr = vmemmap_alloc_block(size, node);
|
|
return ptr;
|
|
}
|
|
|
|
static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
|
|
{
|
|
return altmap->base_pfn + altmap->reserve + altmap->alloc
|
|
+ altmap->align;
|
|
}
|
|
|
|
static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long allocated = altmap->alloc + altmap->align;
|
|
|
|
if (altmap->free > allocated)
|
|
return altmap->free - allocated;
|
|
return 0;
|
|
}
|
|
|
|
static void * __meminit altmap_alloc_block_buf(unsigned long size,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long pfn, nr_pfns, nr_align;
|
|
|
|
if (size & ~PAGE_MASK) {
|
|
pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
|
|
__func__, size);
|
|
return NULL;
|
|
}
|
|
|
|
pfn = vmem_altmap_next_pfn(altmap);
|
|
nr_pfns = size >> PAGE_SHIFT;
|
|
nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
|
|
nr_align = ALIGN(pfn, nr_align) - pfn;
|
|
if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
|
|
return NULL;
|
|
|
|
altmap->alloc += nr_pfns;
|
|
altmap->align += nr_align;
|
|
pfn += nr_align;
|
|
|
|
pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
|
|
__func__, pfn, altmap->alloc, altmap->align, nr_pfns);
|
|
return __va(__pfn_to_phys(pfn));
|
|
}
|
|
|
|
void __meminit vmemmap_verify(pte_t *pte, int node,
|
|
unsigned long start, unsigned long end)
|
|
{
|
|
unsigned long pfn = pte_pfn(ptep_get(pte));
|
|
int actual_node = early_pfn_to_nid(pfn);
|
|
|
|
if (node_distance(actual_node, node) > LOCAL_DISTANCE)
|
|
pr_warn_once("[%lx-%lx] potential offnode page_structs\n",
|
|
start, end - 1);
|
|
}
|
|
|
|
pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
|
|
struct vmem_altmap *altmap,
|
|
struct page *reuse)
|
|
{
|
|
pte_t *pte = pte_offset_kernel(pmd, addr);
|
|
if (pte_none(ptep_get(pte))) {
|
|
pte_t entry;
|
|
void *p;
|
|
|
|
if (!reuse) {
|
|
p = vmemmap_alloc_block_buf(PAGE_SIZE, node, altmap);
|
|
if (!p)
|
|
return NULL;
|
|
} else {
|
|
/*
|
|
* When a PTE/PMD entry is freed from the init_mm
|
|
* there's a free_pages() call to this page allocated
|
|
* above. Thus this get_page() is paired with the
|
|
* put_page_testzero() on the freeing path.
|
|
* This can only called by certain ZONE_DEVICE path,
|
|
* and through vmemmap_populate_compound_pages() when
|
|
* slab is available.
|
|
*/
|
|
get_page(reuse);
|
|
p = page_to_virt(reuse);
|
|
}
|
|
entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
|
|
set_pte_at(&init_mm, addr, pte, entry);
|
|
}
|
|
return pte;
|
|
}
|
|
|
|
static void * __meminit vmemmap_alloc_block_zero(unsigned long size, int node)
|
|
{
|
|
void *p = vmemmap_alloc_block(size, node);
|
|
|
|
if (!p)
|
|
return NULL;
|
|
memset(p, 0, size);
|
|
|
|
return p;
|
|
}
|
|
|
|
pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
|
|
{
|
|
pmd_t *pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(*pmd)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
kernel_pte_init(p);
|
|
pmd_populate_kernel(&init_mm, pmd, p);
|
|
}
|
|
return pmd;
|
|
}
|
|
|
|
pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
|
|
{
|
|
pud_t *pud = pud_offset(p4d, addr);
|
|
if (pud_none(*pud)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pmd_init(p);
|
|
pud_populate(&init_mm, pud, p);
|
|
}
|
|
return pud;
|
|
}
|
|
|
|
p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
|
|
{
|
|
p4d_t *p4d = p4d_offset(pgd, addr);
|
|
if (p4d_none(*p4d)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pud_init(p);
|
|
p4d_populate(&init_mm, p4d, p);
|
|
}
|
|
return p4d;
|
|
}
|
|
|
|
pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
|
|
{
|
|
pgd_t *pgd = pgd_offset_k(addr);
|
|
if (pgd_none(*pgd)) {
|
|
void *p = vmemmap_alloc_block_zero(PAGE_SIZE, node);
|
|
if (!p)
|
|
return NULL;
|
|
pgd_populate(&init_mm, pgd, p);
|
|
}
|
|
return pgd;
|
|
}
|
|
|
|
static pte_t * __meminit vmemmap_populate_address(unsigned long addr, int node,
|
|
struct vmem_altmap *altmap,
|
|
struct page *reuse)
|
|
{
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
pte_t *pte;
|
|
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return NULL;
|
|
p4d = vmemmap_p4d_populate(pgd, addr, node);
|
|
if (!p4d)
|
|
return NULL;
|
|
pud = vmemmap_pud_populate(p4d, addr, node);
|
|
if (!pud)
|
|
return NULL;
|
|
pmd = vmemmap_pmd_populate(pud, addr, node);
|
|
if (!pmd)
|
|
return NULL;
|
|
pte = vmemmap_pte_populate(pmd, addr, node, altmap, reuse);
|
|
if (!pte)
|
|
return NULL;
|
|
vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
|
|
|
|
return pte;
|
|
}
|
|
|
|
static int __meminit vmemmap_populate_range(unsigned long start,
|
|
unsigned long end, int node,
|
|
struct vmem_altmap *altmap,
|
|
struct page *reuse)
|
|
{
|
|
unsigned long addr = start;
|
|
pte_t *pte;
|
|
|
|
for (; addr < end; addr += PAGE_SIZE) {
|
|
pte = vmemmap_populate_address(addr, node, altmap, reuse);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int __meminit vmemmap_populate_basepages(unsigned long start, unsigned long end,
|
|
int node, struct vmem_altmap *altmap)
|
|
{
|
|
return vmemmap_populate_range(start, end, node, altmap, NULL);
|
|
}
|
|
|
|
void __weak __meminit vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
|
|
unsigned long addr, unsigned long next)
|
|
{
|
|
}
|
|
|
|
int __weak __meminit vmemmap_check_pmd(pmd_t *pmd, int node,
|
|
unsigned long addr, unsigned long next)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
int __meminit vmemmap_populate_hugepages(unsigned long start, unsigned long end,
|
|
int node, struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long addr;
|
|
unsigned long next;
|
|
pgd_t *pgd;
|
|
p4d_t *p4d;
|
|
pud_t *pud;
|
|
pmd_t *pmd;
|
|
|
|
for (addr = start; addr < end; addr = next) {
|
|
next = pmd_addr_end(addr, end);
|
|
|
|
pgd = vmemmap_pgd_populate(addr, node);
|
|
if (!pgd)
|
|
return -ENOMEM;
|
|
|
|
p4d = vmemmap_p4d_populate(pgd, addr, node);
|
|
if (!p4d)
|
|
return -ENOMEM;
|
|
|
|
pud = vmemmap_pud_populate(p4d, addr, node);
|
|
if (!pud)
|
|
return -ENOMEM;
|
|
|
|
pmd = pmd_offset(pud, addr);
|
|
if (pmd_none(READ_ONCE(*pmd))) {
|
|
void *p;
|
|
|
|
p = vmemmap_alloc_block_buf(PMD_SIZE, node, altmap);
|
|
if (p) {
|
|
vmemmap_set_pmd(pmd, p, node, addr, next);
|
|
continue;
|
|
} else if (altmap) {
|
|
/*
|
|
* No fallback: In any case we care about, the
|
|
* altmap should be reasonably sized and aligned
|
|
* such that vmemmap_alloc_block_buf() will always
|
|
* succeed. For consistency with the PTE case,
|
|
* return an error here as failure could indicate
|
|
* a configuration issue with the size of the altmap.
|
|
*/
|
|
return -ENOMEM;
|
|
}
|
|
} else if (vmemmap_check_pmd(pmd, node, addr, next))
|
|
continue;
|
|
if (vmemmap_populate_basepages(addr, next, node, altmap))
|
|
return -ENOMEM;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#ifndef vmemmap_populate_compound_pages
|
|
/*
|
|
* For compound pages bigger than section size (e.g. x86 1G compound
|
|
* pages with 2M subsection size) fill the rest of sections as tail
|
|
* pages.
|
|
*
|
|
* Note that memremap_pages() resets @nr_range value and will increment
|
|
* it after each range successful onlining. Thus the value or @nr_range
|
|
* at section memmap populate corresponds to the in-progress range
|
|
* being onlined here.
|
|
*/
|
|
static bool __meminit reuse_compound_section(unsigned long start_pfn,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
unsigned long nr_pages = pgmap_vmemmap_nr(pgmap);
|
|
unsigned long offset = start_pfn -
|
|
PHYS_PFN(pgmap->ranges[pgmap->nr_range].start);
|
|
|
|
return !IS_ALIGNED(offset, nr_pages) && nr_pages > PAGES_PER_SUBSECTION;
|
|
}
|
|
|
|
static pte_t * __meminit compound_section_tail_page(unsigned long addr)
|
|
{
|
|
pte_t *pte;
|
|
|
|
addr -= PAGE_SIZE;
|
|
|
|
/*
|
|
* Assuming sections are populated sequentially, the previous section's
|
|
* page data can be reused.
|
|
*/
|
|
pte = pte_offset_kernel(pmd_off_k(addr), addr);
|
|
if (!pte)
|
|
return NULL;
|
|
|
|
return pte;
|
|
}
|
|
|
|
static int __meminit vmemmap_populate_compound_pages(unsigned long start_pfn,
|
|
unsigned long start,
|
|
unsigned long end, int node,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
unsigned long size, addr;
|
|
pte_t *pte;
|
|
int rc;
|
|
|
|
if (reuse_compound_section(start_pfn, pgmap)) {
|
|
pte = compound_section_tail_page(start);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Reuse the page that was populated in the prior iteration
|
|
* with just tail struct pages.
|
|
*/
|
|
return vmemmap_populate_range(start, end, node, NULL,
|
|
pte_page(ptep_get(pte)));
|
|
}
|
|
|
|
size = min(end - start, pgmap_vmemmap_nr(pgmap) * sizeof(struct page));
|
|
for (addr = start; addr < end; addr += size) {
|
|
unsigned long next, last = addr + size;
|
|
|
|
/* Populate the head page vmemmap page */
|
|
pte = vmemmap_populate_address(addr, node, NULL, NULL);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
/* Populate the tail pages vmemmap page */
|
|
next = addr + PAGE_SIZE;
|
|
pte = vmemmap_populate_address(next, node, NULL, NULL);
|
|
if (!pte)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* Reuse the previous page for the rest of tail pages
|
|
* See layout diagram in Documentation/mm/vmemmap_dedup.rst
|
|
*/
|
|
next += PAGE_SIZE;
|
|
rc = vmemmap_populate_range(next, last, node, NULL,
|
|
pte_page(ptep_get(pte)));
|
|
if (rc)
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#endif
|
|
|
|
struct page * __meminit __populate_section_memmap(unsigned long pfn,
|
|
unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
|
|
struct dev_pagemap *pgmap)
|
|
{
|
|
unsigned long start = (unsigned long) pfn_to_page(pfn);
|
|
unsigned long end = start + nr_pages * sizeof(struct page);
|
|
int r;
|
|
|
|
if (WARN_ON_ONCE(!IS_ALIGNED(pfn, PAGES_PER_SUBSECTION) ||
|
|
!IS_ALIGNED(nr_pages, PAGES_PER_SUBSECTION)))
|
|
return NULL;
|
|
|
|
if (vmemmap_can_optimize(altmap, pgmap))
|
|
r = vmemmap_populate_compound_pages(pfn, start, end, nid, pgmap);
|
|
else
|
|
r = vmemmap_populate(start, end, nid, altmap);
|
|
|
|
if (r < 0)
|
|
return NULL;
|
|
|
|
if (system_state == SYSTEM_BOOTING)
|
|
memmap_boot_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
|
|
else
|
|
memmap_pages_add(DIV_ROUND_UP(end - start, PAGE_SIZE));
|
|
|
|
return pfn_to_page(pfn);
|
|
}
|