linux-stable/drivers/net/phy/bcm-phy-lib.c
Heiner Kallweit 3cc97d2fa9 net: phy: broadcom: use genphy_c45_an_config_eee_aneg in bcm_config_lre_aneg
bcm_config_lre_aneg() is the only user of genphy_config_eee_advert(),
therefore use genphy_c45_an_config_eee_aneg() instead. The resulting
functionality is equivalent, and bcm_config_lre_aneg() follows the
structure of __genphy_config_aneg().
In a follow-up step genphy_config_eee_advert() can be removed.

Note: We preserve the current behavior to ignore errors.

Signed-off-by: Heiner Kallweit <hkallweit1@gmail.com>
Reviewed-by: Andrew Lunn <andrew@lunn.ch>
Reviewed-by: Florian Fainelli <florian.fainelli@broadcom.com>
Link: https://patch.msgid.link/6e5cd4ab-28bb-4d82-b449-fec85f3d1e8a@gmail.com
Signed-off-by: Jakub Kicinski <kuba@kernel.org>
2024-11-07 20:31:06 -08:00

1186 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2015-2017 Broadcom
*/
#include "bcm-phy-lib.h"
#include <linux/bitfield.h>
#include <linux/brcmphy.h>
#include <linux/etherdevice.h>
#include <linux/export.h>
#include <linux/mdio.h>
#include <linux/module.h>
#include <linux/phy.h>
#include <linux/ethtool.h>
#include <linux/ethtool_netlink.h>
#include <linux/netdevice.h>
#define MII_BCM_CHANNEL_WIDTH 0x2000
#define BCM_CL45VEN_EEE_ADV 0x3c
int __bcm_phy_write_exp(struct phy_device *phydev, u16 reg, u16 val)
{
int rc;
rc = __phy_write(phydev, MII_BCM54XX_EXP_SEL, reg);
if (rc < 0)
return rc;
return __phy_write(phydev, MII_BCM54XX_EXP_DATA, val);
}
EXPORT_SYMBOL_GPL(__bcm_phy_write_exp);
int bcm_phy_write_exp(struct phy_device *phydev, u16 reg, u16 val)
{
int rc;
phy_lock_mdio_bus(phydev);
rc = __bcm_phy_write_exp(phydev, reg, val);
phy_unlock_mdio_bus(phydev);
return rc;
}
EXPORT_SYMBOL_GPL(bcm_phy_write_exp);
int __bcm_phy_read_exp(struct phy_device *phydev, u16 reg)
{
int val;
val = __phy_write(phydev, MII_BCM54XX_EXP_SEL, reg);
if (val < 0)
return val;
val = __phy_read(phydev, MII_BCM54XX_EXP_DATA);
/* Restore default value. It's O.K. if this write fails. */
__phy_write(phydev, MII_BCM54XX_EXP_SEL, 0);
return val;
}
EXPORT_SYMBOL_GPL(__bcm_phy_read_exp);
int bcm_phy_read_exp(struct phy_device *phydev, u16 reg)
{
int rc;
phy_lock_mdio_bus(phydev);
rc = __bcm_phy_read_exp(phydev, reg);
phy_unlock_mdio_bus(phydev);
return rc;
}
EXPORT_SYMBOL_GPL(bcm_phy_read_exp);
int __bcm_phy_modify_exp(struct phy_device *phydev, u16 reg, u16 mask, u16 set)
{
int new, ret;
ret = __phy_write(phydev, MII_BCM54XX_EXP_SEL, reg);
if (ret < 0)
return ret;
ret = __phy_read(phydev, MII_BCM54XX_EXP_DATA);
if (ret < 0)
return ret;
new = (ret & ~mask) | set;
if (new == ret)
return 0;
return __phy_write(phydev, MII_BCM54XX_EXP_DATA, new);
}
EXPORT_SYMBOL_GPL(__bcm_phy_modify_exp);
int bcm_phy_modify_exp(struct phy_device *phydev, u16 reg, u16 mask, u16 set)
{
int ret;
phy_lock_mdio_bus(phydev);
ret = __bcm_phy_modify_exp(phydev, reg, mask, set);
phy_unlock_mdio_bus(phydev);
return ret;
}
EXPORT_SYMBOL_GPL(bcm_phy_modify_exp);
int bcm54xx_auxctl_read(struct phy_device *phydev, u16 regnum)
{
/* The register must be written to both the Shadow Register Select and
* the Shadow Read Register Selector
*/
phy_write(phydev, MII_BCM54XX_AUX_CTL, MII_BCM54XX_AUXCTL_SHDWSEL_MASK |
regnum << MII_BCM54XX_AUXCTL_SHDWSEL_READ_SHIFT);
return phy_read(phydev, MII_BCM54XX_AUX_CTL);
}
EXPORT_SYMBOL_GPL(bcm54xx_auxctl_read);
int bcm54xx_auxctl_write(struct phy_device *phydev, u16 regnum, u16 val)
{
return phy_write(phydev, MII_BCM54XX_AUX_CTL, regnum | val);
}
EXPORT_SYMBOL(bcm54xx_auxctl_write);
int bcm_phy_write_misc(struct phy_device *phydev,
u16 reg, u16 chl, u16 val)
{
int rc;
int tmp;
rc = phy_write(phydev, MII_BCM54XX_AUX_CTL,
MII_BCM54XX_AUXCTL_SHDWSEL_MISC);
if (rc < 0)
return rc;
tmp = phy_read(phydev, MII_BCM54XX_AUX_CTL);
tmp |= MII_BCM54XX_AUXCTL_ACTL_SMDSP_ENA;
rc = phy_write(phydev, MII_BCM54XX_AUX_CTL, tmp);
if (rc < 0)
return rc;
tmp = (chl * MII_BCM_CHANNEL_WIDTH) | reg;
rc = bcm_phy_write_exp(phydev, tmp, val);
return rc;
}
EXPORT_SYMBOL_GPL(bcm_phy_write_misc);
int bcm_phy_read_misc(struct phy_device *phydev,
u16 reg, u16 chl)
{
int rc;
int tmp;
rc = phy_write(phydev, MII_BCM54XX_AUX_CTL,
MII_BCM54XX_AUXCTL_SHDWSEL_MISC);
if (rc < 0)
return rc;
tmp = phy_read(phydev, MII_BCM54XX_AUX_CTL);
tmp |= MII_BCM54XX_AUXCTL_ACTL_SMDSP_ENA;
rc = phy_write(phydev, MII_BCM54XX_AUX_CTL, tmp);
if (rc < 0)
return rc;
tmp = (chl * MII_BCM_CHANNEL_WIDTH) | reg;
rc = bcm_phy_read_exp(phydev, tmp);
return rc;
}
EXPORT_SYMBOL_GPL(bcm_phy_read_misc);
int bcm_phy_ack_intr(struct phy_device *phydev)
{
int reg;
/* Clear pending interrupts. */
reg = phy_read(phydev, MII_BCM54XX_ISR);
if (reg < 0)
return reg;
return 0;
}
EXPORT_SYMBOL_GPL(bcm_phy_ack_intr);
int bcm_phy_config_intr(struct phy_device *phydev)
{
int reg, err;
reg = phy_read(phydev, MII_BCM54XX_ECR);
if (reg < 0)
return reg;
if (phydev->interrupts == PHY_INTERRUPT_ENABLED) {
err = bcm_phy_ack_intr(phydev);
if (err)
return err;
reg &= ~MII_BCM54XX_ECR_IM;
err = phy_write(phydev, MII_BCM54XX_ECR, reg);
} else {
reg |= MII_BCM54XX_ECR_IM;
err = phy_write(phydev, MII_BCM54XX_ECR, reg);
if (err)
return err;
err = bcm_phy_ack_intr(phydev);
}
return err;
}
EXPORT_SYMBOL_GPL(bcm_phy_config_intr);
irqreturn_t bcm_phy_handle_interrupt(struct phy_device *phydev)
{
int irq_status, irq_mask;
irq_status = phy_read(phydev, MII_BCM54XX_ISR);
if (irq_status < 0) {
phy_error(phydev);
return IRQ_NONE;
}
/* If a bit from the Interrupt Mask register is set, the corresponding
* bit from the Interrupt Status register is masked. So read the IMR
* and then flip the bits to get the list of possible interrupt
* sources.
*/
irq_mask = phy_read(phydev, MII_BCM54XX_IMR);
if (irq_mask < 0) {
phy_error(phydev);
return IRQ_NONE;
}
irq_mask = ~irq_mask;
if (!(irq_status & irq_mask))
return IRQ_NONE;
phy_trigger_machine(phydev);
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(bcm_phy_handle_interrupt);
int bcm_phy_read_shadow(struct phy_device *phydev, u16 shadow)
{
phy_write(phydev, MII_BCM54XX_SHD, MII_BCM54XX_SHD_VAL(shadow));
return MII_BCM54XX_SHD_DATA(phy_read(phydev, MII_BCM54XX_SHD));
}
EXPORT_SYMBOL_GPL(bcm_phy_read_shadow);
int bcm_phy_write_shadow(struct phy_device *phydev, u16 shadow,
u16 val)
{
return phy_write(phydev, MII_BCM54XX_SHD,
MII_BCM54XX_SHD_WRITE |
MII_BCM54XX_SHD_VAL(shadow) |
MII_BCM54XX_SHD_DATA(val));
}
EXPORT_SYMBOL_GPL(bcm_phy_write_shadow);
int __bcm_phy_read_rdb(struct phy_device *phydev, u16 rdb)
{
int val;
val = __phy_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
if (val < 0)
return val;
return __phy_read(phydev, MII_BCM54XX_RDB_DATA);
}
EXPORT_SYMBOL_GPL(__bcm_phy_read_rdb);
int bcm_phy_read_rdb(struct phy_device *phydev, u16 rdb)
{
int ret;
phy_lock_mdio_bus(phydev);
ret = __bcm_phy_read_rdb(phydev, rdb);
phy_unlock_mdio_bus(phydev);
return ret;
}
EXPORT_SYMBOL_GPL(bcm_phy_read_rdb);
int __bcm_phy_write_rdb(struct phy_device *phydev, u16 rdb, u16 val)
{
int ret;
ret = __phy_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
if (ret < 0)
return ret;
return __phy_write(phydev, MII_BCM54XX_RDB_DATA, val);
}
EXPORT_SYMBOL_GPL(__bcm_phy_write_rdb);
int bcm_phy_write_rdb(struct phy_device *phydev, u16 rdb, u16 val)
{
int ret;
phy_lock_mdio_bus(phydev);
ret = __bcm_phy_write_rdb(phydev, rdb, val);
phy_unlock_mdio_bus(phydev);
return ret;
}
EXPORT_SYMBOL_GPL(bcm_phy_write_rdb);
int __bcm_phy_modify_rdb(struct phy_device *phydev, u16 rdb, u16 mask, u16 set)
{
int new, ret;
ret = __phy_write(phydev, MII_BCM54XX_RDB_ADDR, rdb);
if (ret < 0)
return ret;
ret = __phy_read(phydev, MII_BCM54XX_RDB_DATA);
if (ret < 0)
return ret;
new = (ret & ~mask) | set;
if (new == ret)
return 0;
return __phy_write(phydev, MII_BCM54XX_RDB_DATA, new);
}
EXPORT_SYMBOL_GPL(__bcm_phy_modify_rdb);
int bcm_phy_modify_rdb(struct phy_device *phydev, u16 rdb, u16 mask, u16 set)
{
int ret;
phy_lock_mdio_bus(phydev);
ret = __bcm_phy_modify_rdb(phydev, rdb, mask, set);
phy_unlock_mdio_bus(phydev);
return ret;
}
EXPORT_SYMBOL_GPL(bcm_phy_modify_rdb);
int bcm_phy_enable_apd(struct phy_device *phydev, bool dll_pwr_down)
{
int val;
if (dll_pwr_down) {
val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_SCR3);
if (val < 0)
return val;
val |= BCM54XX_SHD_SCR3_DLLAPD_DIS;
bcm_phy_write_shadow(phydev, BCM54XX_SHD_SCR3, val);
}
val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_APD);
if (val < 0)
return val;
/* Clear APD bits */
val &= BCM_APD_CLR_MASK;
if (phydev->autoneg == AUTONEG_ENABLE)
val |= BCM54XX_SHD_APD_EN;
else
val |= BCM_NO_ANEG_APD_EN;
/* Enable energy detect single link pulse for easy wakeup */
val |= BCM_APD_SINGLELP_EN;
/* Enable Auto Power-Down (APD) for the PHY */
return bcm_phy_write_shadow(phydev, BCM54XX_SHD_APD, val);
}
EXPORT_SYMBOL_GPL(bcm_phy_enable_apd);
int bcm_phy_set_eee(struct phy_device *phydev, bool enable)
{
int val, mask = 0;
/* Enable EEE at PHY level */
val = phy_read_mmd(phydev, MDIO_MMD_AN, BRCM_CL45VEN_EEE_CONTROL);
if (val < 0)
return val;
if (enable)
val |= LPI_FEATURE_EN | LPI_FEATURE_EN_DIG1000X;
else
val &= ~(LPI_FEATURE_EN | LPI_FEATURE_EN_DIG1000X);
phy_write_mmd(phydev, MDIO_MMD_AN, BRCM_CL45VEN_EEE_CONTROL, (u32)val);
/* Advertise EEE */
val = phy_read_mmd(phydev, MDIO_MMD_AN, BCM_CL45VEN_EEE_ADV);
if (val < 0)
return val;
if (linkmode_test_bit(ETHTOOL_LINK_MODE_1000baseT_Full_BIT,
phydev->supported))
mask |= MDIO_EEE_1000T;
if (linkmode_test_bit(ETHTOOL_LINK_MODE_100baseT_Full_BIT,
phydev->supported))
mask |= MDIO_EEE_100TX;
if (enable)
val |= mask;
else
val &= ~mask;
phy_write_mmd(phydev, MDIO_MMD_AN, BCM_CL45VEN_EEE_ADV, (u32)val);
return 0;
}
EXPORT_SYMBOL_GPL(bcm_phy_set_eee);
int bcm_phy_downshift_get(struct phy_device *phydev, u8 *count)
{
int val;
val = bcm54xx_auxctl_read(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC);
if (val < 0)
return val;
/* Check if wirespeed is enabled or not */
if (!(val & MII_BCM54XX_AUXCTL_SHDWSEL_MISC_WIRESPEED_EN)) {
*count = DOWNSHIFT_DEV_DISABLE;
return 0;
}
val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_SCR2);
if (val < 0)
return val;
/* Downgrade after one link attempt */
if (val & BCM54XX_SHD_SCR2_WSPD_RTRY_DIS) {
*count = 1;
} else {
/* Downgrade after configured retry count */
val >>= BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_SHIFT;
val &= BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_MASK;
*count = val + BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_OFFSET;
}
return 0;
}
EXPORT_SYMBOL_GPL(bcm_phy_downshift_get);
int bcm_phy_downshift_set(struct phy_device *phydev, u8 count)
{
int val = 0, ret = 0;
/* Range check the number given */
if (count - BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_OFFSET >
BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_MASK &&
count != DOWNSHIFT_DEV_DEFAULT_COUNT) {
return -ERANGE;
}
val = bcm54xx_auxctl_read(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_MISC);
if (val < 0)
return val;
/* Se the write enable bit */
val |= MII_BCM54XX_AUXCTL_MISC_WREN;
if (count == DOWNSHIFT_DEV_DISABLE) {
val &= ~MII_BCM54XX_AUXCTL_SHDWSEL_MISC_WIRESPEED_EN;
return bcm54xx_auxctl_write(phydev,
MII_BCM54XX_AUXCTL_SHDWSEL_MISC,
val);
} else {
val |= MII_BCM54XX_AUXCTL_SHDWSEL_MISC_WIRESPEED_EN;
ret = bcm54xx_auxctl_write(phydev,
MII_BCM54XX_AUXCTL_SHDWSEL_MISC,
val);
if (ret < 0)
return ret;
}
val = bcm_phy_read_shadow(phydev, BCM54XX_SHD_SCR2);
val &= ~(BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_MASK <<
BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_SHIFT |
BCM54XX_SHD_SCR2_WSPD_RTRY_DIS);
switch (count) {
case 1:
val |= BCM54XX_SHD_SCR2_WSPD_RTRY_DIS;
break;
case DOWNSHIFT_DEV_DEFAULT_COUNT:
val |= 1 << BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_SHIFT;
break;
default:
val |= (count - BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_OFFSET) <<
BCM54XX_SHD_SCR2_WSPD_RTRY_LMT_SHIFT;
break;
}
return bcm_phy_write_shadow(phydev, BCM54XX_SHD_SCR2, val);
}
EXPORT_SYMBOL_GPL(bcm_phy_downshift_set);
struct bcm_phy_hw_stat {
const char *string;
int devad;
u16 reg;
u8 shift;
u8 bits;
};
/* Counters freeze at either 0xffff or 0xff, better than nothing */
static const struct bcm_phy_hw_stat bcm_phy_hw_stats[] = {
{ "phy_receive_errors", -1, MII_BRCM_CORE_BASE12, 0, 16 },
{ "phy_serdes_ber_errors", -1, MII_BRCM_CORE_BASE13, 8, 8 },
{ "phy_false_carrier_sense_errors", -1, MII_BRCM_CORE_BASE13, 0, 8 },
{ "phy_local_rcvr_nok", -1, MII_BRCM_CORE_BASE14, 8, 8 },
{ "phy_remote_rcv_nok", -1, MII_BRCM_CORE_BASE14, 0, 8 },
{ "phy_lpi_count", MDIO_MMD_AN, BRCM_CL45VEN_EEE_LPI_CNT, 0, 16 },
};
int bcm_phy_get_sset_count(struct phy_device *phydev)
{
return ARRAY_SIZE(bcm_phy_hw_stats);
}
EXPORT_SYMBOL_GPL(bcm_phy_get_sset_count);
void bcm_phy_get_strings(struct phy_device *phydev, u8 *data)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(bcm_phy_hw_stats); i++)
ethtool_puts(&data, bcm_phy_hw_stats[i].string);
}
EXPORT_SYMBOL_GPL(bcm_phy_get_strings);
/* Caller is supposed to provide appropriate storage for the library code to
* access the shadow copy
*/
static u64 bcm_phy_get_stat(struct phy_device *phydev, u64 *shadow,
unsigned int i)
{
struct bcm_phy_hw_stat stat = bcm_phy_hw_stats[i];
int val;
u64 ret;
if (stat.devad < 0)
val = phy_read(phydev, stat.reg);
else
val = phy_read_mmd(phydev, stat.devad, stat.reg);
if (val < 0) {
ret = U64_MAX;
} else {
val >>= stat.shift;
val = val & ((1 << stat.bits) - 1);
shadow[i] += val;
ret = shadow[i];
}
return ret;
}
void bcm_phy_get_stats(struct phy_device *phydev, u64 *shadow,
struct ethtool_stats *stats, u64 *data)
{
unsigned int i;
for (i = 0; i < ARRAY_SIZE(bcm_phy_hw_stats); i++)
data[i] = bcm_phy_get_stat(phydev, shadow, i);
}
EXPORT_SYMBOL_GPL(bcm_phy_get_stats);
void bcm_phy_r_rc_cal_reset(struct phy_device *phydev)
{
/* Reset R_CAL/RC_CAL Engine */
bcm_phy_write_exp_sel(phydev, 0x00b0, 0x0010);
/* Disable Reset R_AL/RC_CAL Engine */
bcm_phy_write_exp_sel(phydev, 0x00b0, 0x0000);
}
EXPORT_SYMBOL_GPL(bcm_phy_r_rc_cal_reset);
int bcm_phy_28nm_a0b0_afe_config_init(struct phy_device *phydev)
{
/* Increase VCO range to prevent unlocking problem of PLL at low
* temp
*/
bcm_phy_write_misc(phydev, PLL_PLLCTRL_1, 0x0048);
/* Change Ki to 011 */
bcm_phy_write_misc(phydev, PLL_PLLCTRL_2, 0x021b);
/* Disable loading of TVCO buffer to bandgap, set bandgap trim
* to 111
*/
bcm_phy_write_misc(phydev, PLL_PLLCTRL_4, 0x0e20);
/* Adjust bias current trim by -3 */
bcm_phy_write_misc(phydev, DSP_TAP10, 0x690b);
/* Switch to CORE_BASE1E */
phy_write(phydev, MII_BRCM_CORE_BASE1E, 0xd);
bcm_phy_r_rc_cal_reset(phydev);
/* write AFE_RXCONFIG_0 */
bcm_phy_write_misc(phydev, AFE_RXCONFIG_0, 0xeb19);
/* write AFE_RXCONFIG_1 */
bcm_phy_write_misc(phydev, AFE_RXCONFIG_1, 0x9a3f);
/* write AFE_RX_LP_COUNTER */
bcm_phy_write_misc(phydev, AFE_RX_LP_COUNTER, 0x7fc0);
/* write AFE_HPF_TRIM_OTHERS */
bcm_phy_write_misc(phydev, AFE_HPF_TRIM_OTHERS, 0x000b);
/* write AFTE_TX_CONFIG */
bcm_phy_write_misc(phydev, AFE_TX_CONFIG, 0x0800);
return 0;
}
EXPORT_SYMBOL_GPL(bcm_phy_28nm_a0b0_afe_config_init);
int bcm_phy_enable_jumbo(struct phy_device *phydev)
{
int ret;
ret = bcm54xx_auxctl_read(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_AUXCTL);
if (ret < 0)
return ret;
/* Enable extended length packet reception */
ret = bcm54xx_auxctl_write(phydev, MII_BCM54XX_AUXCTL_SHDWSEL_AUXCTL,
ret | MII_BCM54XX_AUXCTL_ACTL_EXT_PKT_LEN);
if (ret < 0)
return ret;
/* Enable the elastic FIFO for raising the transmission limit from
* 4.5KB to 10KB, at the expense of an additional 16 ns in propagation
* latency.
*/
return phy_set_bits(phydev, MII_BCM54XX_ECR, MII_BCM54XX_ECR_FIFOE);
}
EXPORT_SYMBOL_GPL(bcm_phy_enable_jumbo);
static int __bcm_phy_enable_rdb_access(struct phy_device *phydev)
{
return __bcm_phy_write_exp(phydev, BCM54XX_EXP_REG7E, 0);
}
static int __bcm_phy_enable_legacy_access(struct phy_device *phydev)
{
return __bcm_phy_write_rdb(phydev, BCM54XX_RDB_REG0087,
BCM54XX_ACCESS_MODE_LEGACY_EN);
}
static int _bcm_phy_cable_test_start(struct phy_device *phydev, bool is_rdb)
{
u16 mask, set;
int ret;
/* Auto-negotiation must be enabled for cable diagnostics to work, but
* don't advertise any capabilities.
*/
phy_write(phydev, MII_BMCR, BMCR_ANENABLE);
phy_write(phydev, MII_ADVERTISE, ADVERTISE_CSMA);
phy_write(phydev, MII_CTRL1000, 0);
phy_lock_mdio_bus(phydev);
if (is_rdb) {
ret = __bcm_phy_enable_legacy_access(phydev);
if (ret)
goto out;
}
mask = BCM54XX_ECD_CTRL_CROSS_SHORT_DIS | BCM54XX_ECD_CTRL_UNIT_MASK;
set = BCM54XX_ECD_CTRL_RUN | BCM54XX_ECD_CTRL_BREAK_LINK |
FIELD_PREP(BCM54XX_ECD_CTRL_UNIT_MASK,
BCM54XX_ECD_CTRL_UNIT_CM);
ret = __bcm_phy_modify_exp(phydev, BCM54XX_EXP_ECD_CTRL, mask, set);
out:
/* re-enable the RDB access even if there was an error */
if (is_rdb)
ret = __bcm_phy_enable_rdb_access(phydev) ? : ret;
phy_unlock_mdio_bus(phydev);
return ret;
}
static int bcm_phy_cable_test_report_trans(int result)
{
switch (result) {
case BCM54XX_ECD_FAULT_TYPE_OK:
return ETHTOOL_A_CABLE_RESULT_CODE_OK;
case BCM54XX_ECD_FAULT_TYPE_OPEN:
return ETHTOOL_A_CABLE_RESULT_CODE_OPEN;
case BCM54XX_ECD_FAULT_TYPE_SAME_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_SAME_SHORT;
case BCM54XX_ECD_FAULT_TYPE_CROSS_SHORT:
return ETHTOOL_A_CABLE_RESULT_CODE_CROSS_SHORT;
case BCM54XX_ECD_FAULT_TYPE_INVALID:
case BCM54XX_ECD_FAULT_TYPE_BUSY:
default:
return ETHTOOL_A_CABLE_RESULT_CODE_UNSPEC;
}
}
static bool bcm_phy_distance_valid(int result)
{
switch (result) {
case BCM54XX_ECD_FAULT_TYPE_OPEN:
case BCM54XX_ECD_FAULT_TYPE_SAME_SHORT:
case BCM54XX_ECD_FAULT_TYPE_CROSS_SHORT:
return true;
}
return false;
}
static int bcm_phy_report_length(struct phy_device *phydev, int pair)
{
int val;
val = __bcm_phy_read_exp(phydev,
BCM54XX_EXP_ECD_PAIR_A_LENGTH_RESULTS + pair);
if (val < 0)
return val;
if (val == BCM54XX_ECD_LENGTH_RESULTS_INVALID)
return 0;
ethnl_cable_test_fault_length(phydev, pair, val);
return 0;
}
static int _bcm_phy_cable_test_get_status(struct phy_device *phydev,
bool *finished, bool is_rdb)
{
int pair_a, pair_b, pair_c, pair_d, ret;
*finished = false;
phy_lock_mdio_bus(phydev);
if (is_rdb) {
ret = __bcm_phy_enable_legacy_access(phydev);
if (ret)
goto out;
}
ret = __bcm_phy_read_exp(phydev, BCM54XX_EXP_ECD_CTRL);
if (ret < 0)
goto out;
if (ret & BCM54XX_ECD_CTRL_IN_PROGRESS) {
ret = 0;
goto out;
}
ret = __bcm_phy_read_exp(phydev, BCM54XX_EXP_ECD_FAULT_TYPE);
if (ret < 0)
goto out;
pair_a = FIELD_GET(BCM54XX_ECD_FAULT_TYPE_PAIR_A_MASK, ret);
pair_b = FIELD_GET(BCM54XX_ECD_FAULT_TYPE_PAIR_B_MASK, ret);
pair_c = FIELD_GET(BCM54XX_ECD_FAULT_TYPE_PAIR_C_MASK, ret);
pair_d = FIELD_GET(BCM54XX_ECD_FAULT_TYPE_PAIR_D_MASK, ret);
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_A,
bcm_phy_cable_test_report_trans(pair_a));
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_B,
bcm_phy_cable_test_report_trans(pair_b));
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_C,
bcm_phy_cable_test_report_trans(pair_c));
ethnl_cable_test_result(phydev, ETHTOOL_A_CABLE_PAIR_D,
bcm_phy_cable_test_report_trans(pair_d));
if (bcm_phy_distance_valid(pair_a))
bcm_phy_report_length(phydev, 0);
if (bcm_phy_distance_valid(pair_b))
bcm_phy_report_length(phydev, 1);
if (bcm_phy_distance_valid(pair_c))
bcm_phy_report_length(phydev, 2);
if (bcm_phy_distance_valid(pair_d))
bcm_phy_report_length(phydev, 3);
ret = 0;
*finished = true;
out:
/* re-enable the RDB access even if there was an error */
if (is_rdb)
ret = __bcm_phy_enable_rdb_access(phydev) ? : ret;
phy_unlock_mdio_bus(phydev);
return ret;
}
static int bcm_setup_lre_forced(struct phy_device *phydev)
{
u16 ctl = 0;
phydev->pause = 0;
phydev->asym_pause = 0;
if (phydev->speed == SPEED_100)
ctl |= LRECR_SPEED100;
if (phydev->duplex != DUPLEX_FULL)
return -EOPNOTSUPP;
return phy_modify(phydev, MII_BCM54XX_LRECR, LRECR_SPEED100, ctl);
}
/**
* bcm_linkmode_adv_to_lre_adv_t - translate linkmode advertisement to LDS
* @advertising: the linkmode advertisement settings
* Return: LDS Auto-Negotiation Advertised Ability register value
*
* A small helper function that translates linkmode advertisement
* settings to phy LDS autonegotiation advertisements for the
* MII_BCM54XX_LREANAA register of Broadcom PHYs capable of LDS
*/
static u32 bcm_linkmode_adv_to_lre_adv_t(unsigned long *advertising)
{
u32 result = 0;
if (linkmode_test_bit(ETHTOOL_LINK_MODE_10baseT1BRR_Full_BIT,
advertising))
result |= LREANAA_10_1PAIR;
if (linkmode_test_bit(ETHTOOL_LINK_MODE_100baseT1_Full_BIT,
advertising))
result |= LREANAA_100_1PAIR;
if (linkmode_test_bit(ETHTOOL_LINK_MODE_Pause_BIT, advertising))
result |= LRELPA_PAUSE;
if (linkmode_test_bit(ETHTOOL_LINK_MODE_Asym_Pause_BIT, advertising))
result |= LRELPA_PAUSE_ASYM;
return result;
}
int bcm_phy_cable_test_start(struct phy_device *phydev)
{
return _bcm_phy_cable_test_start(phydev, false);
}
EXPORT_SYMBOL_GPL(bcm_phy_cable_test_start);
int bcm_phy_cable_test_get_status(struct phy_device *phydev, bool *finished)
{
return _bcm_phy_cable_test_get_status(phydev, finished, false);
}
EXPORT_SYMBOL_GPL(bcm_phy_cable_test_get_status);
/* We assume that all PHYs which support RDB access can be switched to legacy
* mode. If, in the future, this is not true anymore, we have to re-implement
* this with RDB access.
*/
int bcm_phy_cable_test_start_rdb(struct phy_device *phydev)
{
return _bcm_phy_cable_test_start(phydev, true);
}
EXPORT_SYMBOL_GPL(bcm_phy_cable_test_start_rdb);
int bcm_phy_cable_test_get_status_rdb(struct phy_device *phydev,
bool *finished)
{
return _bcm_phy_cable_test_get_status(phydev, finished, true);
}
EXPORT_SYMBOL_GPL(bcm_phy_cable_test_get_status_rdb);
#define BCM54XX_WOL_SUPPORTED_MASK (WAKE_UCAST | \
WAKE_MCAST | \
WAKE_BCAST | \
WAKE_MAGIC | \
WAKE_MAGICSECURE)
int bcm_phy_set_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
{
struct net_device *ndev = phydev->attached_dev;
u8 da[ETH_ALEN], mask[ETH_ALEN];
unsigned int i;
u16 ctl;
int ret;
/* Allow a MAC driver to play through its own Wake-on-LAN
* implementation
*/
if (wol->wolopts & ~BCM54XX_WOL_SUPPORTED_MASK)
return -EOPNOTSUPP;
/* The PHY supports passwords of 4, 6 and 8 bytes in size, but Linux's
* ethtool only supports 6, for now.
*/
BUILD_BUG_ON(sizeof(wol->sopass) != ETH_ALEN);
/* Clear previous interrupts */
ret = bcm_phy_read_exp(phydev, BCM54XX_WOL_INT_STATUS);
if (ret < 0)
return ret;
ret = bcm_phy_read_exp(phydev, BCM54XX_WOL_MAIN_CTL);
if (ret < 0)
return ret;
ctl = ret;
if (!wol->wolopts) {
if (phy_interrupt_is_valid(phydev))
disable_irq_wake(phydev->irq);
/* Leave all interrupts disabled */
ret = bcm_phy_write_exp(phydev, BCM54XX_WOL_INT_MASK,
BCM54XX_WOL_ALL_INTRS);
if (ret < 0)
return ret;
/* Disable the global Wake-on-LAN enable bit */
ctl &= ~BCM54XX_WOL_EN;
return bcm_phy_write_exp(phydev, BCM54XX_WOL_MAIN_CTL, ctl);
}
/* Clear the previously configured mode and mask mode for Wake-on-LAN */
ctl &= ~(BCM54XX_WOL_MODE_MASK << BCM54XX_WOL_MODE_SHIFT);
ctl &= ~(BCM54XX_WOL_MASK_MODE_MASK << BCM54XX_WOL_MASK_MODE_SHIFT);
ctl &= ~BCM54XX_WOL_DIR_PKT_EN;
ctl &= ~(BCM54XX_WOL_SECKEY_OPT_MASK << BCM54XX_WOL_SECKEY_OPT_SHIFT);
/* When using WAKE_MAGIC, we program the magic pattern filter to match
* the device's MAC address and we accept any MAC DA in the Ethernet
* frame.
*
* When using WAKE_UCAST, WAKE_BCAST or WAKE_MCAST, we program the
* following:
* - WAKE_UCAST -> MAC DA is the device's MAC with a perfect match
* - WAKE_MCAST -> MAC DA is X1:XX:XX:XX:XX:XX where XX is don't care
* - WAKE_BCAST -> MAC DA is FF:FF:FF:FF:FF:FF with a perfect match
*
* Note that the Broadcast MAC DA is inherently going to match the
* multicast pattern being matched.
*/
memset(mask, 0, sizeof(mask));
if (wol->wolopts & WAKE_MCAST) {
memset(da, 0, sizeof(da));
memset(mask, 0xff, sizeof(mask));
da[0] = 0x01;
mask[0] = ~da[0];
} else {
if (wol->wolopts & WAKE_UCAST) {
ether_addr_copy(da, ndev->dev_addr);
} else if (wol->wolopts & WAKE_BCAST) {
eth_broadcast_addr(da);
} else if (wol->wolopts & WAKE_MAGICSECURE) {
ether_addr_copy(da, wol->sopass);
} else if (wol->wolopts & WAKE_MAGIC) {
memset(da, 0, sizeof(da));
memset(mask, 0xff, sizeof(mask));
}
}
for (i = 0; i < ETH_ALEN / 2; i++) {
if (wol->wolopts & (WAKE_MAGIC | WAKE_MAGICSECURE)) {
ret = bcm_phy_write_exp(phydev,
BCM54XX_WOL_MPD_DATA1(2 - i),
ndev->dev_addr[i * 2] << 8 |
ndev->dev_addr[i * 2 + 1]);
if (ret < 0)
return ret;
}
ret = bcm_phy_write_exp(phydev, BCM54XX_WOL_MPD_DATA2(2 - i),
da[i * 2] << 8 | da[i * 2 + 1]);
if (ret < 0)
return ret;
ret = bcm_phy_write_exp(phydev, BCM54XX_WOL_MASK(2 - i),
mask[i * 2] << 8 | mask[i * 2 + 1]);
if (ret)
return ret;
}
if (wol->wolopts & WAKE_MAGICSECURE) {
ctl |= BCM54XX_WOL_SECKEY_OPT_6B <<
BCM54XX_WOL_SECKEY_OPT_SHIFT;
ctl |= BCM54XX_WOL_MODE_SINGLE_MPDSEC << BCM54XX_WOL_MODE_SHIFT;
ctl |= BCM54XX_WOL_MASK_MODE_DA_FF <<
BCM54XX_WOL_MASK_MODE_SHIFT;
} else {
if (wol->wolopts & WAKE_MAGIC)
ctl |= BCM54XX_WOL_MODE_SINGLE_MPD;
else
ctl |= BCM54XX_WOL_DIR_PKT_EN;
ctl |= BCM54XX_WOL_MASK_MODE_DA_ONLY <<
BCM54XX_WOL_MASK_MODE_SHIFT;
}
/* Globally enable Wake-on-LAN */
ctl |= BCM54XX_WOL_EN | BCM54XX_WOL_CRC_CHK;
ret = bcm_phy_write_exp(phydev, BCM54XX_WOL_MAIN_CTL, ctl);
if (ret < 0)
return ret;
/* Enable WOL interrupt on LED4 */
ret = bcm_phy_read_exp(phydev, BCM54XX_TOP_MISC_LED_CTL);
if (ret < 0)
return ret;
ret |= BCM54XX_LED4_SEL_INTR;
ret = bcm_phy_write_exp(phydev, BCM54XX_TOP_MISC_LED_CTL, ret);
if (ret < 0)
return ret;
/* Enable all Wake-on-LAN interrupt sources */
ret = bcm_phy_write_exp(phydev, BCM54XX_WOL_INT_MASK, 0);
if (ret < 0)
return ret;
if (phy_interrupt_is_valid(phydev))
enable_irq_wake(phydev->irq);
return 0;
}
EXPORT_SYMBOL_GPL(bcm_phy_set_wol);
void bcm_phy_get_wol(struct phy_device *phydev, struct ethtool_wolinfo *wol)
{
struct net_device *ndev = phydev->attached_dev;
u8 da[ETH_ALEN];
unsigned int i;
int ret;
u16 ctl;
wol->supported = BCM54XX_WOL_SUPPORTED_MASK;
wol->wolopts = 0;
ret = bcm_phy_read_exp(phydev, BCM54XX_WOL_MAIN_CTL);
if (ret < 0)
return;
ctl = ret;
if (!(ctl & BCM54XX_WOL_EN))
return;
for (i = 0; i < sizeof(da) / 2; i++) {
ret = bcm_phy_read_exp(phydev,
BCM54XX_WOL_MPD_DATA2(2 - i));
if (ret < 0)
return;
da[i * 2] = ret >> 8;
da[i * 2 + 1] = ret & 0xff;
}
if (ctl & BCM54XX_WOL_DIR_PKT_EN) {
if (is_broadcast_ether_addr(da))
wol->wolopts |= WAKE_BCAST;
else if (is_multicast_ether_addr(da))
wol->wolopts |= WAKE_MCAST;
else if (ether_addr_equal(da, ndev->dev_addr))
wol->wolopts |= WAKE_UCAST;
} else {
ctl = (ctl >> BCM54XX_WOL_MODE_SHIFT) & BCM54XX_WOL_MODE_MASK;
switch (ctl) {
case BCM54XX_WOL_MODE_SINGLE_MPD:
wol->wolopts |= WAKE_MAGIC;
break;
case BCM54XX_WOL_MODE_SINGLE_MPDSEC:
wol->wolopts |= WAKE_MAGICSECURE;
memcpy(wol->sopass, da, sizeof(da));
break;
default:
break;
}
}
}
EXPORT_SYMBOL_GPL(bcm_phy_get_wol);
irqreturn_t bcm_phy_wol_isr(int irq, void *dev_id)
{
return IRQ_HANDLED;
}
EXPORT_SYMBOL_GPL(bcm_phy_wol_isr);
int bcm_phy_led_brightness_set(struct phy_device *phydev,
u8 index, enum led_brightness value)
{
u8 led_num;
int ret;
u16 reg;
if (index >= 4)
return -EINVAL;
/* Two LEDS per register */
led_num = index % 2;
reg = index >= 2 ? BCM54XX_SHD_LEDS2 : BCM54XX_SHD_LEDS1;
ret = bcm_phy_read_shadow(phydev, reg);
if (ret < 0)
return ret;
ret &= ~(BCM_LED_SRC_MASK << BCM54XX_SHD_LEDS_SHIFT(led_num));
if (value == LED_OFF)
ret |= BCM_LED_SRC_OFF << BCM54XX_SHD_LEDS_SHIFT(led_num);
else
ret |= BCM_LED_SRC_ON << BCM54XX_SHD_LEDS_SHIFT(led_num);
return bcm_phy_write_shadow(phydev, reg, ret);
}
EXPORT_SYMBOL_GPL(bcm_phy_led_brightness_set);
int bcm_setup_lre_master_slave(struct phy_device *phydev)
{
u16 ctl = 0;
switch (phydev->master_slave_set) {
case MASTER_SLAVE_CFG_MASTER_PREFERRED:
case MASTER_SLAVE_CFG_MASTER_FORCE:
ctl = LRECR_MASTER;
break;
case MASTER_SLAVE_CFG_SLAVE_PREFERRED:
case MASTER_SLAVE_CFG_SLAVE_FORCE:
break;
case MASTER_SLAVE_CFG_UNKNOWN:
case MASTER_SLAVE_CFG_UNSUPPORTED:
return 0;
default:
phydev_warn(phydev, "Unsupported Master/Slave mode\n");
return -EOPNOTSUPP;
}
return phy_modify_changed(phydev, MII_BCM54XX_LRECR, LRECR_MASTER, ctl);
}
EXPORT_SYMBOL_GPL(bcm_setup_lre_master_slave);
int bcm_config_lre_aneg(struct phy_device *phydev, bool changed)
{
int err;
if (genphy_c45_an_config_eee_aneg(phydev) > 0)
changed = true;
err = bcm_setup_lre_master_slave(phydev);
if (err < 0)
return err;
else if (err)
changed = true;
if (phydev->autoneg != AUTONEG_ENABLE)
return bcm_setup_lre_forced(phydev);
err = bcm_config_lre_advert(phydev);
if (err < 0)
return err;
else if (err)
changed = true;
return genphy_check_and_restart_aneg(phydev, changed);
}
EXPORT_SYMBOL_GPL(bcm_config_lre_aneg);
/**
* bcm_config_lre_advert - sanitize and advertise Long-Distance Signaling
* auto-negotiation parameters
* @phydev: target phy_device struct
* Return: 0 if the PHY's advertisement hasn't changed, < 0 on error,
* > 0 if it has changed
*
* Writes MII_BCM54XX_LREANAA with the appropriate values. The values are to be
* sanitized before, to make sure we only advertise what is supported.
* The sanitization is done already in phy_ethtool_ksettings_set()
*/
int bcm_config_lre_advert(struct phy_device *phydev)
{
u32 adv = bcm_linkmode_adv_to_lre_adv_t(phydev->advertising);
/* Setup BroadR-Reach mode advertisement */
return phy_modify_changed(phydev, MII_BCM54XX_LREANAA,
LRE_ADVERTISE_ALL | LREANAA_PAUSE |
LREANAA_PAUSE_ASYM, adv);
}
EXPORT_SYMBOL_GPL(bcm_config_lre_advert);
MODULE_DESCRIPTION("Broadcom PHY Library");
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Broadcom Corporation");