mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
synced 2025-01-01 10:45:49 +00:00
838a10bd2e
Arguments to a raw tracepoint are tagged as trusted, which carries the semantics that the pointer will be non-NULL. However, in certain cases, a raw tracepoint argument may end up being NULL. More context about this issue is available in [0]. Thus, there is a discrepancy between the reality, that raw_tp arguments can actually be NULL, and the verifier's knowledge, that they are never NULL, causing explicit NULL check branch to be dead code eliminated. A previous attempt [1], i.e. the second fixed commit, was made to simulate symbolic execution as if in most accesses, the argument is a non-NULL raw_tp, except for conditional jumps. This tried to suppress branch prediction while preserving compatibility, but surfaced issues with production programs that were difficult to solve without increasing verifier complexity. A more complete discussion of issues and fixes is available at [2]. Fix this by maintaining an explicit list of tracepoints where the arguments are known to be NULL, and mark the positional arguments as PTR_MAYBE_NULL. Additionally, capture the tracepoints where arguments are known to be ERR_PTR, and mark these arguments as scalar values to prevent potential dereference. Each hex digit is used to encode NULL-ness (0x1) or ERR_PTR-ness (0x2), shifted by the zero-indexed argument number x 4. This can be represented as follows: 1st arg: 0x1 2nd arg: 0x10 3rd arg: 0x100 ... and so on (likewise for ERR_PTR case). In the future, an automated pass will be used to produce such a list, or insert __nullable annotations automatically for tracepoints. Each compilation unit will be analyzed and results will be collated to find whether a tracepoint pointer is definitely not null, maybe null, or an unknown state where verifier conservatively marks it PTR_MAYBE_NULL. A proof of concept of this tool from Eduard is available at [3]. Note that in case we don't find a specification in the raw_tp_null_args array and the tracepoint belongs to a kernel module, we will conservatively mark the arguments as PTR_MAYBE_NULL. This is because unlike for in-tree modules, out-of-tree module tracepoints may pass NULL freely to the tracepoint. We don't protect against such tracepoints passing ERR_PTR (which is uncommon anyway), lest we mark all such arguments as SCALAR_VALUE. While we are it, let's adjust the test raw_tp_null to not perform dereference of the skb->mark, as that won't be allowed anymore, and make it more robust by using inline assembly to test the dead code elimination behavior, which should still stay the same. [0]: https://lore.kernel.org/bpf/ZrCZS6nisraEqehw@jlelli-thinkpadt14gen4.remote.csb [1]: https://lore.kernel.org/all/20241104171959.2938862-1-memxor@gmail.com [2]: https://lore.kernel.org/bpf/20241206161053.809580-1-memxor@gmail.com [3]: https://github.com/eddyz87/llvm-project/tree/nullness-for-tracepoint-params Reported-by: Juri Lelli <juri.lelli@redhat.com> # original bug Reported-by: Manu Bretelle <chantra@meta.com> # bugs in masking fix Fixes:3f00c52393
("bpf: Allow trusted pointers to be passed to KF_TRUSTED_ARGS kfuncs") Fixes:cb4158ce8e
("bpf: Mark raw_tp arguments with PTR_MAYBE_NULL") Reviewed-by: Eduard Zingerman <eddyz87@gmail.com> Co-developed-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Jiri Olsa <jolsa@kernel.org> Signed-off-by: Kumar Kartikeya Dwivedi <memxor@gmail.com> Link: https://lore.kernel.org/r/20241213221929.3495062-3-memxor@gmail.com Signed-off-by: Alexei Starovoitov <ast@kernel.org>
9434 lines
242 KiB
C
9434 lines
242 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/* Copyright (c) 2018 Facebook */
|
|
|
|
#include <uapi/linux/btf.h>
|
|
#include <uapi/linux/bpf.h>
|
|
#include <uapi/linux/bpf_perf_event.h>
|
|
#include <uapi/linux/types.h>
|
|
#include <linux/seq_file.h>
|
|
#include <linux/compiler.h>
|
|
#include <linux/ctype.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/anon_inodes.h>
|
|
#include <linux/file.h>
|
|
#include <linux/uaccess.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/idr.h>
|
|
#include <linux/sort.h>
|
|
#include <linux/bpf_verifier.h>
|
|
#include <linux/btf.h>
|
|
#include <linux/btf_ids.h>
|
|
#include <linux/bpf.h>
|
|
#include <linux/bpf_lsm.h>
|
|
#include <linux/skmsg.h>
|
|
#include <linux/perf_event.h>
|
|
#include <linux/bsearch.h>
|
|
#include <linux/kobject.h>
|
|
#include <linux/sysfs.h>
|
|
|
|
#include <net/netfilter/nf_bpf_link.h>
|
|
|
|
#include <net/sock.h>
|
|
#include <net/xdp.h>
|
|
#include "../tools/lib/bpf/relo_core.h"
|
|
|
|
/* BTF (BPF Type Format) is the meta data format which describes
|
|
* the data types of BPF program/map. Hence, it basically focus
|
|
* on the C programming language which the modern BPF is primary
|
|
* using.
|
|
*
|
|
* ELF Section:
|
|
* ~~~~~~~~~~~
|
|
* The BTF data is stored under the ".BTF" ELF section
|
|
*
|
|
* struct btf_type:
|
|
* ~~~~~~~~~~~~~~~
|
|
* Each 'struct btf_type' object describes a C data type.
|
|
* Depending on the type it is describing, a 'struct btf_type'
|
|
* object may be followed by more data. F.e.
|
|
* To describe an array, 'struct btf_type' is followed by
|
|
* 'struct btf_array'.
|
|
*
|
|
* 'struct btf_type' and any extra data following it are
|
|
* 4 bytes aligned.
|
|
*
|
|
* Type section:
|
|
* ~~~~~~~~~~~~~
|
|
* The BTF type section contains a list of 'struct btf_type' objects.
|
|
* Each one describes a C type. Recall from the above section
|
|
* that a 'struct btf_type' object could be immediately followed by extra
|
|
* data in order to describe some particular C types.
|
|
*
|
|
* type_id:
|
|
* ~~~~~~~
|
|
* Each btf_type object is identified by a type_id. The type_id
|
|
* is implicitly implied by the location of the btf_type object in
|
|
* the BTF type section. The first one has type_id 1. The second
|
|
* one has type_id 2...etc. Hence, an earlier btf_type has
|
|
* a smaller type_id.
|
|
*
|
|
* A btf_type object may refer to another btf_type object by using
|
|
* type_id (i.e. the "type" in the "struct btf_type").
|
|
*
|
|
* NOTE that we cannot assume any reference-order.
|
|
* A btf_type object can refer to an earlier btf_type object
|
|
* but it can also refer to a later btf_type object.
|
|
*
|
|
* For example, to describe "const void *". A btf_type
|
|
* object describing "const" may refer to another btf_type
|
|
* object describing "void *". This type-reference is done
|
|
* by specifying type_id:
|
|
*
|
|
* [1] CONST (anon) type_id=2
|
|
* [2] PTR (anon) type_id=0
|
|
*
|
|
* The above is the btf_verifier debug log:
|
|
* - Each line started with "[?]" is a btf_type object
|
|
* - [?] is the type_id of the btf_type object.
|
|
* - CONST/PTR is the BTF_KIND_XXX
|
|
* - "(anon)" is the name of the type. It just
|
|
* happens that CONST and PTR has no name.
|
|
* - type_id=XXX is the 'u32 type' in btf_type
|
|
*
|
|
* NOTE: "void" has type_id 0
|
|
*
|
|
* String section:
|
|
* ~~~~~~~~~~~~~~
|
|
* The BTF string section contains the names used by the type section.
|
|
* Each string is referred by an "offset" from the beginning of the
|
|
* string section.
|
|
*
|
|
* Each string is '\0' terminated.
|
|
*
|
|
* The first character in the string section must be '\0'
|
|
* which is used to mean 'anonymous'. Some btf_type may not
|
|
* have a name.
|
|
*/
|
|
|
|
/* BTF verification:
|
|
*
|
|
* To verify BTF data, two passes are needed.
|
|
*
|
|
* Pass #1
|
|
* ~~~~~~~
|
|
* The first pass is to collect all btf_type objects to
|
|
* an array: "btf->types".
|
|
*
|
|
* Depending on the C type that a btf_type is describing,
|
|
* a btf_type may be followed by extra data. We don't know
|
|
* how many btf_type is there, and more importantly we don't
|
|
* know where each btf_type is located in the type section.
|
|
*
|
|
* Without knowing the location of each type_id, most verifications
|
|
* cannot be done. e.g. an earlier btf_type may refer to a later
|
|
* btf_type (recall the "const void *" above), so we cannot
|
|
* check this type-reference in the first pass.
|
|
*
|
|
* In the first pass, it still does some verifications (e.g.
|
|
* checking the name is a valid offset to the string section).
|
|
*
|
|
* Pass #2
|
|
* ~~~~~~~
|
|
* The main focus is to resolve a btf_type that is referring
|
|
* to another type.
|
|
*
|
|
* We have to ensure the referring type:
|
|
* 1) does exist in the BTF (i.e. in btf->types[])
|
|
* 2) does not cause a loop:
|
|
* struct A {
|
|
* struct B b;
|
|
* };
|
|
*
|
|
* struct B {
|
|
* struct A a;
|
|
* };
|
|
*
|
|
* btf_type_needs_resolve() decides if a btf_type needs
|
|
* to be resolved.
|
|
*
|
|
* The needs_resolve type implements the "resolve()" ops which
|
|
* essentially does a DFS and detects backedge.
|
|
*
|
|
* During resolve (or DFS), different C types have different
|
|
* "RESOLVED" conditions.
|
|
*
|
|
* When resolving a BTF_KIND_STRUCT, we need to resolve all its
|
|
* members because a member is always referring to another
|
|
* type. A struct's member can be treated as "RESOLVED" if
|
|
* it is referring to a BTF_KIND_PTR. Otherwise, the
|
|
* following valid C struct would be rejected:
|
|
*
|
|
* struct A {
|
|
* int m;
|
|
* struct A *a;
|
|
* };
|
|
*
|
|
* When resolving a BTF_KIND_PTR, it needs to keep resolving if
|
|
* it is referring to another BTF_KIND_PTR. Otherwise, we cannot
|
|
* detect a pointer loop, e.g.:
|
|
* BTF_KIND_CONST -> BTF_KIND_PTR -> BTF_KIND_CONST -> BTF_KIND_PTR +
|
|
* ^ |
|
|
* +-----------------------------------------+
|
|
*
|
|
*/
|
|
|
|
#define BITS_PER_U128 (sizeof(u64) * BITS_PER_BYTE * 2)
|
|
#define BITS_PER_BYTE_MASK (BITS_PER_BYTE - 1)
|
|
#define BITS_PER_BYTE_MASKED(bits) ((bits) & BITS_PER_BYTE_MASK)
|
|
#define BITS_ROUNDDOWN_BYTES(bits) ((bits) >> 3)
|
|
#define BITS_ROUNDUP_BYTES(bits) \
|
|
(BITS_ROUNDDOWN_BYTES(bits) + !!BITS_PER_BYTE_MASKED(bits))
|
|
|
|
#define BTF_INFO_MASK 0x9f00ffff
|
|
#define BTF_INT_MASK 0x0fffffff
|
|
#define BTF_TYPE_ID_VALID(type_id) ((type_id) <= BTF_MAX_TYPE)
|
|
#define BTF_STR_OFFSET_VALID(name_off) ((name_off) <= BTF_MAX_NAME_OFFSET)
|
|
|
|
/* 16MB for 64k structs and each has 16 members and
|
|
* a few MB spaces for the string section.
|
|
* The hard limit is S32_MAX.
|
|
*/
|
|
#define BTF_MAX_SIZE (16 * 1024 * 1024)
|
|
|
|
#define for_each_member_from(i, from, struct_type, member) \
|
|
for (i = from, member = btf_type_member(struct_type) + from; \
|
|
i < btf_type_vlen(struct_type); \
|
|
i++, member++)
|
|
|
|
#define for_each_vsi_from(i, from, struct_type, member) \
|
|
for (i = from, member = btf_type_var_secinfo(struct_type) + from; \
|
|
i < btf_type_vlen(struct_type); \
|
|
i++, member++)
|
|
|
|
DEFINE_IDR(btf_idr);
|
|
DEFINE_SPINLOCK(btf_idr_lock);
|
|
|
|
enum btf_kfunc_hook {
|
|
BTF_KFUNC_HOOK_COMMON,
|
|
BTF_KFUNC_HOOK_XDP,
|
|
BTF_KFUNC_HOOK_TC,
|
|
BTF_KFUNC_HOOK_STRUCT_OPS,
|
|
BTF_KFUNC_HOOK_TRACING,
|
|
BTF_KFUNC_HOOK_SYSCALL,
|
|
BTF_KFUNC_HOOK_FMODRET,
|
|
BTF_KFUNC_HOOK_CGROUP,
|
|
BTF_KFUNC_HOOK_SCHED_ACT,
|
|
BTF_KFUNC_HOOK_SK_SKB,
|
|
BTF_KFUNC_HOOK_SOCKET_FILTER,
|
|
BTF_KFUNC_HOOK_LWT,
|
|
BTF_KFUNC_HOOK_NETFILTER,
|
|
BTF_KFUNC_HOOK_KPROBE,
|
|
BTF_KFUNC_HOOK_MAX,
|
|
};
|
|
|
|
enum {
|
|
BTF_KFUNC_SET_MAX_CNT = 256,
|
|
BTF_DTOR_KFUNC_MAX_CNT = 256,
|
|
BTF_KFUNC_FILTER_MAX_CNT = 16,
|
|
};
|
|
|
|
struct btf_kfunc_hook_filter {
|
|
btf_kfunc_filter_t filters[BTF_KFUNC_FILTER_MAX_CNT];
|
|
u32 nr_filters;
|
|
};
|
|
|
|
struct btf_kfunc_set_tab {
|
|
struct btf_id_set8 *sets[BTF_KFUNC_HOOK_MAX];
|
|
struct btf_kfunc_hook_filter hook_filters[BTF_KFUNC_HOOK_MAX];
|
|
};
|
|
|
|
struct btf_id_dtor_kfunc_tab {
|
|
u32 cnt;
|
|
struct btf_id_dtor_kfunc dtors[];
|
|
};
|
|
|
|
struct btf_struct_ops_tab {
|
|
u32 cnt;
|
|
u32 capacity;
|
|
struct bpf_struct_ops_desc ops[];
|
|
};
|
|
|
|
struct btf {
|
|
void *data;
|
|
struct btf_type **types;
|
|
u32 *resolved_ids;
|
|
u32 *resolved_sizes;
|
|
const char *strings;
|
|
void *nohdr_data;
|
|
struct btf_header hdr;
|
|
u32 nr_types; /* includes VOID for base BTF */
|
|
u32 types_size;
|
|
u32 data_size;
|
|
refcount_t refcnt;
|
|
u32 id;
|
|
struct rcu_head rcu;
|
|
struct btf_kfunc_set_tab *kfunc_set_tab;
|
|
struct btf_id_dtor_kfunc_tab *dtor_kfunc_tab;
|
|
struct btf_struct_metas *struct_meta_tab;
|
|
struct btf_struct_ops_tab *struct_ops_tab;
|
|
|
|
/* split BTF support */
|
|
struct btf *base_btf;
|
|
u32 start_id; /* first type ID in this BTF (0 for base BTF) */
|
|
u32 start_str_off; /* first string offset (0 for base BTF) */
|
|
char name[MODULE_NAME_LEN];
|
|
bool kernel_btf;
|
|
__u32 *base_id_map; /* map from distilled base BTF -> vmlinux BTF ids */
|
|
};
|
|
|
|
enum verifier_phase {
|
|
CHECK_META,
|
|
CHECK_TYPE,
|
|
};
|
|
|
|
struct resolve_vertex {
|
|
const struct btf_type *t;
|
|
u32 type_id;
|
|
u16 next_member;
|
|
};
|
|
|
|
enum visit_state {
|
|
NOT_VISITED,
|
|
VISITED,
|
|
RESOLVED,
|
|
};
|
|
|
|
enum resolve_mode {
|
|
RESOLVE_TBD, /* To Be Determined */
|
|
RESOLVE_PTR, /* Resolving for Pointer */
|
|
RESOLVE_STRUCT_OR_ARRAY, /* Resolving for struct/union
|
|
* or array
|
|
*/
|
|
};
|
|
|
|
#define MAX_RESOLVE_DEPTH 32
|
|
|
|
struct btf_sec_info {
|
|
u32 off;
|
|
u32 len;
|
|
};
|
|
|
|
struct btf_verifier_env {
|
|
struct btf *btf;
|
|
u8 *visit_states;
|
|
struct resolve_vertex stack[MAX_RESOLVE_DEPTH];
|
|
struct bpf_verifier_log log;
|
|
u32 log_type_id;
|
|
u32 top_stack;
|
|
enum verifier_phase phase;
|
|
enum resolve_mode resolve_mode;
|
|
};
|
|
|
|
static const char * const btf_kind_str[NR_BTF_KINDS] = {
|
|
[BTF_KIND_UNKN] = "UNKNOWN",
|
|
[BTF_KIND_INT] = "INT",
|
|
[BTF_KIND_PTR] = "PTR",
|
|
[BTF_KIND_ARRAY] = "ARRAY",
|
|
[BTF_KIND_STRUCT] = "STRUCT",
|
|
[BTF_KIND_UNION] = "UNION",
|
|
[BTF_KIND_ENUM] = "ENUM",
|
|
[BTF_KIND_FWD] = "FWD",
|
|
[BTF_KIND_TYPEDEF] = "TYPEDEF",
|
|
[BTF_KIND_VOLATILE] = "VOLATILE",
|
|
[BTF_KIND_CONST] = "CONST",
|
|
[BTF_KIND_RESTRICT] = "RESTRICT",
|
|
[BTF_KIND_FUNC] = "FUNC",
|
|
[BTF_KIND_FUNC_PROTO] = "FUNC_PROTO",
|
|
[BTF_KIND_VAR] = "VAR",
|
|
[BTF_KIND_DATASEC] = "DATASEC",
|
|
[BTF_KIND_FLOAT] = "FLOAT",
|
|
[BTF_KIND_DECL_TAG] = "DECL_TAG",
|
|
[BTF_KIND_TYPE_TAG] = "TYPE_TAG",
|
|
[BTF_KIND_ENUM64] = "ENUM64",
|
|
};
|
|
|
|
const char *btf_type_str(const struct btf_type *t)
|
|
{
|
|
return btf_kind_str[BTF_INFO_KIND(t->info)];
|
|
}
|
|
|
|
/* Chunk size we use in safe copy of data to be shown. */
|
|
#define BTF_SHOW_OBJ_SAFE_SIZE 32
|
|
|
|
/*
|
|
* This is the maximum size of a base type value (equivalent to a
|
|
* 128-bit int); if we are at the end of our safe buffer and have
|
|
* less than 16 bytes space we can't be assured of being able
|
|
* to copy the next type safely, so in such cases we will initiate
|
|
* a new copy.
|
|
*/
|
|
#define BTF_SHOW_OBJ_BASE_TYPE_SIZE 16
|
|
|
|
/* Type name size */
|
|
#define BTF_SHOW_NAME_SIZE 80
|
|
|
|
/*
|
|
* The suffix of a type that indicates it cannot alias another type when
|
|
* comparing BTF IDs for kfunc invocations.
|
|
*/
|
|
#define NOCAST_ALIAS_SUFFIX "___init"
|
|
|
|
/*
|
|
* Common data to all BTF show operations. Private show functions can add
|
|
* their own data to a structure containing a struct btf_show and consult it
|
|
* in the show callback. See btf_type_show() below.
|
|
*
|
|
* One challenge with showing nested data is we want to skip 0-valued
|
|
* data, but in order to figure out whether a nested object is all zeros
|
|
* we need to walk through it. As a result, we need to make two passes
|
|
* when handling structs, unions and arrays; the first path simply looks
|
|
* for nonzero data, while the second actually does the display. The first
|
|
* pass is signalled by show->state.depth_check being set, and if we
|
|
* encounter a non-zero value we set show->state.depth_to_show to
|
|
* the depth at which we encountered it. When we have completed the
|
|
* first pass, we will know if anything needs to be displayed if
|
|
* depth_to_show > depth. See btf_[struct,array]_show() for the
|
|
* implementation of this.
|
|
*
|
|
* Another problem is we want to ensure the data for display is safe to
|
|
* access. To support this, the anonymous "struct {} obj" tracks the data
|
|
* object and our safe copy of it. We copy portions of the data needed
|
|
* to the object "copy" buffer, but because its size is limited to
|
|
* BTF_SHOW_OBJ_COPY_LEN bytes, multiple copies may be required as we
|
|
* traverse larger objects for display.
|
|
*
|
|
* The various data type show functions all start with a call to
|
|
* btf_show_start_type() which returns a pointer to the safe copy
|
|
* of the data needed (or if BTF_SHOW_UNSAFE is specified, to the
|
|
* raw data itself). btf_show_obj_safe() is responsible for
|
|
* using copy_from_kernel_nofault() to update the safe data if necessary
|
|
* as we traverse the object's data. skbuff-like semantics are
|
|
* used:
|
|
*
|
|
* - obj.head points to the start of the toplevel object for display
|
|
* - obj.size is the size of the toplevel object
|
|
* - obj.data points to the current point in the original data at
|
|
* which our safe data starts. obj.data will advance as we copy
|
|
* portions of the data.
|
|
*
|
|
* In most cases a single copy will suffice, but larger data structures
|
|
* such as "struct task_struct" will require many copies. The logic in
|
|
* btf_show_obj_safe() handles the logic that determines if a new
|
|
* copy_from_kernel_nofault() is needed.
|
|
*/
|
|
struct btf_show {
|
|
u64 flags;
|
|
void *target; /* target of show operation (seq file, buffer) */
|
|
__printf(2, 0) void (*showfn)(struct btf_show *show, const char *fmt, va_list args);
|
|
const struct btf *btf;
|
|
/* below are used during iteration */
|
|
struct {
|
|
u8 depth;
|
|
u8 depth_to_show;
|
|
u8 depth_check;
|
|
u8 array_member:1,
|
|
array_terminated:1;
|
|
u16 array_encoding;
|
|
u32 type_id;
|
|
int status; /* non-zero for error */
|
|
const struct btf_type *type;
|
|
const struct btf_member *member;
|
|
char name[BTF_SHOW_NAME_SIZE]; /* space for member name/type */
|
|
} state;
|
|
struct {
|
|
u32 size;
|
|
void *head;
|
|
void *data;
|
|
u8 safe[BTF_SHOW_OBJ_SAFE_SIZE];
|
|
} obj;
|
|
};
|
|
|
|
struct btf_kind_operations {
|
|
s32 (*check_meta)(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left);
|
|
int (*resolve)(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v);
|
|
int (*check_member)(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type);
|
|
int (*check_kflag_member)(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type);
|
|
void (*log_details)(struct btf_verifier_env *env,
|
|
const struct btf_type *t);
|
|
void (*show)(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offsets,
|
|
struct btf_show *show);
|
|
};
|
|
|
|
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS];
|
|
static struct btf_type btf_void;
|
|
|
|
static int btf_resolve(struct btf_verifier_env *env,
|
|
const struct btf_type *t, u32 type_id);
|
|
|
|
static int btf_func_check(struct btf_verifier_env *env,
|
|
const struct btf_type *t);
|
|
|
|
static bool btf_type_is_modifier(const struct btf_type *t)
|
|
{
|
|
/* Some of them is not strictly a C modifier
|
|
* but they are grouped into the same bucket
|
|
* for BTF concern:
|
|
* A type (t) that refers to another
|
|
* type through t->type AND its size cannot
|
|
* be determined without following the t->type.
|
|
*
|
|
* ptr does not fall into this bucket
|
|
* because its size is always sizeof(void *).
|
|
*/
|
|
switch (BTF_INFO_KIND(t->info)) {
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_TYPE_TAG:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool btf_type_is_void(const struct btf_type *t)
|
|
{
|
|
return t == &btf_void;
|
|
}
|
|
|
|
static bool btf_type_is_fwd(const struct btf_type *t)
|
|
{
|
|
return BTF_INFO_KIND(t->info) == BTF_KIND_FWD;
|
|
}
|
|
|
|
static bool btf_type_is_datasec(const struct btf_type *t)
|
|
{
|
|
return BTF_INFO_KIND(t->info) == BTF_KIND_DATASEC;
|
|
}
|
|
|
|
static bool btf_type_is_decl_tag(const struct btf_type *t)
|
|
{
|
|
return BTF_INFO_KIND(t->info) == BTF_KIND_DECL_TAG;
|
|
}
|
|
|
|
static bool btf_type_nosize(const struct btf_type *t)
|
|
{
|
|
return btf_type_is_void(t) || btf_type_is_fwd(t) ||
|
|
btf_type_is_func(t) || btf_type_is_func_proto(t) ||
|
|
btf_type_is_decl_tag(t);
|
|
}
|
|
|
|
static bool btf_type_nosize_or_null(const struct btf_type *t)
|
|
{
|
|
return !t || btf_type_nosize(t);
|
|
}
|
|
|
|
static bool btf_type_is_decl_tag_target(const struct btf_type *t)
|
|
{
|
|
return btf_type_is_func(t) || btf_type_is_struct(t) ||
|
|
btf_type_is_var(t) || btf_type_is_typedef(t);
|
|
}
|
|
|
|
bool btf_is_vmlinux(const struct btf *btf)
|
|
{
|
|
return btf->kernel_btf && !btf->base_btf;
|
|
}
|
|
|
|
u32 btf_nr_types(const struct btf *btf)
|
|
{
|
|
u32 total = 0;
|
|
|
|
while (btf) {
|
|
total += btf->nr_types;
|
|
btf = btf->base_btf;
|
|
}
|
|
|
|
return total;
|
|
}
|
|
|
|
s32 btf_find_by_name_kind(const struct btf *btf, const char *name, u8 kind)
|
|
{
|
|
const struct btf_type *t;
|
|
const char *tname;
|
|
u32 i, total;
|
|
|
|
total = btf_nr_types(btf);
|
|
for (i = 1; i < total; i++) {
|
|
t = btf_type_by_id(btf, i);
|
|
if (BTF_INFO_KIND(t->info) != kind)
|
|
continue;
|
|
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (!strcmp(tname, name))
|
|
return i;
|
|
}
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
s32 bpf_find_btf_id(const char *name, u32 kind, struct btf **btf_p)
|
|
{
|
|
struct btf *btf;
|
|
s32 ret;
|
|
int id;
|
|
|
|
btf = bpf_get_btf_vmlinux();
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
if (!btf)
|
|
return -EINVAL;
|
|
|
|
ret = btf_find_by_name_kind(btf, name, kind);
|
|
/* ret is never zero, since btf_find_by_name_kind returns
|
|
* positive btf_id or negative error.
|
|
*/
|
|
if (ret > 0) {
|
|
btf_get(btf);
|
|
*btf_p = btf;
|
|
return ret;
|
|
}
|
|
|
|
/* If name is not found in vmlinux's BTF then search in module's BTFs */
|
|
spin_lock_bh(&btf_idr_lock);
|
|
idr_for_each_entry(&btf_idr, btf, id) {
|
|
if (!btf_is_module(btf))
|
|
continue;
|
|
/* linear search could be slow hence unlock/lock
|
|
* the IDR to avoiding holding it for too long
|
|
*/
|
|
btf_get(btf);
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
ret = btf_find_by_name_kind(btf, name, kind);
|
|
if (ret > 0) {
|
|
*btf_p = btf;
|
|
return ret;
|
|
}
|
|
btf_put(btf);
|
|
spin_lock_bh(&btf_idr_lock);
|
|
}
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
return ret;
|
|
}
|
|
|
|
const struct btf_type *btf_type_skip_modifiers(const struct btf *btf,
|
|
u32 id, u32 *res_id)
|
|
{
|
|
const struct btf_type *t = btf_type_by_id(btf, id);
|
|
|
|
while (btf_type_is_modifier(t)) {
|
|
id = t->type;
|
|
t = btf_type_by_id(btf, t->type);
|
|
}
|
|
|
|
if (res_id)
|
|
*res_id = id;
|
|
|
|
return t;
|
|
}
|
|
|
|
const struct btf_type *btf_type_resolve_ptr(const struct btf *btf,
|
|
u32 id, u32 *res_id)
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
t = btf_type_skip_modifiers(btf, id, NULL);
|
|
if (!btf_type_is_ptr(t))
|
|
return NULL;
|
|
|
|
return btf_type_skip_modifiers(btf, t->type, res_id);
|
|
}
|
|
|
|
const struct btf_type *btf_type_resolve_func_ptr(const struct btf *btf,
|
|
u32 id, u32 *res_id)
|
|
{
|
|
const struct btf_type *ptype;
|
|
|
|
ptype = btf_type_resolve_ptr(btf, id, res_id);
|
|
if (ptype && btf_type_is_func_proto(ptype))
|
|
return ptype;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Types that act only as a source, not sink or intermediate
|
|
* type when resolving.
|
|
*/
|
|
static bool btf_type_is_resolve_source_only(const struct btf_type *t)
|
|
{
|
|
return btf_type_is_var(t) ||
|
|
btf_type_is_decl_tag(t) ||
|
|
btf_type_is_datasec(t);
|
|
}
|
|
|
|
/* What types need to be resolved?
|
|
*
|
|
* btf_type_is_modifier() is an obvious one.
|
|
*
|
|
* btf_type_is_struct() because its member refers to
|
|
* another type (through member->type).
|
|
*
|
|
* btf_type_is_var() because the variable refers to
|
|
* another type. btf_type_is_datasec() holds multiple
|
|
* btf_type_is_var() types that need resolving.
|
|
*
|
|
* btf_type_is_array() because its element (array->type)
|
|
* refers to another type. Array can be thought of a
|
|
* special case of struct while array just has the same
|
|
* member-type repeated by array->nelems of times.
|
|
*/
|
|
static bool btf_type_needs_resolve(const struct btf_type *t)
|
|
{
|
|
return btf_type_is_modifier(t) ||
|
|
btf_type_is_ptr(t) ||
|
|
btf_type_is_struct(t) ||
|
|
btf_type_is_array(t) ||
|
|
btf_type_is_var(t) ||
|
|
btf_type_is_func(t) ||
|
|
btf_type_is_decl_tag(t) ||
|
|
btf_type_is_datasec(t);
|
|
}
|
|
|
|
/* t->size can be used */
|
|
static bool btf_type_has_size(const struct btf_type *t)
|
|
{
|
|
switch (BTF_INFO_KIND(t->info)) {
|
|
case BTF_KIND_INT:
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
case BTF_KIND_ENUM:
|
|
case BTF_KIND_DATASEC:
|
|
case BTF_KIND_FLOAT:
|
|
case BTF_KIND_ENUM64:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static const char *btf_int_encoding_str(u8 encoding)
|
|
{
|
|
if (encoding == 0)
|
|
return "(none)";
|
|
else if (encoding == BTF_INT_SIGNED)
|
|
return "SIGNED";
|
|
else if (encoding == BTF_INT_CHAR)
|
|
return "CHAR";
|
|
else if (encoding == BTF_INT_BOOL)
|
|
return "BOOL";
|
|
else
|
|
return "UNKN";
|
|
}
|
|
|
|
static u32 btf_type_int(const struct btf_type *t)
|
|
{
|
|
return *(u32 *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_array *btf_type_array(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_array *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_enum *btf_type_enum(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_enum *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_var *btf_type_var(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_var *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_decl_tag *btf_type_decl_tag(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_decl_tag *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_enum64 *btf_type_enum64(const struct btf_type *t)
|
|
{
|
|
return (const struct btf_enum64 *)(t + 1);
|
|
}
|
|
|
|
static const struct btf_kind_operations *btf_type_ops(const struct btf_type *t)
|
|
{
|
|
return kind_ops[BTF_INFO_KIND(t->info)];
|
|
}
|
|
|
|
static bool btf_name_offset_valid(const struct btf *btf, u32 offset)
|
|
{
|
|
if (!BTF_STR_OFFSET_VALID(offset))
|
|
return false;
|
|
|
|
while (offset < btf->start_str_off)
|
|
btf = btf->base_btf;
|
|
|
|
offset -= btf->start_str_off;
|
|
return offset < btf->hdr.str_len;
|
|
}
|
|
|
|
static bool __btf_name_char_ok(char c, bool first)
|
|
{
|
|
if ((first ? !isalpha(c) :
|
|
!isalnum(c)) &&
|
|
c != '_' &&
|
|
c != '.')
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
const char *btf_str_by_offset(const struct btf *btf, u32 offset)
|
|
{
|
|
while (offset < btf->start_str_off)
|
|
btf = btf->base_btf;
|
|
|
|
offset -= btf->start_str_off;
|
|
if (offset < btf->hdr.str_len)
|
|
return &btf->strings[offset];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static bool btf_name_valid_identifier(const struct btf *btf, u32 offset)
|
|
{
|
|
/* offset must be valid */
|
|
const char *src = btf_str_by_offset(btf, offset);
|
|
const char *src_limit;
|
|
|
|
if (!__btf_name_char_ok(*src, true))
|
|
return false;
|
|
|
|
/* set a limit on identifier length */
|
|
src_limit = src + KSYM_NAME_LEN;
|
|
src++;
|
|
while (*src && src < src_limit) {
|
|
if (!__btf_name_char_ok(*src, false))
|
|
return false;
|
|
src++;
|
|
}
|
|
|
|
return !*src;
|
|
}
|
|
|
|
/* Allow any printable character in DATASEC names */
|
|
static bool btf_name_valid_section(const struct btf *btf, u32 offset)
|
|
{
|
|
/* offset must be valid */
|
|
const char *src = btf_str_by_offset(btf, offset);
|
|
const char *src_limit;
|
|
|
|
if (!*src)
|
|
return false;
|
|
|
|
/* set a limit on identifier length */
|
|
src_limit = src + KSYM_NAME_LEN;
|
|
while (*src && src < src_limit) {
|
|
if (!isprint(*src))
|
|
return false;
|
|
src++;
|
|
}
|
|
|
|
return !*src;
|
|
}
|
|
|
|
static const char *__btf_name_by_offset(const struct btf *btf, u32 offset)
|
|
{
|
|
const char *name;
|
|
|
|
if (!offset)
|
|
return "(anon)";
|
|
|
|
name = btf_str_by_offset(btf, offset);
|
|
return name ?: "(invalid-name-offset)";
|
|
}
|
|
|
|
const char *btf_name_by_offset(const struct btf *btf, u32 offset)
|
|
{
|
|
return btf_str_by_offset(btf, offset);
|
|
}
|
|
|
|
const struct btf_type *btf_type_by_id(const struct btf *btf, u32 type_id)
|
|
{
|
|
while (type_id < btf->start_id)
|
|
btf = btf->base_btf;
|
|
|
|
type_id -= btf->start_id;
|
|
if (type_id >= btf->nr_types)
|
|
return NULL;
|
|
return btf->types[type_id];
|
|
}
|
|
EXPORT_SYMBOL_GPL(btf_type_by_id);
|
|
|
|
/*
|
|
* Regular int is not a bit field and it must be either
|
|
* u8/u16/u32/u64 or __int128.
|
|
*/
|
|
static bool btf_type_int_is_regular(const struct btf_type *t)
|
|
{
|
|
u8 nr_bits, nr_bytes;
|
|
u32 int_data;
|
|
|
|
int_data = btf_type_int(t);
|
|
nr_bits = BTF_INT_BITS(int_data);
|
|
nr_bytes = BITS_ROUNDUP_BYTES(nr_bits);
|
|
if (BITS_PER_BYTE_MASKED(nr_bits) ||
|
|
BTF_INT_OFFSET(int_data) ||
|
|
(nr_bytes != sizeof(u8) && nr_bytes != sizeof(u16) &&
|
|
nr_bytes != sizeof(u32) && nr_bytes != sizeof(u64) &&
|
|
nr_bytes != (2 * sizeof(u64)))) {
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/*
|
|
* Check that given struct member is a regular int with expected
|
|
* offset and size.
|
|
*/
|
|
bool btf_member_is_reg_int(const struct btf *btf, const struct btf_type *s,
|
|
const struct btf_member *m,
|
|
u32 expected_offset, u32 expected_size)
|
|
{
|
|
const struct btf_type *t;
|
|
u32 id, int_data;
|
|
u8 nr_bits;
|
|
|
|
id = m->type;
|
|
t = btf_type_id_size(btf, &id, NULL);
|
|
if (!t || !btf_type_is_int(t))
|
|
return false;
|
|
|
|
int_data = btf_type_int(t);
|
|
nr_bits = BTF_INT_BITS(int_data);
|
|
if (btf_type_kflag(s)) {
|
|
u32 bitfield_size = BTF_MEMBER_BITFIELD_SIZE(m->offset);
|
|
u32 bit_offset = BTF_MEMBER_BIT_OFFSET(m->offset);
|
|
|
|
/* if kflag set, int should be a regular int and
|
|
* bit offset should be at byte boundary.
|
|
*/
|
|
return !bitfield_size &&
|
|
BITS_ROUNDUP_BYTES(bit_offset) == expected_offset &&
|
|
BITS_ROUNDUP_BYTES(nr_bits) == expected_size;
|
|
}
|
|
|
|
if (BTF_INT_OFFSET(int_data) ||
|
|
BITS_PER_BYTE_MASKED(m->offset) ||
|
|
BITS_ROUNDUP_BYTES(m->offset) != expected_offset ||
|
|
BITS_PER_BYTE_MASKED(nr_bits) ||
|
|
BITS_ROUNDUP_BYTES(nr_bits) != expected_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/* Similar to btf_type_skip_modifiers() but does not skip typedefs. */
|
|
static const struct btf_type *btf_type_skip_qualifiers(const struct btf *btf,
|
|
u32 id)
|
|
{
|
|
const struct btf_type *t = btf_type_by_id(btf, id);
|
|
|
|
while (btf_type_is_modifier(t) &&
|
|
BTF_INFO_KIND(t->info) != BTF_KIND_TYPEDEF) {
|
|
t = btf_type_by_id(btf, t->type);
|
|
}
|
|
|
|
return t;
|
|
}
|
|
|
|
#define BTF_SHOW_MAX_ITER 10
|
|
|
|
#define BTF_KIND_BIT(kind) (1ULL << kind)
|
|
|
|
/*
|
|
* Populate show->state.name with type name information.
|
|
* Format of type name is
|
|
*
|
|
* [.member_name = ] (type_name)
|
|
*/
|
|
static const char *btf_show_name(struct btf_show *show)
|
|
{
|
|
/* BTF_MAX_ITER array suffixes "[]" */
|
|
const char *array_suffixes = "[][][][][][][][][][]";
|
|
const char *array_suffix = &array_suffixes[strlen(array_suffixes)];
|
|
/* BTF_MAX_ITER pointer suffixes "*" */
|
|
const char *ptr_suffixes = "**********";
|
|
const char *ptr_suffix = &ptr_suffixes[strlen(ptr_suffixes)];
|
|
const char *name = NULL, *prefix = "", *parens = "";
|
|
const struct btf_member *m = show->state.member;
|
|
const struct btf_type *t;
|
|
const struct btf_array *array;
|
|
u32 id = show->state.type_id;
|
|
const char *member = NULL;
|
|
bool show_member = false;
|
|
u64 kinds = 0;
|
|
int i;
|
|
|
|
show->state.name[0] = '\0';
|
|
|
|
/*
|
|
* Don't show type name if we're showing an array member;
|
|
* in that case we show the array type so don't need to repeat
|
|
* ourselves for each member.
|
|
*/
|
|
if (show->state.array_member)
|
|
return "";
|
|
|
|
/* Retrieve member name, if any. */
|
|
if (m) {
|
|
member = btf_name_by_offset(show->btf, m->name_off);
|
|
show_member = strlen(member) > 0;
|
|
id = m->type;
|
|
}
|
|
|
|
/*
|
|
* Start with type_id, as we have resolved the struct btf_type *
|
|
* via btf_modifier_show() past the parent typedef to the child
|
|
* struct, int etc it is defined as. In such cases, the type_id
|
|
* still represents the starting type while the struct btf_type *
|
|
* in our show->state points at the resolved type of the typedef.
|
|
*/
|
|
t = btf_type_by_id(show->btf, id);
|
|
if (!t)
|
|
return "";
|
|
|
|
/*
|
|
* The goal here is to build up the right number of pointer and
|
|
* array suffixes while ensuring the type name for a typedef
|
|
* is represented. Along the way we accumulate a list of
|
|
* BTF kinds we have encountered, since these will inform later
|
|
* display; for example, pointer types will not require an
|
|
* opening "{" for struct, we will just display the pointer value.
|
|
*
|
|
* We also want to accumulate the right number of pointer or array
|
|
* indices in the format string while iterating until we get to
|
|
* the typedef/pointee/array member target type.
|
|
*
|
|
* We start by pointing at the end of pointer and array suffix
|
|
* strings; as we accumulate pointers and arrays we move the pointer
|
|
* or array string backwards so it will show the expected number of
|
|
* '*' or '[]' for the type. BTF_SHOW_MAX_ITER of nesting of pointers
|
|
* and/or arrays and typedefs are supported as a precaution.
|
|
*
|
|
* We also want to get typedef name while proceeding to resolve
|
|
* type it points to so that we can add parentheses if it is a
|
|
* "typedef struct" etc.
|
|
*/
|
|
for (i = 0; i < BTF_SHOW_MAX_ITER; i++) {
|
|
|
|
switch (BTF_INFO_KIND(t->info)) {
|
|
case BTF_KIND_TYPEDEF:
|
|
if (!name)
|
|
name = btf_name_by_offset(show->btf,
|
|
t->name_off);
|
|
kinds |= BTF_KIND_BIT(BTF_KIND_TYPEDEF);
|
|
id = t->type;
|
|
break;
|
|
case BTF_KIND_ARRAY:
|
|
kinds |= BTF_KIND_BIT(BTF_KIND_ARRAY);
|
|
parens = "[";
|
|
if (!t)
|
|
return "";
|
|
array = btf_type_array(t);
|
|
if (array_suffix > array_suffixes)
|
|
array_suffix -= 2;
|
|
id = array->type;
|
|
break;
|
|
case BTF_KIND_PTR:
|
|
kinds |= BTF_KIND_BIT(BTF_KIND_PTR);
|
|
if (ptr_suffix > ptr_suffixes)
|
|
ptr_suffix -= 1;
|
|
id = t->type;
|
|
break;
|
|
default:
|
|
id = 0;
|
|
break;
|
|
}
|
|
if (!id)
|
|
break;
|
|
t = btf_type_skip_qualifiers(show->btf, id);
|
|
}
|
|
/* We may not be able to represent this type; bail to be safe */
|
|
if (i == BTF_SHOW_MAX_ITER)
|
|
return "";
|
|
|
|
if (!name)
|
|
name = btf_name_by_offset(show->btf, t->name_off);
|
|
|
|
switch (BTF_INFO_KIND(t->info)) {
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
prefix = BTF_INFO_KIND(t->info) == BTF_KIND_STRUCT ?
|
|
"struct" : "union";
|
|
/* if it's an array of struct/union, parens is already set */
|
|
if (!(kinds & (BTF_KIND_BIT(BTF_KIND_ARRAY))))
|
|
parens = "{";
|
|
break;
|
|
case BTF_KIND_ENUM:
|
|
case BTF_KIND_ENUM64:
|
|
prefix = "enum";
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
/* pointer does not require parens */
|
|
if (kinds & BTF_KIND_BIT(BTF_KIND_PTR))
|
|
parens = "";
|
|
/* typedef does not require struct/union/enum prefix */
|
|
if (kinds & BTF_KIND_BIT(BTF_KIND_TYPEDEF))
|
|
prefix = "";
|
|
|
|
if (!name)
|
|
name = "";
|
|
|
|
/* Even if we don't want type name info, we want parentheses etc */
|
|
if (show->flags & BTF_SHOW_NONAME)
|
|
snprintf(show->state.name, sizeof(show->state.name), "%s",
|
|
parens);
|
|
else
|
|
snprintf(show->state.name, sizeof(show->state.name),
|
|
"%s%s%s(%s%s%s%s%s%s)%s",
|
|
/* first 3 strings comprise ".member = " */
|
|
show_member ? "." : "",
|
|
show_member ? member : "",
|
|
show_member ? " = " : "",
|
|
/* ...next is our prefix (struct, enum, etc) */
|
|
prefix,
|
|
strlen(prefix) > 0 && strlen(name) > 0 ? " " : "",
|
|
/* ...this is the type name itself */
|
|
name,
|
|
/* ...suffixed by the appropriate '*', '[]' suffixes */
|
|
strlen(ptr_suffix) > 0 ? " " : "", ptr_suffix,
|
|
array_suffix, parens);
|
|
|
|
return show->state.name;
|
|
}
|
|
|
|
static const char *__btf_show_indent(struct btf_show *show)
|
|
{
|
|
const char *indents = " ";
|
|
const char *indent = &indents[strlen(indents)];
|
|
|
|
if ((indent - show->state.depth) >= indents)
|
|
return indent - show->state.depth;
|
|
return indents;
|
|
}
|
|
|
|
static const char *btf_show_indent(struct btf_show *show)
|
|
{
|
|
return show->flags & BTF_SHOW_COMPACT ? "" : __btf_show_indent(show);
|
|
}
|
|
|
|
static const char *btf_show_newline(struct btf_show *show)
|
|
{
|
|
return show->flags & BTF_SHOW_COMPACT ? "" : "\n";
|
|
}
|
|
|
|
static const char *btf_show_delim(struct btf_show *show)
|
|
{
|
|
if (show->state.depth == 0)
|
|
return "";
|
|
|
|
if ((show->flags & BTF_SHOW_COMPACT) && show->state.type &&
|
|
BTF_INFO_KIND(show->state.type->info) == BTF_KIND_UNION)
|
|
return "|";
|
|
|
|
return ",";
|
|
}
|
|
|
|
__printf(2, 3) static void btf_show(struct btf_show *show, const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
if (!show->state.depth_check) {
|
|
va_start(args, fmt);
|
|
show->showfn(show, fmt, args);
|
|
va_end(args);
|
|
}
|
|
}
|
|
|
|
/* Macros are used here as btf_show_type_value[s]() prepends and appends
|
|
* format specifiers to the format specifier passed in; these do the work of
|
|
* adding indentation, delimiters etc while the caller simply has to specify
|
|
* the type value(s) in the format specifier + value(s).
|
|
*/
|
|
#define btf_show_type_value(show, fmt, value) \
|
|
do { \
|
|
if ((value) != (__typeof__(value))0 || \
|
|
(show->flags & BTF_SHOW_ZERO) || \
|
|
show->state.depth == 0) { \
|
|
btf_show(show, "%s%s" fmt "%s%s", \
|
|
btf_show_indent(show), \
|
|
btf_show_name(show), \
|
|
value, btf_show_delim(show), \
|
|
btf_show_newline(show)); \
|
|
if (show->state.depth > show->state.depth_to_show) \
|
|
show->state.depth_to_show = show->state.depth; \
|
|
} \
|
|
} while (0)
|
|
|
|
#define btf_show_type_values(show, fmt, ...) \
|
|
do { \
|
|
btf_show(show, "%s%s" fmt "%s%s", btf_show_indent(show), \
|
|
btf_show_name(show), \
|
|
__VA_ARGS__, btf_show_delim(show), \
|
|
btf_show_newline(show)); \
|
|
if (show->state.depth > show->state.depth_to_show) \
|
|
show->state.depth_to_show = show->state.depth; \
|
|
} while (0)
|
|
|
|
/* How much is left to copy to safe buffer after @data? */
|
|
static int btf_show_obj_size_left(struct btf_show *show, void *data)
|
|
{
|
|
return show->obj.head + show->obj.size - data;
|
|
}
|
|
|
|
/* Is object pointed to by @data of @size already copied to our safe buffer? */
|
|
static bool btf_show_obj_is_safe(struct btf_show *show, void *data, int size)
|
|
{
|
|
return data >= show->obj.data &&
|
|
(data + size) < (show->obj.data + BTF_SHOW_OBJ_SAFE_SIZE);
|
|
}
|
|
|
|
/*
|
|
* If object pointed to by @data of @size falls within our safe buffer, return
|
|
* the equivalent pointer to the same safe data. Assumes
|
|
* copy_from_kernel_nofault() has already happened and our safe buffer is
|
|
* populated.
|
|
*/
|
|
static void *__btf_show_obj_safe(struct btf_show *show, void *data, int size)
|
|
{
|
|
if (btf_show_obj_is_safe(show, data, size))
|
|
return show->obj.safe + (data - show->obj.data);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Return a safe-to-access version of data pointed to by @data.
|
|
* We do this by copying the relevant amount of information
|
|
* to the struct btf_show obj.safe buffer using copy_from_kernel_nofault().
|
|
*
|
|
* If BTF_SHOW_UNSAFE is specified, just return data as-is; no
|
|
* safe copy is needed.
|
|
*
|
|
* Otherwise we need to determine if we have the required amount
|
|
* of data (determined by the @data pointer and the size of the
|
|
* largest base type we can encounter (represented by
|
|
* BTF_SHOW_OBJ_BASE_TYPE_SIZE). Having that much data ensures
|
|
* that we will be able to print some of the current object,
|
|
* and if more is needed a copy will be triggered.
|
|
* Some objects such as structs will not fit into the buffer;
|
|
* in such cases additional copies when we iterate over their
|
|
* members may be needed.
|
|
*
|
|
* btf_show_obj_safe() is used to return a safe buffer for
|
|
* btf_show_start_type(); this ensures that as we recurse into
|
|
* nested types we always have safe data for the given type.
|
|
* This approach is somewhat wasteful; it's possible for example
|
|
* that when iterating over a large union we'll end up copying the
|
|
* same data repeatedly, but the goal is safety not performance.
|
|
* We use stack data as opposed to per-CPU buffers because the
|
|
* iteration over a type can take some time, and preemption handling
|
|
* would greatly complicate use of the safe buffer.
|
|
*/
|
|
static void *btf_show_obj_safe(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
void *data)
|
|
{
|
|
const struct btf_type *rt;
|
|
int size_left, size;
|
|
void *safe = NULL;
|
|
|
|
if (show->flags & BTF_SHOW_UNSAFE)
|
|
return data;
|
|
|
|
rt = btf_resolve_size(show->btf, t, &size);
|
|
if (IS_ERR(rt)) {
|
|
show->state.status = PTR_ERR(rt);
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
* Is this toplevel object? If so, set total object size and
|
|
* initialize pointers. Otherwise check if we still fall within
|
|
* our safe object data.
|
|
*/
|
|
if (show->state.depth == 0) {
|
|
show->obj.size = size;
|
|
show->obj.head = data;
|
|
} else {
|
|
/*
|
|
* If the size of the current object is > our remaining
|
|
* safe buffer we _may_ need to do a new copy. However
|
|
* consider the case of a nested struct; it's size pushes
|
|
* us over the safe buffer limit, but showing any individual
|
|
* struct members does not. In such cases, we don't need
|
|
* to initiate a fresh copy yet; however we definitely need
|
|
* at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes left
|
|
* in our buffer, regardless of the current object size.
|
|
* The logic here is that as we resolve types we will
|
|
* hit a base type at some point, and we need to be sure
|
|
* the next chunk of data is safely available to display
|
|
* that type info safely. We cannot rely on the size of
|
|
* the current object here because it may be much larger
|
|
* than our current buffer (e.g. task_struct is 8k).
|
|
* All we want to do here is ensure that we can print the
|
|
* next basic type, which we can if either
|
|
* - the current type size is within the safe buffer; or
|
|
* - at least BTF_SHOW_OBJ_BASE_TYPE_SIZE bytes are left in
|
|
* the safe buffer.
|
|
*/
|
|
safe = __btf_show_obj_safe(show, data,
|
|
min(size,
|
|
BTF_SHOW_OBJ_BASE_TYPE_SIZE));
|
|
}
|
|
|
|
/*
|
|
* We need a new copy to our safe object, either because we haven't
|
|
* yet copied and are initializing safe data, or because the data
|
|
* we want falls outside the boundaries of the safe object.
|
|
*/
|
|
if (!safe) {
|
|
size_left = btf_show_obj_size_left(show, data);
|
|
if (size_left > BTF_SHOW_OBJ_SAFE_SIZE)
|
|
size_left = BTF_SHOW_OBJ_SAFE_SIZE;
|
|
show->state.status = copy_from_kernel_nofault(show->obj.safe,
|
|
data, size_left);
|
|
if (!show->state.status) {
|
|
show->obj.data = data;
|
|
safe = show->obj.safe;
|
|
}
|
|
}
|
|
|
|
return safe;
|
|
}
|
|
|
|
/*
|
|
* Set the type we are starting to show and return a safe data pointer
|
|
* to be used for showing the associated data.
|
|
*/
|
|
static void *btf_show_start_type(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
u32 type_id, void *data)
|
|
{
|
|
show->state.type = t;
|
|
show->state.type_id = type_id;
|
|
show->state.name[0] = '\0';
|
|
|
|
return btf_show_obj_safe(show, t, data);
|
|
}
|
|
|
|
static void btf_show_end_type(struct btf_show *show)
|
|
{
|
|
show->state.type = NULL;
|
|
show->state.type_id = 0;
|
|
show->state.name[0] = '\0';
|
|
}
|
|
|
|
static void *btf_show_start_aggr_type(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
u32 type_id, void *data)
|
|
{
|
|
void *safe_data = btf_show_start_type(show, t, type_id, data);
|
|
|
|
if (!safe_data)
|
|
return safe_data;
|
|
|
|
btf_show(show, "%s%s%s", btf_show_indent(show),
|
|
btf_show_name(show),
|
|
btf_show_newline(show));
|
|
show->state.depth++;
|
|
return safe_data;
|
|
}
|
|
|
|
static void btf_show_end_aggr_type(struct btf_show *show,
|
|
const char *suffix)
|
|
{
|
|
show->state.depth--;
|
|
btf_show(show, "%s%s%s%s", btf_show_indent(show), suffix,
|
|
btf_show_delim(show), btf_show_newline(show));
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static void btf_show_start_member(struct btf_show *show,
|
|
const struct btf_member *m)
|
|
{
|
|
show->state.member = m;
|
|
}
|
|
|
|
static void btf_show_start_array_member(struct btf_show *show)
|
|
{
|
|
show->state.array_member = 1;
|
|
btf_show_start_member(show, NULL);
|
|
}
|
|
|
|
static void btf_show_end_member(struct btf_show *show)
|
|
{
|
|
show->state.member = NULL;
|
|
}
|
|
|
|
static void btf_show_end_array_member(struct btf_show *show)
|
|
{
|
|
show->state.array_member = 0;
|
|
btf_show_end_member(show);
|
|
}
|
|
|
|
static void *btf_show_start_array_type(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
u32 type_id,
|
|
u16 array_encoding,
|
|
void *data)
|
|
{
|
|
show->state.array_encoding = array_encoding;
|
|
show->state.array_terminated = 0;
|
|
return btf_show_start_aggr_type(show, t, type_id, data);
|
|
}
|
|
|
|
static void btf_show_end_array_type(struct btf_show *show)
|
|
{
|
|
show->state.array_encoding = 0;
|
|
show->state.array_terminated = 0;
|
|
btf_show_end_aggr_type(show, "]");
|
|
}
|
|
|
|
static void *btf_show_start_struct_type(struct btf_show *show,
|
|
const struct btf_type *t,
|
|
u32 type_id,
|
|
void *data)
|
|
{
|
|
return btf_show_start_aggr_type(show, t, type_id, data);
|
|
}
|
|
|
|
static void btf_show_end_struct_type(struct btf_show *show)
|
|
{
|
|
btf_show_end_aggr_type(show, "}");
|
|
}
|
|
|
|
__printf(2, 3) static void __btf_verifier_log(struct bpf_verifier_log *log,
|
|
const char *fmt, ...)
|
|
{
|
|
va_list args;
|
|
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__printf(2, 3) static void btf_verifier_log(struct btf_verifier_env *env,
|
|
const char *fmt, ...)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__printf(4, 5) static void __btf_verifier_log_type(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
bool log_details,
|
|
const char *fmt, ...)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
struct btf *btf = env->btf;
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
|
|
if (log->level == BPF_LOG_KERNEL) {
|
|
/* btf verifier prints all types it is processing via
|
|
* btf_verifier_log_type(..., fmt = NULL).
|
|
* Skip those prints for in-kernel BTF verification.
|
|
*/
|
|
if (!fmt)
|
|
return;
|
|
|
|
/* Skip logging when loading module BTF with mismatches permitted */
|
|
if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
|
|
return;
|
|
}
|
|
|
|
__btf_verifier_log(log, "[%u] %s %s%s",
|
|
env->log_type_id,
|
|
btf_type_str(t),
|
|
__btf_name_by_offset(btf, t->name_off),
|
|
log_details ? " " : "");
|
|
|
|
if (log_details)
|
|
btf_type_ops(t)->log_details(env, t);
|
|
|
|
if (fmt && *fmt) {
|
|
__btf_verifier_log(log, " ");
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__btf_verifier_log(log, "\n");
|
|
}
|
|
|
|
#define btf_verifier_log_type(env, t, ...) \
|
|
__btf_verifier_log_type((env), (t), true, __VA_ARGS__)
|
|
#define btf_verifier_log_basic(env, t, ...) \
|
|
__btf_verifier_log_type((env), (t), false, __VA_ARGS__)
|
|
|
|
__printf(4, 5)
|
|
static void btf_verifier_log_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const char *fmt, ...)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
struct btf *btf = env->btf;
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
|
|
if (log->level == BPF_LOG_KERNEL) {
|
|
if (!fmt)
|
|
return;
|
|
|
|
/* Skip logging when loading module BTF with mismatches permitted */
|
|
if (env->btf->base_btf && IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH))
|
|
return;
|
|
}
|
|
|
|
/* The CHECK_META phase already did a btf dump.
|
|
*
|
|
* If member is logged again, it must hit an error in
|
|
* parsing this member. It is useful to print out which
|
|
* struct this member belongs to.
|
|
*/
|
|
if (env->phase != CHECK_META)
|
|
btf_verifier_log_type(env, struct_type, NULL);
|
|
|
|
if (btf_type_kflag(struct_type))
|
|
__btf_verifier_log(log,
|
|
"\t%s type_id=%u bitfield_size=%u bits_offset=%u",
|
|
__btf_name_by_offset(btf, member->name_off),
|
|
member->type,
|
|
BTF_MEMBER_BITFIELD_SIZE(member->offset),
|
|
BTF_MEMBER_BIT_OFFSET(member->offset));
|
|
else
|
|
__btf_verifier_log(log, "\t%s type_id=%u bits_offset=%u",
|
|
__btf_name_by_offset(btf, member->name_off),
|
|
member->type, member->offset);
|
|
|
|
if (fmt && *fmt) {
|
|
__btf_verifier_log(log, " ");
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__btf_verifier_log(log, "\n");
|
|
}
|
|
|
|
__printf(4, 5)
|
|
static void btf_verifier_log_vsi(struct btf_verifier_env *env,
|
|
const struct btf_type *datasec_type,
|
|
const struct btf_var_secinfo *vsi,
|
|
const char *fmt, ...)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
va_list args;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
if (log->level == BPF_LOG_KERNEL && !fmt)
|
|
return;
|
|
if (env->phase != CHECK_META)
|
|
btf_verifier_log_type(env, datasec_type, NULL);
|
|
|
|
__btf_verifier_log(log, "\t type_id=%u offset=%u size=%u",
|
|
vsi->type, vsi->offset, vsi->size);
|
|
if (fmt && *fmt) {
|
|
__btf_verifier_log(log, " ");
|
|
va_start(args, fmt);
|
|
bpf_verifier_vlog(log, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
__btf_verifier_log(log, "\n");
|
|
}
|
|
|
|
static void btf_verifier_log_hdr(struct btf_verifier_env *env,
|
|
u32 btf_data_size)
|
|
{
|
|
struct bpf_verifier_log *log = &env->log;
|
|
const struct btf *btf = env->btf;
|
|
const struct btf_header *hdr;
|
|
|
|
if (!bpf_verifier_log_needed(log))
|
|
return;
|
|
|
|
if (log->level == BPF_LOG_KERNEL)
|
|
return;
|
|
hdr = &btf->hdr;
|
|
__btf_verifier_log(log, "magic: 0x%x\n", hdr->magic);
|
|
__btf_verifier_log(log, "version: %u\n", hdr->version);
|
|
__btf_verifier_log(log, "flags: 0x%x\n", hdr->flags);
|
|
__btf_verifier_log(log, "hdr_len: %u\n", hdr->hdr_len);
|
|
__btf_verifier_log(log, "type_off: %u\n", hdr->type_off);
|
|
__btf_verifier_log(log, "type_len: %u\n", hdr->type_len);
|
|
__btf_verifier_log(log, "str_off: %u\n", hdr->str_off);
|
|
__btf_verifier_log(log, "str_len: %u\n", hdr->str_len);
|
|
__btf_verifier_log(log, "btf_total_size: %u\n", btf_data_size);
|
|
}
|
|
|
|
static int btf_add_type(struct btf_verifier_env *env, struct btf_type *t)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
|
|
if (btf->types_size == btf->nr_types) {
|
|
/* Expand 'types' array */
|
|
|
|
struct btf_type **new_types;
|
|
u32 expand_by, new_size;
|
|
|
|
if (btf->start_id + btf->types_size == BTF_MAX_TYPE) {
|
|
btf_verifier_log(env, "Exceeded max num of types");
|
|
return -E2BIG;
|
|
}
|
|
|
|
expand_by = max_t(u32, btf->types_size >> 2, 16);
|
|
new_size = min_t(u32, BTF_MAX_TYPE,
|
|
btf->types_size + expand_by);
|
|
|
|
new_types = kvcalloc(new_size, sizeof(*new_types),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!new_types)
|
|
return -ENOMEM;
|
|
|
|
if (btf->nr_types == 0) {
|
|
if (!btf->base_btf) {
|
|
/* lazily init VOID type */
|
|
new_types[0] = &btf_void;
|
|
btf->nr_types++;
|
|
}
|
|
} else {
|
|
memcpy(new_types, btf->types,
|
|
sizeof(*btf->types) * btf->nr_types);
|
|
}
|
|
|
|
kvfree(btf->types);
|
|
btf->types = new_types;
|
|
btf->types_size = new_size;
|
|
}
|
|
|
|
btf->types[btf->nr_types++] = t;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_alloc_id(struct btf *btf)
|
|
{
|
|
int id;
|
|
|
|
idr_preload(GFP_KERNEL);
|
|
spin_lock_bh(&btf_idr_lock);
|
|
id = idr_alloc_cyclic(&btf_idr, btf, 1, INT_MAX, GFP_ATOMIC);
|
|
if (id > 0)
|
|
btf->id = id;
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
idr_preload_end();
|
|
|
|
if (WARN_ON_ONCE(!id))
|
|
return -ENOSPC;
|
|
|
|
return id > 0 ? 0 : id;
|
|
}
|
|
|
|
static void btf_free_id(struct btf *btf)
|
|
{
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* In map-in-map, calling map_delete_elem() on outer
|
|
* map will call bpf_map_put on the inner map.
|
|
* It will then eventually call btf_free_id()
|
|
* on the inner map. Some of the map_delete_elem()
|
|
* implementation may have irq disabled, so
|
|
* we need to use the _irqsave() version instead
|
|
* of the _bh() version.
|
|
*/
|
|
spin_lock_irqsave(&btf_idr_lock, flags);
|
|
idr_remove(&btf_idr, btf->id);
|
|
spin_unlock_irqrestore(&btf_idr_lock, flags);
|
|
}
|
|
|
|
static void btf_free_kfunc_set_tab(struct btf *btf)
|
|
{
|
|
struct btf_kfunc_set_tab *tab = btf->kfunc_set_tab;
|
|
int hook;
|
|
|
|
if (!tab)
|
|
return;
|
|
for (hook = 0; hook < ARRAY_SIZE(tab->sets); hook++)
|
|
kfree(tab->sets[hook]);
|
|
kfree(tab);
|
|
btf->kfunc_set_tab = NULL;
|
|
}
|
|
|
|
static void btf_free_dtor_kfunc_tab(struct btf *btf)
|
|
{
|
|
struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
|
|
|
|
if (!tab)
|
|
return;
|
|
kfree(tab);
|
|
btf->dtor_kfunc_tab = NULL;
|
|
}
|
|
|
|
static void btf_struct_metas_free(struct btf_struct_metas *tab)
|
|
{
|
|
int i;
|
|
|
|
if (!tab)
|
|
return;
|
|
for (i = 0; i < tab->cnt; i++)
|
|
btf_record_free(tab->types[i].record);
|
|
kfree(tab);
|
|
}
|
|
|
|
static void btf_free_struct_meta_tab(struct btf *btf)
|
|
{
|
|
struct btf_struct_metas *tab = btf->struct_meta_tab;
|
|
|
|
btf_struct_metas_free(tab);
|
|
btf->struct_meta_tab = NULL;
|
|
}
|
|
|
|
static void btf_free_struct_ops_tab(struct btf *btf)
|
|
{
|
|
struct btf_struct_ops_tab *tab = btf->struct_ops_tab;
|
|
u32 i;
|
|
|
|
if (!tab)
|
|
return;
|
|
|
|
for (i = 0; i < tab->cnt; i++)
|
|
bpf_struct_ops_desc_release(&tab->ops[i]);
|
|
|
|
kfree(tab);
|
|
btf->struct_ops_tab = NULL;
|
|
}
|
|
|
|
static void btf_free(struct btf *btf)
|
|
{
|
|
btf_free_struct_meta_tab(btf);
|
|
btf_free_dtor_kfunc_tab(btf);
|
|
btf_free_kfunc_set_tab(btf);
|
|
btf_free_struct_ops_tab(btf);
|
|
kvfree(btf->types);
|
|
kvfree(btf->resolved_sizes);
|
|
kvfree(btf->resolved_ids);
|
|
/* vmlinux does not allocate btf->data, it simply points it at
|
|
* __start_BTF.
|
|
*/
|
|
if (!btf_is_vmlinux(btf))
|
|
kvfree(btf->data);
|
|
kvfree(btf->base_id_map);
|
|
kfree(btf);
|
|
}
|
|
|
|
static void btf_free_rcu(struct rcu_head *rcu)
|
|
{
|
|
struct btf *btf = container_of(rcu, struct btf, rcu);
|
|
|
|
btf_free(btf);
|
|
}
|
|
|
|
const char *btf_get_name(const struct btf *btf)
|
|
{
|
|
return btf->name;
|
|
}
|
|
|
|
void btf_get(struct btf *btf)
|
|
{
|
|
refcount_inc(&btf->refcnt);
|
|
}
|
|
|
|
void btf_put(struct btf *btf)
|
|
{
|
|
if (btf && refcount_dec_and_test(&btf->refcnt)) {
|
|
btf_free_id(btf);
|
|
call_rcu(&btf->rcu, btf_free_rcu);
|
|
}
|
|
}
|
|
|
|
struct btf *btf_base_btf(const struct btf *btf)
|
|
{
|
|
return btf->base_btf;
|
|
}
|
|
|
|
const struct btf_header *btf_header(const struct btf *btf)
|
|
{
|
|
return &btf->hdr;
|
|
}
|
|
|
|
void btf_set_base_btf(struct btf *btf, const struct btf *base_btf)
|
|
{
|
|
btf->base_btf = (struct btf *)base_btf;
|
|
btf->start_id = btf_nr_types(base_btf);
|
|
btf->start_str_off = base_btf->hdr.str_len;
|
|
}
|
|
|
|
static int env_resolve_init(struct btf_verifier_env *env)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
u32 nr_types = btf->nr_types;
|
|
u32 *resolved_sizes = NULL;
|
|
u32 *resolved_ids = NULL;
|
|
u8 *visit_states = NULL;
|
|
|
|
resolved_sizes = kvcalloc(nr_types, sizeof(*resolved_sizes),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!resolved_sizes)
|
|
goto nomem;
|
|
|
|
resolved_ids = kvcalloc(nr_types, sizeof(*resolved_ids),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!resolved_ids)
|
|
goto nomem;
|
|
|
|
visit_states = kvcalloc(nr_types, sizeof(*visit_states),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!visit_states)
|
|
goto nomem;
|
|
|
|
btf->resolved_sizes = resolved_sizes;
|
|
btf->resolved_ids = resolved_ids;
|
|
env->visit_states = visit_states;
|
|
|
|
return 0;
|
|
|
|
nomem:
|
|
kvfree(resolved_sizes);
|
|
kvfree(resolved_ids);
|
|
kvfree(visit_states);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void btf_verifier_env_free(struct btf_verifier_env *env)
|
|
{
|
|
kvfree(env->visit_states);
|
|
kfree(env);
|
|
}
|
|
|
|
static bool env_type_is_resolve_sink(const struct btf_verifier_env *env,
|
|
const struct btf_type *next_type)
|
|
{
|
|
switch (env->resolve_mode) {
|
|
case RESOLVE_TBD:
|
|
/* int, enum or void is a sink */
|
|
return !btf_type_needs_resolve(next_type);
|
|
case RESOLVE_PTR:
|
|
/* int, enum, void, struct, array, func or func_proto is a sink
|
|
* for ptr
|
|
*/
|
|
return !btf_type_is_modifier(next_type) &&
|
|
!btf_type_is_ptr(next_type);
|
|
case RESOLVE_STRUCT_OR_ARRAY:
|
|
/* int, enum, void, ptr, func or func_proto is a sink
|
|
* for struct and array
|
|
*/
|
|
return !btf_type_is_modifier(next_type) &&
|
|
!btf_type_is_array(next_type) &&
|
|
!btf_type_is_struct(next_type);
|
|
default:
|
|
BUG();
|
|
}
|
|
}
|
|
|
|
static bool env_type_is_resolved(const struct btf_verifier_env *env,
|
|
u32 type_id)
|
|
{
|
|
/* base BTF types should be resolved by now */
|
|
if (type_id < env->btf->start_id)
|
|
return true;
|
|
|
|
return env->visit_states[type_id - env->btf->start_id] == RESOLVED;
|
|
}
|
|
|
|
static int env_stack_push(struct btf_verifier_env *env,
|
|
const struct btf_type *t, u32 type_id)
|
|
{
|
|
const struct btf *btf = env->btf;
|
|
struct resolve_vertex *v;
|
|
|
|
if (env->top_stack == MAX_RESOLVE_DEPTH)
|
|
return -E2BIG;
|
|
|
|
if (type_id < btf->start_id
|
|
|| env->visit_states[type_id - btf->start_id] != NOT_VISITED)
|
|
return -EEXIST;
|
|
|
|
env->visit_states[type_id - btf->start_id] = VISITED;
|
|
|
|
v = &env->stack[env->top_stack++];
|
|
v->t = t;
|
|
v->type_id = type_id;
|
|
v->next_member = 0;
|
|
|
|
if (env->resolve_mode == RESOLVE_TBD) {
|
|
if (btf_type_is_ptr(t))
|
|
env->resolve_mode = RESOLVE_PTR;
|
|
else if (btf_type_is_struct(t) || btf_type_is_array(t))
|
|
env->resolve_mode = RESOLVE_STRUCT_OR_ARRAY;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void env_stack_set_next_member(struct btf_verifier_env *env,
|
|
u16 next_member)
|
|
{
|
|
env->stack[env->top_stack - 1].next_member = next_member;
|
|
}
|
|
|
|
static void env_stack_pop_resolved(struct btf_verifier_env *env,
|
|
u32 resolved_type_id,
|
|
u32 resolved_size)
|
|
{
|
|
u32 type_id = env->stack[--(env->top_stack)].type_id;
|
|
struct btf *btf = env->btf;
|
|
|
|
type_id -= btf->start_id; /* adjust to local type id */
|
|
btf->resolved_sizes[type_id] = resolved_size;
|
|
btf->resolved_ids[type_id] = resolved_type_id;
|
|
env->visit_states[type_id] = RESOLVED;
|
|
}
|
|
|
|
static const struct resolve_vertex *env_stack_peak(struct btf_verifier_env *env)
|
|
{
|
|
return env->top_stack ? &env->stack[env->top_stack - 1] : NULL;
|
|
}
|
|
|
|
/* Resolve the size of a passed-in "type"
|
|
*
|
|
* type: is an array (e.g. u32 array[x][y])
|
|
* return type: type "u32[x][y]", i.e. BTF_KIND_ARRAY,
|
|
* *type_size: (x * y * sizeof(u32)). Hence, *type_size always
|
|
* corresponds to the return type.
|
|
* *elem_type: u32
|
|
* *elem_id: id of u32
|
|
* *total_nelems: (x * y). Hence, individual elem size is
|
|
* (*type_size / *total_nelems)
|
|
* *type_id: id of type if it's changed within the function, 0 if not
|
|
*
|
|
* type: is not an array (e.g. const struct X)
|
|
* return type: type "struct X"
|
|
* *type_size: sizeof(struct X)
|
|
* *elem_type: same as return type ("struct X")
|
|
* *elem_id: 0
|
|
* *total_nelems: 1
|
|
* *type_id: id of type if it's changed within the function, 0 if not
|
|
*/
|
|
static const struct btf_type *
|
|
__btf_resolve_size(const struct btf *btf, const struct btf_type *type,
|
|
u32 *type_size, const struct btf_type **elem_type,
|
|
u32 *elem_id, u32 *total_nelems, u32 *type_id)
|
|
{
|
|
const struct btf_type *array_type = NULL;
|
|
const struct btf_array *array = NULL;
|
|
u32 i, size, nelems = 1, id = 0;
|
|
|
|
for (i = 0; i < MAX_RESOLVE_DEPTH; i++) {
|
|
switch (BTF_INFO_KIND(type->info)) {
|
|
/* type->size can be used */
|
|
case BTF_KIND_INT:
|
|
case BTF_KIND_STRUCT:
|
|
case BTF_KIND_UNION:
|
|
case BTF_KIND_ENUM:
|
|
case BTF_KIND_FLOAT:
|
|
case BTF_KIND_ENUM64:
|
|
size = type->size;
|
|
goto resolved;
|
|
|
|
case BTF_KIND_PTR:
|
|
size = sizeof(void *);
|
|
goto resolved;
|
|
|
|
/* Modifiers */
|
|
case BTF_KIND_TYPEDEF:
|
|
case BTF_KIND_VOLATILE:
|
|
case BTF_KIND_CONST:
|
|
case BTF_KIND_RESTRICT:
|
|
case BTF_KIND_TYPE_TAG:
|
|
id = type->type;
|
|
type = btf_type_by_id(btf, type->type);
|
|
break;
|
|
|
|
case BTF_KIND_ARRAY:
|
|
if (!array_type)
|
|
array_type = type;
|
|
array = btf_type_array(type);
|
|
if (nelems && array->nelems > U32_MAX / nelems)
|
|
return ERR_PTR(-EINVAL);
|
|
nelems *= array->nelems;
|
|
type = btf_type_by_id(btf, array->type);
|
|
break;
|
|
|
|
/* type without size */
|
|
default:
|
|
return ERR_PTR(-EINVAL);
|
|
}
|
|
}
|
|
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
resolved:
|
|
if (nelems && size > U32_MAX / nelems)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
*type_size = nelems * size;
|
|
if (total_nelems)
|
|
*total_nelems = nelems;
|
|
if (elem_type)
|
|
*elem_type = type;
|
|
if (elem_id)
|
|
*elem_id = array ? array->type : 0;
|
|
if (type_id && id)
|
|
*type_id = id;
|
|
|
|
return array_type ? : type;
|
|
}
|
|
|
|
const struct btf_type *
|
|
btf_resolve_size(const struct btf *btf, const struct btf_type *type,
|
|
u32 *type_size)
|
|
{
|
|
return __btf_resolve_size(btf, type, type_size, NULL, NULL, NULL, NULL);
|
|
}
|
|
|
|
static u32 btf_resolved_type_id(const struct btf *btf, u32 type_id)
|
|
{
|
|
while (type_id < btf->start_id)
|
|
btf = btf->base_btf;
|
|
|
|
return btf->resolved_ids[type_id - btf->start_id];
|
|
}
|
|
|
|
/* The input param "type_id" must point to a needs_resolve type */
|
|
static const struct btf_type *btf_type_id_resolve(const struct btf *btf,
|
|
u32 *type_id)
|
|
{
|
|
*type_id = btf_resolved_type_id(btf, *type_id);
|
|
return btf_type_by_id(btf, *type_id);
|
|
}
|
|
|
|
static u32 btf_resolved_type_size(const struct btf *btf, u32 type_id)
|
|
{
|
|
while (type_id < btf->start_id)
|
|
btf = btf->base_btf;
|
|
|
|
return btf->resolved_sizes[type_id - btf->start_id];
|
|
}
|
|
|
|
const struct btf_type *btf_type_id_size(const struct btf *btf,
|
|
u32 *type_id, u32 *ret_size)
|
|
{
|
|
const struct btf_type *size_type;
|
|
u32 size_type_id = *type_id;
|
|
u32 size = 0;
|
|
|
|
size_type = btf_type_by_id(btf, size_type_id);
|
|
if (btf_type_nosize_or_null(size_type))
|
|
return NULL;
|
|
|
|
if (btf_type_has_size(size_type)) {
|
|
size = size_type->size;
|
|
} else if (btf_type_is_array(size_type)) {
|
|
size = btf_resolved_type_size(btf, size_type_id);
|
|
} else if (btf_type_is_ptr(size_type)) {
|
|
size = sizeof(void *);
|
|
} else {
|
|
if (WARN_ON_ONCE(!btf_type_is_modifier(size_type) &&
|
|
!btf_type_is_var(size_type)))
|
|
return NULL;
|
|
|
|
size_type_id = btf_resolved_type_id(btf, size_type_id);
|
|
size_type = btf_type_by_id(btf, size_type_id);
|
|
if (btf_type_nosize_or_null(size_type))
|
|
return NULL;
|
|
else if (btf_type_has_size(size_type))
|
|
size = size_type->size;
|
|
else if (btf_type_is_array(size_type))
|
|
size = btf_resolved_type_size(btf, size_type_id);
|
|
else if (btf_type_is_ptr(size_type))
|
|
size = sizeof(void *);
|
|
else
|
|
return NULL;
|
|
}
|
|
|
|
*type_id = size_type_id;
|
|
if (ret_size)
|
|
*ret_size = size;
|
|
|
|
return size_type;
|
|
}
|
|
|
|
static int btf_df_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
btf_verifier_log_basic(env, struct_type,
|
|
"Unsupported check_member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int btf_df_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
btf_verifier_log_basic(env, struct_type,
|
|
"Unsupported check_kflag_member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Used for ptr, array struct/union and float type members.
|
|
* int, enum and modifier types have their specific callback functions.
|
|
*/
|
|
static int btf_generic_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
if (BTF_MEMBER_BITFIELD_SIZE(member->offset)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member bitfield_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* bitfield size is 0, so member->offset represents bit offset only.
|
|
* It is safe to call non kflag check_member variants.
|
|
*/
|
|
return btf_type_ops(member_type)->check_member(env, struct_type,
|
|
member,
|
|
member_type);
|
|
}
|
|
|
|
static int btf_df_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
btf_verifier_log_basic(env, v->t, "Unsupported resolve");
|
|
return -EINVAL;
|
|
}
|
|
|
|
static void btf_df_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offsets,
|
|
struct btf_show *show)
|
|
{
|
|
btf_show(show, "<unsupported kind:%u>", BTF_INFO_KIND(t->info));
|
|
}
|
|
|
|
static int btf_int_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 int_data = btf_type_int(member_type);
|
|
u32 struct_bits_off = member->offset;
|
|
u32 struct_size = struct_type->size;
|
|
u32 nr_copy_bits;
|
|
u32 bytes_offset;
|
|
|
|
if (U32_MAX - struct_bits_off < BTF_INT_OFFSET(int_data)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"bits_offset exceeds U32_MAX");
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct_bits_off += BTF_INT_OFFSET(int_data);
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
nr_copy_bits = BTF_INT_BITS(int_data) +
|
|
BITS_PER_BYTE_MASKED(struct_bits_off);
|
|
|
|
if (nr_copy_bits > BITS_PER_U128) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"nr_copy_bits exceeds 128");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (struct_size < bytes_offset ||
|
|
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_int_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off, nr_bits, nr_int_data_bits, bytes_offset;
|
|
u32 int_data = btf_type_int(member_type);
|
|
u32 struct_size = struct_type->size;
|
|
u32 nr_copy_bits;
|
|
|
|
/* a regular int type is required for the kflag int member */
|
|
if (!btf_type_int_is_regular(member_type)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member base type");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* check sanity of bitfield size */
|
|
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
|
|
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
|
|
nr_int_data_bits = BTF_INT_BITS(int_data);
|
|
if (!nr_bits) {
|
|
/* Not a bitfield member, member offset must be at byte
|
|
* boundary.
|
|
*/
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member offset");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nr_bits = nr_int_data_bits;
|
|
} else if (nr_bits > nr_int_data_bits) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member bitfield_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
nr_copy_bits = nr_bits + BITS_PER_BYTE_MASKED(struct_bits_off);
|
|
if (nr_copy_bits > BITS_PER_U128) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"nr_copy_bits exceeds 128");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (struct_size < bytes_offset ||
|
|
struct_size - bytes_offset < BITS_ROUNDUP_BYTES(nr_copy_bits)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 btf_int_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
u32 int_data, nr_bits, meta_needed = sizeof(int_data);
|
|
u16 encoding;
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
int_data = btf_type_int(t);
|
|
if (int_data & ~BTF_INT_MASK) {
|
|
btf_verifier_log_basic(env, t, "Invalid int_data:%x",
|
|
int_data);
|
|
return -EINVAL;
|
|
}
|
|
|
|
nr_bits = BTF_INT_BITS(int_data) + BTF_INT_OFFSET(int_data);
|
|
|
|
if (nr_bits > BITS_PER_U128) {
|
|
btf_verifier_log_type(env, t, "nr_bits exceeds %zu",
|
|
BITS_PER_U128);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (BITS_ROUNDUP_BYTES(nr_bits) > t->size) {
|
|
btf_verifier_log_type(env, t, "nr_bits exceeds type_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Only one of the encoding bits is allowed and it
|
|
* should be sufficient for the pretty print purpose (i.e. decoding).
|
|
* Multiple bits can be allowed later if it is found
|
|
* to be insufficient.
|
|
*/
|
|
encoding = BTF_INT_ENCODING(int_data);
|
|
if (encoding &&
|
|
encoding != BTF_INT_SIGNED &&
|
|
encoding != BTF_INT_CHAR &&
|
|
encoding != BTF_INT_BOOL) {
|
|
btf_verifier_log_type(env, t, "Unsupported encoding");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_int_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
int int_data = btf_type_int(t);
|
|
|
|
btf_verifier_log(env,
|
|
"size=%u bits_offset=%u nr_bits=%u encoding=%s",
|
|
t->size, BTF_INT_OFFSET(int_data),
|
|
BTF_INT_BITS(int_data),
|
|
btf_int_encoding_str(BTF_INT_ENCODING(int_data)));
|
|
}
|
|
|
|
static void btf_int128_print(struct btf_show *show, void *data)
|
|
{
|
|
/* data points to a __int128 number.
|
|
* Suppose
|
|
* int128_num = *(__int128 *)data;
|
|
* The below formulas shows what upper_num and lower_num represents:
|
|
* upper_num = int128_num >> 64;
|
|
* lower_num = int128_num & 0xffffffffFFFFFFFFULL;
|
|
*/
|
|
u64 upper_num, lower_num;
|
|
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
upper_num = *(u64 *)data;
|
|
lower_num = *(u64 *)(data + 8);
|
|
#else
|
|
upper_num = *(u64 *)(data + 8);
|
|
lower_num = *(u64 *)data;
|
|
#endif
|
|
if (upper_num == 0)
|
|
btf_show_type_value(show, "0x%llx", lower_num);
|
|
else
|
|
btf_show_type_values(show, "0x%llx%016llx", upper_num,
|
|
lower_num);
|
|
}
|
|
|
|
static void btf_int128_shift(u64 *print_num, u16 left_shift_bits,
|
|
u16 right_shift_bits)
|
|
{
|
|
u64 upper_num, lower_num;
|
|
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
upper_num = print_num[0];
|
|
lower_num = print_num[1];
|
|
#else
|
|
upper_num = print_num[1];
|
|
lower_num = print_num[0];
|
|
#endif
|
|
|
|
/* shake out un-needed bits by shift/or operations */
|
|
if (left_shift_bits >= 64) {
|
|
upper_num = lower_num << (left_shift_bits - 64);
|
|
lower_num = 0;
|
|
} else {
|
|
upper_num = (upper_num << left_shift_bits) |
|
|
(lower_num >> (64 - left_shift_bits));
|
|
lower_num = lower_num << left_shift_bits;
|
|
}
|
|
|
|
if (right_shift_bits >= 64) {
|
|
lower_num = upper_num >> (right_shift_bits - 64);
|
|
upper_num = 0;
|
|
} else {
|
|
lower_num = (lower_num >> right_shift_bits) |
|
|
(upper_num << (64 - right_shift_bits));
|
|
upper_num = upper_num >> right_shift_bits;
|
|
}
|
|
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
print_num[0] = upper_num;
|
|
print_num[1] = lower_num;
|
|
#else
|
|
print_num[0] = lower_num;
|
|
print_num[1] = upper_num;
|
|
#endif
|
|
}
|
|
|
|
static void btf_bitfield_show(void *data, u8 bits_offset,
|
|
u8 nr_bits, struct btf_show *show)
|
|
{
|
|
u16 left_shift_bits, right_shift_bits;
|
|
u8 nr_copy_bytes;
|
|
u8 nr_copy_bits;
|
|
u64 print_num[2] = {};
|
|
|
|
nr_copy_bits = nr_bits + bits_offset;
|
|
nr_copy_bytes = BITS_ROUNDUP_BYTES(nr_copy_bits);
|
|
|
|
memcpy(print_num, data, nr_copy_bytes);
|
|
|
|
#ifdef __BIG_ENDIAN_BITFIELD
|
|
left_shift_bits = bits_offset;
|
|
#else
|
|
left_shift_bits = BITS_PER_U128 - nr_copy_bits;
|
|
#endif
|
|
right_shift_bits = BITS_PER_U128 - nr_bits;
|
|
|
|
btf_int128_shift(print_num, left_shift_bits, right_shift_bits);
|
|
btf_int128_print(show, print_num);
|
|
}
|
|
|
|
|
|
static void btf_int_bits_show(const struct btf *btf,
|
|
const struct btf_type *t,
|
|
void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
u32 int_data = btf_type_int(t);
|
|
u8 nr_bits = BTF_INT_BITS(int_data);
|
|
u8 total_bits_offset;
|
|
|
|
/*
|
|
* bits_offset is at most 7.
|
|
* BTF_INT_OFFSET() cannot exceed 128 bits.
|
|
*/
|
|
total_bits_offset = bits_offset + BTF_INT_OFFSET(int_data);
|
|
data += BITS_ROUNDDOWN_BYTES(total_bits_offset);
|
|
bits_offset = BITS_PER_BYTE_MASKED(total_bits_offset);
|
|
btf_bitfield_show(data, bits_offset, nr_bits, show);
|
|
}
|
|
|
|
static void btf_int_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
u32 int_data = btf_type_int(t);
|
|
u8 encoding = BTF_INT_ENCODING(int_data);
|
|
bool sign = encoding & BTF_INT_SIGNED;
|
|
u8 nr_bits = BTF_INT_BITS(int_data);
|
|
void *safe_data;
|
|
|
|
safe_data = btf_show_start_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
if (bits_offset || BTF_INT_OFFSET(int_data) ||
|
|
BITS_PER_BYTE_MASKED(nr_bits)) {
|
|
btf_int_bits_show(btf, t, safe_data, bits_offset, show);
|
|
goto out;
|
|
}
|
|
|
|
switch (nr_bits) {
|
|
case 128:
|
|
btf_int128_print(show, safe_data);
|
|
break;
|
|
case 64:
|
|
if (sign)
|
|
btf_show_type_value(show, "%lld", *(s64 *)safe_data);
|
|
else
|
|
btf_show_type_value(show, "%llu", *(u64 *)safe_data);
|
|
break;
|
|
case 32:
|
|
if (sign)
|
|
btf_show_type_value(show, "%d", *(s32 *)safe_data);
|
|
else
|
|
btf_show_type_value(show, "%u", *(u32 *)safe_data);
|
|
break;
|
|
case 16:
|
|
if (sign)
|
|
btf_show_type_value(show, "%d", *(s16 *)safe_data);
|
|
else
|
|
btf_show_type_value(show, "%u", *(u16 *)safe_data);
|
|
break;
|
|
case 8:
|
|
if (show->state.array_encoding == BTF_INT_CHAR) {
|
|
/* check for null terminator */
|
|
if (show->state.array_terminated)
|
|
break;
|
|
if (*(char *)data == '\0') {
|
|
show->state.array_terminated = 1;
|
|
break;
|
|
}
|
|
if (isprint(*(char *)data)) {
|
|
btf_show_type_value(show, "'%c'",
|
|
*(char *)safe_data);
|
|
break;
|
|
}
|
|
}
|
|
if (sign)
|
|
btf_show_type_value(show, "%d", *(s8 *)safe_data);
|
|
else
|
|
btf_show_type_value(show, "%u", *(u8 *)safe_data);
|
|
break;
|
|
default:
|
|
btf_int_bits_show(btf, t, safe_data, bits_offset, show);
|
|
break;
|
|
}
|
|
out:
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static const struct btf_kind_operations int_ops = {
|
|
.check_meta = btf_int_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_int_check_member,
|
|
.check_kflag_member = btf_int_check_kflag_member,
|
|
.log_details = btf_int_log,
|
|
.show = btf_int_show,
|
|
};
|
|
|
|
static int btf_modifier_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
const struct btf_type *resolved_type;
|
|
u32 resolved_type_id = member->type;
|
|
struct btf_member resolved_member;
|
|
struct btf *btf = env->btf;
|
|
|
|
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
|
|
if (!resolved_type) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
resolved_member = *member;
|
|
resolved_member.type = resolved_type_id;
|
|
|
|
return btf_type_ops(resolved_type)->check_member(env, struct_type,
|
|
&resolved_member,
|
|
resolved_type);
|
|
}
|
|
|
|
static int btf_modifier_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
const struct btf_type *resolved_type;
|
|
u32 resolved_type_id = member->type;
|
|
struct btf_member resolved_member;
|
|
struct btf *btf = env->btf;
|
|
|
|
resolved_type = btf_type_id_size(btf, &resolved_type_id, NULL);
|
|
if (!resolved_type) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
resolved_member = *member;
|
|
resolved_member.type = resolved_type_id;
|
|
|
|
return btf_type_ops(resolved_type)->check_kflag_member(env, struct_type,
|
|
&resolved_member,
|
|
resolved_type);
|
|
}
|
|
|
|
static int btf_ptr_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_size, struct_bits_off, bytes_offset;
|
|
|
|
struct_size = struct_type->size;
|
|
struct_bits_off = member->offset;
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (struct_size - bytes_offset < sizeof(void *)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_ref_type_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const char *value;
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!BTF_TYPE_ID_VALID(t->type)) {
|
|
btf_verifier_log_type(env, t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* typedef/type_tag type must have a valid name, and other ref types,
|
|
* volatile, const, restrict, should have a null name.
|
|
*/
|
|
if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPEDEF) {
|
|
if (!t->name_off ||
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
} else if (BTF_INFO_KIND(t->info) == BTF_KIND_TYPE_TAG) {
|
|
value = btf_name_by_offset(env->btf, t->name_off);
|
|
if (!value || !value[0]) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
} else {
|
|
if (t->name_off) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_modifier_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *t = v->t;
|
|
const struct btf_type *next_type;
|
|
u32 next_type_id = t->type;
|
|
struct btf *btf = env->btf;
|
|
|
|
next_type = btf_type_by_id(btf, next_type_id);
|
|
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, next_type) &&
|
|
!env_type_is_resolved(env, next_type_id))
|
|
return env_stack_push(env, next_type, next_type_id);
|
|
|
|
/* Figure out the resolved next_type_id with size.
|
|
* They will be stored in the current modifier's
|
|
* resolved_ids and resolved_sizes such that it can
|
|
* save us a few type-following when we use it later (e.g. in
|
|
* pretty print).
|
|
*/
|
|
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
|
|
if (env_type_is_resolved(env, next_type_id))
|
|
next_type = btf_type_id_resolve(btf, &next_type_id);
|
|
|
|
/* "typedef void new_void", "const void"...etc */
|
|
if (!btf_type_is_void(next_type) &&
|
|
!btf_type_is_fwd(next_type) &&
|
|
!btf_type_is_func_proto(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_var_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *next_type;
|
|
const struct btf_type *t = v->t;
|
|
u32 next_type_id = t->type;
|
|
struct btf *btf = env->btf;
|
|
|
|
next_type = btf_type_by_id(btf, next_type_id);
|
|
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, next_type) &&
|
|
!env_type_is_resolved(env, next_type_id))
|
|
return env_stack_push(env, next_type, next_type_id);
|
|
|
|
if (btf_type_is_modifier(next_type)) {
|
|
const struct btf_type *resolved_type;
|
|
u32 resolved_type_id;
|
|
|
|
resolved_type_id = next_type_id;
|
|
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
|
|
|
|
if (btf_type_is_ptr(resolved_type) &&
|
|
!env_type_is_resolve_sink(env, resolved_type) &&
|
|
!env_type_is_resolved(env, resolved_type_id))
|
|
return env_stack_push(env, resolved_type,
|
|
resolved_type_id);
|
|
}
|
|
|
|
/* We must resolve to something concrete at this point, no
|
|
* forward types or similar that would resolve to size of
|
|
* zero is allowed.
|
|
*/
|
|
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_ptr_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *next_type;
|
|
const struct btf_type *t = v->t;
|
|
u32 next_type_id = t->type;
|
|
struct btf *btf = env->btf;
|
|
|
|
next_type = btf_type_by_id(btf, next_type_id);
|
|
if (!next_type || btf_type_is_resolve_source_only(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, next_type) &&
|
|
!env_type_is_resolved(env, next_type_id))
|
|
return env_stack_push(env, next_type, next_type_id);
|
|
|
|
/* If the modifier was RESOLVED during RESOLVE_STRUCT_OR_ARRAY,
|
|
* the modifier may have stopped resolving when it was resolved
|
|
* to a ptr (last-resolved-ptr).
|
|
*
|
|
* We now need to continue from the last-resolved-ptr to
|
|
* ensure the last-resolved-ptr will not referring back to
|
|
* the current ptr (t).
|
|
*/
|
|
if (btf_type_is_modifier(next_type)) {
|
|
const struct btf_type *resolved_type;
|
|
u32 resolved_type_id;
|
|
|
|
resolved_type_id = next_type_id;
|
|
resolved_type = btf_type_id_resolve(btf, &resolved_type_id);
|
|
|
|
if (btf_type_is_ptr(resolved_type) &&
|
|
!env_type_is_resolve_sink(env, resolved_type) &&
|
|
!env_type_is_resolved(env, resolved_type_id))
|
|
return env_stack_push(env, resolved_type,
|
|
resolved_type_id);
|
|
}
|
|
|
|
if (!btf_type_id_size(btf, &next_type_id, NULL)) {
|
|
if (env_type_is_resolved(env, next_type_id))
|
|
next_type = btf_type_id_resolve(btf, &next_type_id);
|
|
|
|
if (!btf_type_is_void(next_type) &&
|
|
!btf_type_is_fwd(next_type) &&
|
|
!btf_type_is_func_proto(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_modifier_show(const struct btf *btf,
|
|
const struct btf_type *t,
|
|
u32 type_id, void *data,
|
|
u8 bits_offset, struct btf_show *show)
|
|
{
|
|
if (btf->resolved_ids)
|
|
t = btf_type_id_resolve(btf, &type_id);
|
|
else
|
|
t = btf_type_skip_modifiers(btf, type_id, NULL);
|
|
|
|
btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
|
|
}
|
|
|
|
static void btf_var_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
t = btf_type_id_resolve(btf, &type_id);
|
|
|
|
btf_type_ops(t)->show(btf, t, type_id, data, bits_offset, show);
|
|
}
|
|
|
|
static void btf_ptr_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
void *safe_data;
|
|
|
|
safe_data = btf_show_start_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
/* It is a hashed value unless BTF_SHOW_PTR_RAW is specified */
|
|
if (show->flags & BTF_SHOW_PTR_RAW)
|
|
btf_show_type_value(show, "0x%px", *(void **)safe_data);
|
|
else
|
|
btf_show_type_value(show, "0x%p", *(void **)safe_data);
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static void btf_ref_type_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "type_id=%u", t->type);
|
|
}
|
|
|
|
static const struct btf_kind_operations modifier_ops = {
|
|
.check_meta = btf_ref_type_check_meta,
|
|
.resolve = btf_modifier_resolve,
|
|
.check_member = btf_modifier_check_member,
|
|
.check_kflag_member = btf_modifier_check_kflag_member,
|
|
.log_details = btf_ref_type_log,
|
|
.show = btf_modifier_show,
|
|
};
|
|
|
|
static const struct btf_kind_operations ptr_ops = {
|
|
.check_meta = btf_ref_type_check_meta,
|
|
.resolve = btf_ptr_resolve,
|
|
.check_member = btf_ptr_check_member,
|
|
.check_kflag_member = btf_generic_check_kflag_member,
|
|
.log_details = btf_ref_type_log,
|
|
.show = btf_ptr_show,
|
|
};
|
|
|
|
static s32 btf_fwd_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->type) {
|
|
btf_verifier_log_type(env, t, "type != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* fwd type must have a valid name */
|
|
if (!t->name_off ||
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_fwd_type_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "%s", btf_type_kflag(t) ? "union" : "struct");
|
|
}
|
|
|
|
static const struct btf_kind_operations fwd_ops = {
|
|
.check_meta = btf_fwd_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_fwd_type_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static int btf_array_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off = member->offset;
|
|
u32 struct_size, bytes_offset;
|
|
u32 array_type_id, array_size;
|
|
struct btf *btf = env->btf;
|
|
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
array_type_id = member->type;
|
|
btf_type_id_size(btf, &array_type_id, &array_size);
|
|
struct_size = struct_type->size;
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
if (struct_size - bytes_offset < array_size) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 btf_array_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_array *array = btf_type_array(t);
|
|
u32 meta_needed = sizeof(*array);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* array type should not have a name */
|
|
if (t->name_off) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->size) {
|
|
btf_verifier_log_type(env, t, "size != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Array elem type and index type cannot be in type void,
|
|
* so !array->type and !array->index_type are not allowed.
|
|
*/
|
|
if (!array->type || !BTF_TYPE_ID_VALID(array->type)) {
|
|
btf_verifier_log_type(env, t, "Invalid elem");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!array->index_type || !BTF_TYPE_ID_VALID(array->index_type)) {
|
|
btf_verifier_log_type(env, t, "Invalid index");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static int btf_array_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_array *array = btf_type_array(v->t);
|
|
const struct btf_type *elem_type, *index_type;
|
|
u32 elem_type_id, index_type_id;
|
|
struct btf *btf = env->btf;
|
|
u32 elem_size;
|
|
|
|
/* Check array->index_type */
|
|
index_type_id = array->index_type;
|
|
index_type = btf_type_by_id(btf, index_type_id);
|
|
if (btf_type_nosize_or_null(index_type) ||
|
|
btf_type_is_resolve_source_only(index_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid index");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, index_type) &&
|
|
!env_type_is_resolved(env, index_type_id))
|
|
return env_stack_push(env, index_type, index_type_id);
|
|
|
|
index_type = btf_type_id_size(btf, &index_type_id, NULL);
|
|
if (!index_type || !btf_type_is_int(index_type) ||
|
|
!btf_type_int_is_regular(index_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid index");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check array->type */
|
|
elem_type_id = array->type;
|
|
elem_type = btf_type_by_id(btf, elem_type_id);
|
|
if (btf_type_nosize_or_null(elem_type) ||
|
|
btf_type_is_resolve_source_only(elem_type)) {
|
|
btf_verifier_log_type(env, v->t,
|
|
"Invalid elem");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, elem_type) &&
|
|
!env_type_is_resolved(env, elem_type_id))
|
|
return env_stack_push(env, elem_type, elem_type_id);
|
|
|
|
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
|
|
if (!elem_type) {
|
|
btf_verifier_log_type(env, v->t, "Invalid elem");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_is_int(elem_type) && !btf_type_int_is_regular(elem_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid array of int");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (array->nelems && elem_size > U32_MAX / array->nelems) {
|
|
btf_verifier_log_type(env, v->t,
|
|
"Array size overflows U32_MAX");
|
|
return -EINVAL;
|
|
}
|
|
|
|
env_stack_pop_resolved(env, elem_type_id, elem_size * array->nelems);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_array_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
const struct btf_array *array = btf_type_array(t);
|
|
|
|
btf_verifier_log(env, "type_id=%u index_type_id=%u nr_elems=%u",
|
|
array->type, array->index_type, array->nelems);
|
|
}
|
|
|
|
static void __btf_array_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_array *array = btf_type_array(t);
|
|
const struct btf_kind_operations *elem_ops;
|
|
const struct btf_type *elem_type;
|
|
u32 i, elem_size = 0, elem_type_id;
|
|
u16 encoding = 0;
|
|
|
|
elem_type_id = array->type;
|
|
elem_type = btf_type_skip_modifiers(btf, elem_type_id, NULL);
|
|
if (elem_type && btf_type_has_size(elem_type))
|
|
elem_size = elem_type->size;
|
|
|
|
if (elem_type && btf_type_is_int(elem_type)) {
|
|
u32 int_type = btf_type_int(elem_type);
|
|
|
|
encoding = BTF_INT_ENCODING(int_type);
|
|
|
|
/*
|
|
* BTF_INT_CHAR encoding never seems to be set for
|
|
* char arrays, so if size is 1 and element is
|
|
* printable as a char, we'll do that.
|
|
*/
|
|
if (elem_size == 1)
|
|
encoding = BTF_INT_CHAR;
|
|
}
|
|
|
|
if (!btf_show_start_array_type(show, t, type_id, encoding, data))
|
|
return;
|
|
|
|
if (!elem_type)
|
|
goto out;
|
|
elem_ops = btf_type_ops(elem_type);
|
|
|
|
for (i = 0; i < array->nelems; i++) {
|
|
|
|
btf_show_start_array_member(show);
|
|
|
|
elem_ops->show(btf, elem_type, elem_type_id, data,
|
|
bits_offset, show);
|
|
data += elem_size;
|
|
|
|
btf_show_end_array_member(show);
|
|
|
|
if (show->state.array_terminated)
|
|
break;
|
|
}
|
|
out:
|
|
btf_show_end_array_type(show);
|
|
}
|
|
|
|
static void btf_array_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_member *m = show->state.member;
|
|
|
|
/*
|
|
* First check if any members would be shown (are non-zero).
|
|
* See comments above "struct btf_show" definition for more
|
|
* details on how this works at a high-level.
|
|
*/
|
|
if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
|
|
if (!show->state.depth_check) {
|
|
show->state.depth_check = show->state.depth + 1;
|
|
show->state.depth_to_show = 0;
|
|
}
|
|
__btf_array_show(btf, t, type_id, data, bits_offset, show);
|
|
show->state.member = m;
|
|
|
|
if (show->state.depth_check != show->state.depth + 1)
|
|
return;
|
|
show->state.depth_check = 0;
|
|
|
|
if (show->state.depth_to_show <= show->state.depth)
|
|
return;
|
|
/*
|
|
* Reaching here indicates we have recursed and found
|
|
* non-zero array member(s).
|
|
*/
|
|
}
|
|
__btf_array_show(btf, t, type_id, data, bits_offset, show);
|
|
}
|
|
|
|
static const struct btf_kind_operations array_ops = {
|
|
.check_meta = btf_array_check_meta,
|
|
.resolve = btf_array_resolve,
|
|
.check_member = btf_array_check_member,
|
|
.check_kflag_member = btf_generic_check_kflag_member,
|
|
.log_details = btf_array_log,
|
|
.show = btf_array_show,
|
|
};
|
|
|
|
static int btf_struct_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off = member->offset;
|
|
u32 struct_size, bytes_offset;
|
|
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct_size = struct_type->size;
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
if (struct_size - bytes_offset < member_type->size) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 btf_struct_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
bool is_union = BTF_INFO_KIND(t->info) == BTF_KIND_UNION;
|
|
const struct btf_member *member;
|
|
u32 meta_needed, last_offset;
|
|
struct btf *btf = env->btf;
|
|
u32 struct_size = t->size;
|
|
u32 offset;
|
|
u16 i;
|
|
|
|
meta_needed = btf_type_vlen(t) * sizeof(*member);
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* struct type either no name or a valid one */
|
|
if (t->name_off &&
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
last_offset = 0;
|
|
for_each_member(i, t, member) {
|
|
if (!btf_name_offset_valid(btf, member->name_off)) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Invalid member name_offset:%u",
|
|
member->name_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* struct member either no name or a valid one */
|
|
if (member->name_off &&
|
|
!btf_name_valid_identifier(btf, member->name_off)) {
|
|
btf_verifier_log_member(env, t, member, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
/* A member cannot be in type void */
|
|
if (!member->type || !BTF_TYPE_ID_VALID(member->type)) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
offset = __btf_member_bit_offset(t, member);
|
|
if (is_union && offset) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Invalid member bits_offset");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* ">" instead of ">=" because the last member could be
|
|
* "char a[0];"
|
|
*/
|
|
if (last_offset > offset) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Invalid member bits_offset");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (BITS_ROUNDUP_BYTES(offset) > struct_size) {
|
|
btf_verifier_log_member(env, t, member,
|
|
"Member bits_offset exceeds its struct size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_member(env, t, member, NULL);
|
|
last_offset = offset;
|
|
}
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static int btf_struct_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_member *member;
|
|
int err;
|
|
u16 i;
|
|
|
|
/* Before continue resolving the next_member,
|
|
* ensure the last member is indeed resolved to a
|
|
* type with size info.
|
|
*/
|
|
if (v->next_member) {
|
|
const struct btf_type *last_member_type;
|
|
const struct btf_member *last_member;
|
|
u32 last_member_type_id;
|
|
|
|
last_member = btf_type_member(v->t) + v->next_member - 1;
|
|
last_member_type_id = last_member->type;
|
|
if (WARN_ON_ONCE(!env_type_is_resolved(env,
|
|
last_member_type_id)))
|
|
return -EINVAL;
|
|
|
|
last_member_type = btf_type_by_id(env->btf,
|
|
last_member_type_id);
|
|
if (btf_type_kflag(v->t))
|
|
err = btf_type_ops(last_member_type)->check_kflag_member(env, v->t,
|
|
last_member,
|
|
last_member_type);
|
|
else
|
|
err = btf_type_ops(last_member_type)->check_member(env, v->t,
|
|
last_member,
|
|
last_member_type);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
for_each_member_from(i, v->next_member, v->t, member) {
|
|
u32 member_type_id = member->type;
|
|
const struct btf_type *member_type = btf_type_by_id(env->btf,
|
|
member_type_id);
|
|
|
|
if (btf_type_nosize_or_null(member_type) ||
|
|
btf_type_is_resolve_source_only(member_type)) {
|
|
btf_verifier_log_member(env, v->t, member,
|
|
"Invalid member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, member_type) &&
|
|
!env_type_is_resolved(env, member_type_id)) {
|
|
env_stack_set_next_member(env, i + 1);
|
|
return env_stack_push(env, member_type, member_type_id);
|
|
}
|
|
|
|
if (btf_type_kflag(v->t))
|
|
err = btf_type_ops(member_type)->check_kflag_member(env, v->t,
|
|
member,
|
|
member_type);
|
|
else
|
|
err = btf_type_ops(member_type)->check_member(env, v->t,
|
|
member,
|
|
member_type);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
env_stack_pop_resolved(env, 0, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_struct_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
|
|
}
|
|
|
|
enum {
|
|
BTF_FIELD_IGNORE = 0,
|
|
BTF_FIELD_FOUND = 1,
|
|
};
|
|
|
|
struct btf_field_info {
|
|
enum btf_field_type type;
|
|
u32 off;
|
|
union {
|
|
struct {
|
|
u32 type_id;
|
|
} kptr;
|
|
struct {
|
|
const char *node_name;
|
|
u32 value_btf_id;
|
|
} graph_root;
|
|
};
|
|
};
|
|
|
|
static int btf_find_struct(const struct btf *btf, const struct btf_type *t,
|
|
u32 off, int sz, enum btf_field_type field_type,
|
|
struct btf_field_info *info)
|
|
{
|
|
if (!__btf_type_is_struct(t))
|
|
return BTF_FIELD_IGNORE;
|
|
if (t->size != sz)
|
|
return BTF_FIELD_IGNORE;
|
|
info->type = field_type;
|
|
info->off = off;
|
|
return BTF_FIELD_FOUND;
|
|
}
|
|
|
|
static int btf_find_kptr(const struct btf *btf, const struct btf_type *t,
|
|
u32 off, int sz, struct btf_field_info *info, u32 field_mask)
|
|
{
|
|
enum btf_field_type type;
|
|
u32 res_id;
|
|
|
|
/* Permit modifiers on the pointer itself */
|
|
if (btf_type_is_volatile(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
/* For PTR, sz is always == 8 */
|
|
if (!btf_type_is_ptr(t))
|
|
return BTF_FIELD_IGNORE;
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
if (!btf_type_is_type_tag(t))
|
|
return BTF_FIELD_IGNORE;
|
|
/* Reject extra tags */
|
|
if (btf_type_is_type_tag(btf_type_by_id(btf, t->type)))
|
|
return -EINVAL;
|
|
if (!strcmp("kptr_untrusted", __btf_name_by_offset(btf, t->name_off)))
|
|
type = BPF_KPTR_UNREF;
|
|
else if (!strcmp("kptr", __btf_name_by_offset(btf, t->name_off)))
|
|
type = BPF_KPTR_REF;
|
|
else if (!strcmp("percpu_kptr", __btf_name_by_offset(btf, t->name_off)))
|
|
type = BPF_KPTR_PERCPU;
|
|
else if (!strcmp("uptr", __btf_name_by_offset(btf, t->name_off)))
|
|
type = BPF_UPTR;
|
|
else
|
|
return -EINVAL;
|
|
|
|
if (!(type & field_mask))
|
|
return BTF_FIELD_IGNORE;
|
|
|
|
/* Get the base type */
|
|
t = btf_type_skip_modifiers(btf, t->type, &res_id);
|
|
/* Only pointer to struct is allowed */
|
|
if (!__btf_type_is_struct(t))
|
|
return -EINVAL;
|
|
|
|
info->type = type;
|
|
info->off = off;
|
|
info->kptr.type_id = res_id;
|
|
return BTF_FIELD_FOUND;
|
|
}
|
|
|
|
int btf_find_next_decl_tag(const struct btf *btf, const struct btf_type *pt,
|
|
int comp_idx, const char *tag_key, int last_id)
|
|
{
|
|
int len = strlen(tag_key);
|
|
int i, n;
|
|
|
|
for (i = last_id + 1, n = btf_nr_types(btf); i < n; i++) {
|
|
const struct btf_type *t = btf_type_by_id(btf, i);
|
|
|
|
if (!btf_type_is_decl_tag(t))
|
|
continue;
|
|
if (pt != btf_type_by_id(btf, t->type))
|
|
continue;
|
|
if (btf_type_decl_tag(t)->component_idx != comp_idx)
|
|
continue;
|
|
if (strncmp(__btf_name_by_offset(btf, t->name_off), tag_key, len))
|
|
continue;
|
|
return i;
|
|
}
|
|
return -ENOENT;
|
|
}
|
|
|
|
const char *btf_find_decl_tag_value(const struct btf *btf, const struct btf_type *pt,
|
|
int comp_idx, const char *tag_key)
|
|
{
|
|
const char *value = NULL;
|
|
const struct btf_type *t;
|
|
int len, id;
|
|
|
|
id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, 0);
|
|
if (id < 0)
|
|
return ERR_PTR(id);
|
|
|
|
t = btf_type_by_id(btf, id);
|
|
len = strlen(tag_key);
|
|
value = __btf_name_by_offset(btf, t->name_off) + len;
|
|
|
|
/* Prevent duplicate entries for same type */
|
|
id = btf_find_next_decl_tag(btf, pt, comp_idx, tag_key, id);
|
|
if (id >= 0)
|
|
return ERR_PTR(-EEXIST);
|
|
|
|
return value;
|
|
}
|
|
|
|
static int
|
|
btf_find_graph_root(const struct btf *btf, const struct btf_type *pt,
|
|
const struct btf_type *t, int comp_idx, u32 off,
|
|
int sz, struct btf_field_info *info,
|
|
enum btf_field_type head_type)
|
|
{
|
|
const char *node_field_name;
|
|
const char *value_type;
|
|
s32 id;
|
|
|
|
if (!__btf_type_is_struct(t))
|
|
return BTF_FIELD_IGNORE;
|
|
if (t->size != sz)
|
|
return BTF_FIELD_IGNORE;
|
|
value_type = btf_find_decl_tag_value(btf, pt, comp_idx, "contains:");
|
|
if (IS_ERR(value_type))
|
|
return -EINVAL;
|
|
node_field_name = strstr(value_type, ":");
|
|
if (!node_field_name)
|
|
return -EINVAL;
|
|
value_type = kstrndup(value_type, node_field_name - value_type, GFP_KERNEL | __GFP_NOWARN);
|
|
if (!value_type)
|
|
return -ENOMEM;
|
|
id = btf_find_by_name_kind(btf, value_type, BTF_KIND_STRUCT);
|
|
kfree(value_type);
|
|
if (id < 0)
|
|
return id;
|
|
node_field_name++;
|
|
if (str_is_empty(node_field_name))
|
|
return -EINVAL;
|
|
info->type = head_type;
|
|
info->off = off;
|
|
info->graph_root.value_btf_id = id;
|
|
info->graph_root.node_name = node_field_name;
|
|
return BTF_FIELD_FOUND;
|
|
}
|
|
|
|
#define field_mask_test_name(field_type, field_type_str) \
|
|
if (field_mask & field_type && !strcmp(name, field_type_str)) { \
|
|
type = field_type; \
|
|
goto end; \
|
|
}
|
|
|
|
static int btf_get_field_type(const struct btf *btf, const struct btf_type *var_type,
|
|
u32 field_mask, u32 *seen_mask,
|
|
int *align, int *sz)
|
|
{
|
|
int type = 0;
|
|
const char *name = __btf_name_by_offset(btf, var_type->name_off);
|
|
|
|
if (field_mask & BPF_SPIN_LOCK) {
|
|
if (!strcmp(name, "bpf_spin_lock")) {
|
|
if (*seen_mask & BPF_SPIN_LOCK)
|
|
return -E2BIG;
|
|
*seen_mask |= BPF_SPIN_LOCK;
|
|
type = BPF_SPIN_LOCK;
|
|
goto end;
|
|
}
|
|
}
|
|
if (field_mask & BPF_TIMER) {
|
|
if (!strcmp(name, "bpf_timer")) {
|
|
if (*seen_mask & BPF_TIMER)
|
|
return -E2BIG;
|
|
*seen_mask |= BPF_TIMER;
|
|
type = BPF_TIMER;
|
|
goto end;
|
|
}
|
|
}
|
|
if (field_mask & BPF_WORKQUEUE) {
|
|
if (!strcmp(name, "bpf_wq")) {
|
|
if (*seen_mask & BPF_WORKQUEUE)
|
|
return -E2BIG;
|
|
*seen_mask |= BPF_WORKQUEUE;
|
|
type = BPF_WORKQUEUE;
|
|
goto end;
|
|
}
|
|
}
|
|
field_mask_test_name(BPF_LIST_HEAD, "bpf_list_head");
|
|
field_mask_test_name(BPF_LIST_NODE, "bpf_list_node");
|
|
field_mask_test_name(BPF_RB_ROOT, "bpf_rb_root");
|
|
field_mask_test_name(BPF_RB_NODE, "bpf_rb_node");
|
|
field_mask_test_name(BPF_REFCOUNT, "bpf_refcount");
|
|
|
|
/* Only return BPF_KPTR when all other types with matchable names fail */
|
|
if (field_mask & (BPF_KPTR | BPF_UPTR) && !__btf_type_is_struct(var_type)) {
|
|
type = BPF_KPTR_REF;
|
|
goto end;
|
|
}
|
|
return 0;
|
|
end:
|
|
*sz = btf_field_type_size(type);
|
|
*align = btf_field_type_align(type);
|
|
return type;
|
|
}
|
|
|
|
#undef field_mask_test_name
|
|
|
|
/* Repeat a number of fields for a specified number of times.
|
|
*
|
|
* Copy the fields starting from the first field and repeat them for
|
|
* repeat_cnt times. The fields are repeated by adding the offset of each
|
|
* field with
|
|
* (i + 1) * elem_size
|
|
* where i is the repeat index and elem_size is the size of an element.
|
|
*/
|
|
static int btf_repeat_fields(struct btf_field_info *info, int info_cnt,
|
|
u32 field_cnt, u32 repeat_cnt, u32 elem_size)
|
|
{
|
|
u32 i, j;
|
|
u32 cur;
|
|
|
|
/* Ensure not repeating fields that should not be repeated. */
|
|
for (i = 0; i < field_cnt; i++) {
|
|
switch (info[i].type) {
|
|
case BPF_KPTR_UNREF:
|
|
case BPF_KPTR_REF:
|
|
case BPF_KPTR_PERCPU:
|
|
case BPF_UPTR:
|
|
case BPF_LIST_HEAD:
|
|
case BPF_RB_ROOT:
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/* The type of struct size or variable size is u32,
|
|
* so the multiplication will not overflow.
|
|
*/
|
|
if (field_cnt * (repeat_cnt + 1) > info_cnt)
|
|
return -E2BIG;
|
|
|
|
cur = field_cnt;
|
|
for (i = 0; i < repeat_cnt; i++) {
|
|
memcpy(&info[cur], &info[0], field_cnt * sizeof(info[0]));
|
|
for (j = 0; j < field_cnt; j++)
|
|
info[cur++].off += (i + 1) * elem_size;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_find_struct_field(const struct btf *btf,
|
|
const struct btf_type *t, u32 field_mask,
|
|
struct btf_field_info *info, int info_cnt,
|
|
u32 level);
|
|
|
|
/* Find special fields in the struct type of a field.
|
|
*
|
|
* This function is used to find fields of special types that is not a
|
|
* global variable or a direct field of a struct type. It also handles the
|
|
* repetition if it is the element type of an array.
|
|
*/
|
|
static int btf_find_nested_struct(const struct btf *btf, const struct btf_type *t,
|
|
u32 off, u32 nelems,
|
|
u32 field_mask, struct btf_field_info *info,
|
|
int info_cnt, u32 level)
|
|
{
|
|
int ret, err, i;
|
|
|
|
level++;
|
|
if (level >= MAX_RESOLVE_DEPTH)
|
|
return -E2BIG;
|
|
|
|
ret = btf_find_struct_field(btf, t, field_mask, info, info_cnt, level);
|
|
|
|
if (ret <= 0)
|
|
return ret;
|
|
|
|
/* Shift the offsets of the nested struct fields to the offsets
|
|
* related to the container.
|
|
*/
|
|
for (i = 0; i < ret; i++)
|
|
info[i].off += off;
|
|
|
|
if (nelems > 1) {
|
|
err = btf_repeat_fields(info, info_cnt, ret, nelems - 1, t->size);
|
|
if (err == 0)
|
|
ret *= nelems;
|
|
else
|
|
ret = err;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int btf_find_field_one(const struct btf *btf,
|
|
const struct btf_type *var,
|
|
const struct btf_type *var_type,
|
|
int var_idx,
|
|
u32 off, u32 expected_size,
|
|
u32 field_mask, u32 *seen_mask,
|
|
struct btf_field_info *info, int info_cnt,
|
|
u32 level)
|
|
{
|
|
int ret, align, sz, field_type;
|
|
struct btf_field_info tmp;
|
|
const struct btf_array *array;
|
|
u32 i, nelems = 1;
|
|
|
|
/* Walk into array types to find the element type and the number of
|
|
* elements in the (flattened) array.
|
|
*/
|
|
for (i = 0; i < MAX_RESOLVE_DEPTH && btf_type_is_array(var_type); i++) {
|
|
array = btf_array(var_type);
|
|
nelems *= array->nelems;
|
|
var_type = btf_type_by_id(btf, array->type);
|
|
}
|
|
if (i == MAX_RESOLVE_DEPTH)
|
|
return -E2BIG;
|
|
if (nelems == 0)
|
|
return 0;
|
|
|
|
field_type = btf_get_field_type(btf, var_type,
|
|
field_mask, seen_mask, &align, &sz);
|
|
/* Look into variables of struct types */
|
|
if (!field_type && __btf_type_is_struct(var_type)) {
|
|
sz = var_type->size;
|
|
if (expected_size && expected_size != sz * nelems)
|
|
return 0;
|
|
ret = btf_find_nested_struct(btf, var_type, off, nelems, field_mask,
|
|
&info[0], info_cnt, level);
|
|
return ret;
|
|
}
|
|
|
|
if (field_type == 0)
|
|
return 0;
|
|
if (field_type < 0)
|
|
return field_type;
|
|
|
|
if (expected_size && expected_size != sz * nelems)
|
|
return 0;
|
|
if (off % align)
|
|
return 0;
|
|
|
|
switch (field_type) {
|
|
case BPF_SPIN_LOCK:
|
|
case BPF_TIMER:
|
|
case BPF_WORKQUEUE:
|
|
case BPF_LIST_NODE:
|
|
case BPF_RB_NODE:
|
|
case BPF_REFCOUNT:
|
|
ret = btf_find_struct(btf, var_type, off, sz, field_type,
|
|
info_cnt ? &info[0] : &tmp);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case BPF_KPTR_UNREF:
|
|
case BPF_KPTR_REF:
|
|
case BPF_KPTR_PERCPU:
|
|
case BPF_UPTR:
|
|
ret = btf_find_kptr(btf, var_type, off, sz,
|
|
info_cnt ? &info[0] : &tmp, field_mask);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
case BPF_LIST_HEAD:
|
|
case BPF_RB_ROOT:
|
|
ret = btf_find_graph_root(btf, var, var_type,
|
|
var_idx, off, sz,
|
|
info_cnt ? &info[0] : &tmp,
|
|
field_type);
|
|
if (ret < 0)
|
|
return ret;
|
|
break;
|
|
default:
|
|
return -EFAULT;
|
|
}
|
|
|
|
if (ret == BTF_FIELD_IGNORE)
|
|
return 0;
|
|
if (!info_cnt)
|
|
return -E2BIG;
|
|
if (nelems > 1) {
|
|
ret = btf_repeat_fields(info, info_cnt, 1, nelems - 1, sz);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
return nelems;
|
|
}
|
|
|
|
static int btf_find_struct_field(const struct btf *btf,
|
|
const struct btf_type *t, u32 field_mask,
|
|
struct btf_field_info *info, int info_cnt,
|
|
u32 level)
|
|
{
|
|
int ret, idx = 0;
|
|
const struct btf_member *member;
|
|
u32 i, off, seen_mask = 0;
|
|
|
|
for_each_member(i, t, member) {
|
|
const struct btf_type *member_type = btf_type_by_id(btf,
|
|
member->type);
|
|
|
|
off = __btf_member_bit_offset(t, member);
|
|
if (off % 8)
|
|
/* valid C code cannot generate such BTF */
|
|
return -EINVAL;
|
|
off /= 8;
|
|
|
|
ret = btf_find_field_one(btf, t, member_type, i,
|
|
off, 0,
|
|
field_mask, &seen_mask,
|
|
&info[idx], info_cnt - idx, level);
|
|
if (ret < 0)
|
|
return ret;
|
|
idx += ret;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
static int btf_find_datasec_var(const struct btf *btf, const struct btf_type *t,
|
|
u32 field_mask, struct btf_field_info *info,
|
|
int info_cnt, u32 level)
|
|
{
|
|
int ret, idx = 0;
|
|
const struct btf_var_secinfo *vsi;
|
|
u32 i, off, seen_mask = 0;
|
|
|
|
for_each_vsi(i, t, vsi) {
|
|
const struct btf_type *var = btf_type_by_id(btf, vsi->type);
|
|
const struct btf_type *var_type = btf_type_by_id(btf, var->type);
|
|
|
|
off = vsi->offset;
|
|
ret = btf_find_field_one(btf, var, var_type, -1, off, vsi->size,
|
|
field_mask, &seen_mask,
|
|
&info[idx], info_cnt - idx,
|
|
level);
|
|
if (ret < 0)
|
|
return ret;
|
|
idx += ret;
|
|
}
|
|
return idx;
|
|
}
|
|
|
|
static int btf_find_field(const struct btf *btf, const struct btf_type *t,
|
|
u32 field_mask, struct btf_field_info *info,
|
|
int info_cnt)
|
|
{
|
|
if (__btf_type_is_struct(t))
|
|
return btf_find_struct_field(btf, t, field_mask, info, info_cnt, 0);
|
|
else if (btf_type_is_datasec(t))
|
|
return btf_find_datasec_var(btf, t, field_mask, info, info_cnt, 0);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Callers have to ensure the life cycle of btf if it is program BTF */
|
|
static int btf_parse_kptr(const struct btf *btf, struct btf_field *field,
|
|
struct btf_field_info *info)
|
|
{
|
|
struct module *mod = NULL;
|
|
const struct btf_type *t;
|
|
/* If a matching btf type is found in kernel or module BTFs, kptr_ref
|
|
* is that BTF, otherwise it's program BTF
|
|
*/
|
|
struct btf *kptr_btf;
|
|
int ret;
|
|
s32 id;
|
|
|
|
/* Find type in map BTF, and use it to look up the matching type
|
|
* in vmlinux or module BTFs, by name and kind.
|
|
*/
|
|
t = btf_type_by_id(btf, info->kptr.type_id);
|
|
id = bpf_find_btf_id(__btf_name_by_offset(btf, t->name_off), BTF_INFO_KIND(t->info),
|
|
&kptr_btf);
|
|
if (id == -ENOENT) {
|
|
/* btf_parse_kptr should only be called w/ btf = program BTF */
|
|
WARN_ON_ONCE(btf_is_kernel(btf));
|
|
|
|
/* Type exists only in program BTF. Assume that it's a MEM_ALLOC
|
|
* kptr allocated via bpf_obj_new
|
|
*/
|
|
field->kptr.dtor = NULL;
|
|
id = info->kptr.type_id;
|
|
kptr_btf = (struct btf *)btf;
|
|
goto found_dtor;
|
|
}
|
|
if (id < 0)
|
|
return id;
|
|
|
|
/* Find and stash the function pointer for the destruction function that
|
|
* needs to be eventually invoked from the map free path.
|
|
*/
|
|
if (info->type == BPF_KPTR_REF) {
|
|
const struct btf_type *dtor_func;
|
|
const char *dtor_func_name;
|
|
unsigned long addr;
|
|
s32 dtor_btf_id;
|
|
|
|
/* This call also serves as a whitelist of allowed objects that
|
|
* can be used as a referenced pointer and be stored in a map at
|
|
* the same time.
|
|
*/
|
|
dtor_btf_id = btf_find_dtor_kfunc(kptr_btf, id);
|
|
if (dtor_btf_id < 0) {
|
|
ret = dtor_btf_id;
|
|
goto end_btf;
|
|
}
|
|
|
|
dtor_func = btf_type_by_id(kptr_btf, dtor_btf_id);
|
|
if (!dtor_func) {
|
|
ret = -ENOENT;
|
|
goto end_btf;
|
|
}
|
|
|
|
if (btf_is_module(kptr_btf)) {
|
|
mod = btf_try_get_module(kptr_btf);
|
|
if (!mod) {
|
|
ret = -ENXIO;
|
|
goto end_btf;
|
|
}
|
|
}
|
|
|
|
/* We already verified dtor_func to be btf_type_is_func
|
|
* in register_btf_id_dtor_kfuncs.
|
|
*/
|
|
dtor_func_name = __btf_name_by_offset(kptr_btf, dtor_func->name_off);
|
|
addr = kallsyms_lookup_name(dtor_func_name);
|
|
if (!addr) {
|
|
ret = -EINVAL;
|
|
goto end_mod;
|
|
}
|
|
field->kptr.dtor = (void *)addr;
|
|
}
|
|
|
|
found_dtor:
|
|
field->kptr.btf_id = id;
|
|
field->kptr.btf = kptr_btf;
|
|
field->kptr.module = mod;
|
|
return 0;
|
|
end_mod:
|
|
module_put(mod);
|
|
end_btf:
|
|
btf_put(kptr_btf);
|
|
return ret;
|
|
}
|
|
|
|
static int btf_parse_graph_root(const struct btf *btf,
|
|
struct btf_field *field,
|
|
struct btf_field_info *info,
|
|
const char *node_type_name,
|
|
size_t node_type_align)
|
|
{
|
|
const struct btf_type *t, *n = NULL;
|
|
const struct btf_member *member;
|
|
u32 offset;
|
|
int i;
|
|
|
|
t = btf_type_by_id(btf, info->graph_root.value_btf_id);
|
|
/* We've already checked that value_btf_id is a struct type. We
|
|
* just need to figure out the offset of the list_node, and
|
|
* verify its type.
|
|
*/
|
|
for_each_member(i, t, member) {
|
|
if (strcmp(info->graph_root.node_name,
|
|
__btf_name_by_offset(btf, member->name_off)))
|
|
continue;
|
|
/* Invalid BTF, two members with same name */
|
|
if (n)
|
|
return -EINVAL;
|
|
n = btf_type_by_id(btf, member->type);
|
|
if (!__btf_type_is_struct(n))
|
|
return -EINVAL;
|
|
if (strcmp(node_type_name, __btf_name_by_offset(btf, n->name_off)))
|
|
return -EINVAL;
|
|
offset = __btf_member_bit_offset(n, member);
|
|
if (offset % 8)
|
|
return -EINVAL;
|
|
offset /= 8;
|
|
if (offset % node_type_align)
|
|
return -EINVAL;
|
|
|
|
field->graph_root.btf = (struct btf *)btf;
|
|
field->graph_root.value_btf_id = info->graph_root.value_btf_id;
|
|
field->graph_root.node_offset = offset;
|
|
}
|
|
if (!n)
|
|
return -ENOENT;
|
|
return 0;
|
|
}
|
|
|
|
static int btf_parse_list_head(const struct btf *btf, struct btf_field *field,
|
|
struct btf_field_info *info)
|
|
{
|
|
return btf_parse_graph_root(btf, field, info, "bpf_list_node",
|
|
__alignof__(struct bpf_list_node));
|
|
}
|
|
|
|
static int btf_parse_rb_root(const struct btf *btf, struct btf_field *field,
|
|
struct btf_field_info *info)
|
|
{
|
|
return btf_parse_graph_root(btf, field, info, "bpf_rb_node",
|
|
__alignof__(struct bpf_rb_node));
|
|
}
|
|
|
|
static int btf_field_cmp(const void *_a, const void *_b, const void *priv)
|
|
{
|
|
const struct btf_field *a = (const struct btf_field *)_a;
|
|
const struct btf_field *b = (const struct btf_field *)_b;
|
|
|
|
if (a->offset < b->offset)
|
|
return -1;
|
|
else if (a->offset > b->offset)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
struct btf_record *btf_parse_fields(const struct btf *btf, const struct btf_type *t,
|
|
u32 field_mask, u32 value_size)
|
|
{
|
|
struct btf_field_info info_arr[BTF_FIELDS_MAX];
|
|
u32 next_off = 0, field_type_size;
|
|
struct btf_record *rec;
|
|
int ret, i, cnt;
|
|
|
|
ret = btf_find_field(btf, t, field_mask, info_arr, ARRAY_SIZE(info_arr));
|
|
if (ret < 0)
|
|
return ERR_PTR(ret);
|
|
if (!ret)
|
|
return NULL;
|
|
|
|
cnt = ret;
|
|
/* This needs to be kzalloc to zero out padding and unused fields, see
|
|
* comment in btf_record_equal.
|
|
*/
|
|
rec = kzalloc(offsetof(struct btf_record, fields[cnt]), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!rec)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
rec->spin_lock_off = -EINVAL;
|
|
rec->timer_off = -EINVAL;
|
|
rec->wq_off = -EINVAL;
|
|
rec->refcount_off = -EINVAL;
|
|
for (i = 0; i < cnt; i++) {
|
|
field_type_size = btf_field_type_size(info_arr[i].type);
|
|
if (info_arr[i].off + field_type_size > value_size) {
|
|
WARN_ONCE(1, "verifier bug off %d size %d", info_arr[i].off, value_size);
|
|
ret = -EFAULT;
|
|
goto end;
|
|
}
|
|
if (info_arr[i].off < next_off) {
|
|
ret = -EEXIST;
|
|
goto end;
|
|
}
|
|
next_off = info_arr[i].off + field_type_size;
|
|
|
|
rec->field_mask |= info_arr[i].type;
|
|
rec->fields[i].offset = info_arr[i].off;
|
|
rec->fields[i].type = info_arr[i].type;
|
|
rec->fields[i].size = field_type_size;
|
|
|
|
switch (info_arr[i].type) {
|
|
case BPF_SPIN_LOCK:
|
|
WARN_ON_ONCE(rec->spin_lock_off >= 0);
|
|
/* Cache offset for faster lookup at runtime */
|
|
rec->spin_lock_off = rec->fields[i].offset;
|
|
break;
|
|
case BPF_TIMER:
|
|
WARN_ON_ONCE(rec->timer_off >= 0);
|
|
/* Cache offset for faster lookup at runtime */
|
|
rec->timer_off = rec->fields[i].offset;
|
|
break;
|
|
case BPF_WORKQUEUE:
|
|
WARN_ON_ONCE(rec->wq_off >= 0);
|
|
/* Cache offset for faster lookup at runtime */
|
|
rec->wq_off = rec->fields[i].offset;
|
|
break;
|
|
case BPF_REFCOUNT:
|
|
WARN_ON_ONCE(rec->refcount_off >= 0);
|
|
/* Cache offset for faster lookup at runtime */
|
|
rec->refcount_off = rec->fields[i].offset;
|
|
break;
|
|
case BPF_KPTR_UNREF:
|
|
case BPF_KPTR_REF:
|
|
case BPF_KPTR_PERCPU:
|
|
case BPF_UPTR:
|
|
ret = btf_parse_kptr(btf, &rec->fields[i], &info_arr[i]);
|
|
if (ret < 0)
|
|
goto end;
|
|
break;
|
|
case BPF_LIST_HEAD:
|
|
ret = btf_parse_list_head(btf, &rec->fields[i], &info_arr[i]);
|
|
if (ret < 0)
|
|
goto end;
|
|
break;
|
|
case BPF_RB_ROOT:
|
|
ret = btf_parse_rb_root(btf, &rec->fields[i], &info_arr[i]);
|
|
if (ret < 0)
|
|
goto end;
|
|
break;
|
|
case BPF_LIST_NODE:
|
|
case BPF_RB_NODE:
|
|
break;
|
|
default:
|
|
ret = -EFAULT;
|
|
goto end;
|
|
}
|
|
rec->cnt++;
|
|
}
|
|
|
|
/* bpf_{list_head, rb_node} require bpf_spin_lock */
|
|
if ((btf_record_has_field(rec, BPF_LIST_HEAD) ||
|
|
btf_record_has_field(rec, BPF_RB_ROOT)) && rec->spin_lock_off < 0) {
|
|
ret = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
if (rec->refcount_off < 0 &&
|
|
btf_record_has_field(rec, BPF_LIST_NODE) &&
|
|
btf_record_has_field(rec, BPF_RB_NODE)) {
|
|
ret = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
sort_r(rec->fields, rec->cnt, sizeof(struct btf_field), btf_field_cmp,
|
|
NULL, rec);
|
|
|
|
return rec;
|
|
end:
|
|
btf_record_free(rec);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
int btf_check_and_fixup_fields(const struct btf *btf, struct btf_record *rec)
|
|
{
|
|
int i;
|
|
|
|
/* There are three types that signify ownership of some other type:
|
|
* kptr_ref, bpf_list_head, bpf_rb_root.
|
|
* kptr_ref only supports storing kernel types, which can't store
|
|
* references to program allocated local types.
|
|
*
|
|
* Hence we only need to ensure that bpf_{list_head,rb_root} ownership
|
|
* does not form cycles.
|
|
*/
|
|
if (IS_ERR_OR_NULL(rec) || !(rec->field_mask & (BPF_GRAPH_ROOT | BPF_UPTR)))
|
|
return 0;
|
|
for (i = 0; i < rec->cnt; i++) {
|
|
struct btf_struct_meta *meta;
|
|
const struct btf_type *t;
|
|
u32 btf_id;
|
|
|
|
if (rec->fields[i].type == BPF_UPTR) {
|
|
/* The uptr only supports pinning one page and cannot
|
|
* point to a kernel struct
|
|
*/
|
|
if (btf_is_kernel(rec->fields[i].kptr.btf))
|
|
return -EINVAL;
|
|
t = btf_type_by_id(rec->fields[i].kptr.btf,
|
|
rec->fields[i].kptr.btf_id);
|
|
if (!t->size)
|
|
return -EINVAL;
|
|
if (t->size > PAGE_SIZE)
|
|
return -E2BIG;
|
|
continue;
|
|
}
|
|
|
|
if (!(rec->fields[i].type & BPF_GRAPH_ROOT))
|
|
continue;
|
|
btf_id = rec->fields[i].graph_root.value_btf_id;
|
|
meta = btf_find_struct_meta(btf, btf_id);
|
|
if (!meta)
|
|
return -EFAULT;
|
|
rec->fields[i].graph_root.value_rec = meta->record;
|
|
|
|
/* We need to set value_rec for all root types, but no need
|
|
* to check ownership cycle for a type unless it's also a
|
|
* node type.
|
|
*/
|
|
if (!(rec->field_mask & BPF_GRAPH_NODE))
|
|
continue;
|
|
|
|
/* We need to ensure ownership acyclicity among all types. The
|
|
* proper way to do it would be to topologically sort all BTF
|
|
* IDs based on the ownership edges, since there can be multiple
|
|
* bpf_{list_head,rb_node} in a type. Instead, we use the
|
|
* following resaoning:
|
|
*
|
|
* - A type can only be owned by another type in user BTF if it
|
|
* has a bpf_{list,rb}_node. Let's call these node types.
|
|
* - A type can only _own_ another type in user BTF if it has a
|
|
* bpf_{list_head,rb_root}. Let's call these root types.
|
|
*
|
|
* We ensure that if a type is both a root and node, its
|
|
* element types cannot be root types.
|
|
*
|
|
* To ensure acyclicity:
|
|
*
|
|
* When A is an root type but not a node, its ownership
|
|
* chain can be:
|
|
* A -> B -> C
|
|
* Where:
|
|
* - A is an root, e.g. has bpf_rb_root.
|
|
* - B is both a root and node, e.g. has bpf_rb_node and
|
|
* bpf_list_head.
|
|
* - C is only an root, e.g. has bpf_list_node
|
|
*
|
|
* When A is both a root and node, some other type already
|
|
* owns it in the BTF domain, hence it can not own
|
|
* another root type through any of the ownership edges.
|
|
* A -> B
|
|
* Where:
|
|
* - A is both an root and node.
|
|
* - B is only an node.
|
|
*/
|
|
if (meta->record->field_mask & BPF_GRAPH_ROOT)
|
|
return -ELOOP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void __btf_struct_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_member *member;
|
|
void *safe_data;
|
|
u32 i;
|
|
|
|
safe_data = btf_show_start_struct_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
for_each_member(i, t, member) {
|
|
const struct btf_type *member_type = btf_type_by_id(btf,
|
|
member->type);
|
|
const struct btf_kind_operations *ops;
|
|
u32 member_offset, bitfield_size;
|
|
u32 bytes_offset;
|
|
u8 bits8_offset;
|
|
|
|
btf_show_start_member(show, member);
|
|
|
|
member_offset = __btf_member_bit_offset(t, member);
|
|
bitfield_size = __btf_member_bitfield_size(t, member);
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(member_offset);
|
|
bits8_offset = BITS_PER_BYTE_MASKED(member_offset);
|
|
if (bitfield_size) {
|
|
safe_data = btf_show_start_type(show, member_type,
|
|
member->type,
|
|
data + bytes_offset);
|
|
if (safe_data)
|
|
btf_bitfield_show(safe_data,
|
|
bits8_offset,
|
|
bitfield_size, show);
|
|
btf_show_end_type(show);
|
|
} else {
|
|
ops = btf_type_ops(member_type);
|
|
ops->show(btf, member_type, member->type,
|
|
data + bytes_offset, bits8_offset, show);
|
|
}
|
|
|
|
btf_show_end_member(show);
|
|
}
|
|
|
|
btf_show_end_struct_type(show);
|
|
}
|
|
|
|
static void btf_struct_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_member *m = show->state.member;
|
|
|
|
/*
|
|
* First check if any members would be shown (are non-zero).
|
|
* See comments above "struct btf_show" definition for more
|
|
* details on how this works at a high-level.
|
|
*/
|
|
if (show->state.depth > 0 && !(show->flags & BTF_SHOW_ZERO)) {
|
|
if (!show->state.depth_check) {
|
|
show->state.depth_check = show->state.depth + 1;
|
|
show->state.depth_to_show = 0;
|
|
}
|
|
__btf_struct_show(btf, t, type_id, data, bits_offset, show);
|
|
/* Restore saved member data here */
|
|
show->state.member = m;
|
|
if (show->state.depth_check != show->state.depth + 1)
|
|
return;
|
|
show->state.depth_check = 0;
|
|
|
|
if (show->state.depth_to_show <= show->state.depth)
|
|
return;
|
|
/*
|
|
* Reaching here indicates we have recursed and found
|
|
* non-zero child values.
|
|
*/
|
|
}
|
|
|
|
__btf_struct_show(btf, t, type_id, data, bits_offset, show);
|
|
}
|
|
|
|
static const struct btf_kind_operations struct_ops = {
|
|
.check_meta = btf_struct_check_meta,
|
|
.resolve = btf_struct_resolve,
|
|
.check_member = btf_struct_check_member,
|
|
.check_kflag_member = btf_generic_check_kflag_member,
|
|
.log_details = btf_struct_log,
|
|
.show = btf_struct_show,
|
|
};
|
|
|
|
static int btf_enum_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off = member->offset;
|
|
u32 struct_size, bytes_offset;
|
|
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct_size = struct_type->size;
|
|
bytes_offset = BITS_ROUNDDOWN_BYTES(struct_bits_off);
|
|
if (struct_size - bytes_offset < member_type->size) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_enum_check_kflag_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u32 struct_bits_off, nr_bits, bytes_end, struct_size;
|
|
u32 int_bitsize = sizeof(int) * BITS_PER_BYTE;
|
|
|
|
struct_bits_off = BTF_MEMBER_BIT_OFFSET(member->offset);
|
|
nr_bits = BTF_MEMBER_BITFIELD_SIZE(member->offset);
|
|
if (!nr_bits) {
|
|
if (BITS_PER_BYTE_MASKED(struct_bits_off)) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not byte aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
nr_bits = int_bitsize;
|
|
} else if (nr_bits > int_bitsize) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Invalid member bitfield_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
struct_size = struct_type->size;
|
|
bytes_end = BITS_ROUNDUP_BYTES(struct_bits_off + nr_bits);
|
|
if (struct_size < bytes_end) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static s32 btf_enum_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_enum *enums = btf_type_enum(t);
|
|
struct btf *btf = env->btf;
|
|
const char *fmt_str;
|
|
u16 i, nr_enums;
|
|
u32 meta_needed;
|
|
|
|
nr_enums = btf_type_vlen(t);
|
|
meta_needed = nr_enums * sizeof(*enums);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->size > 8 || !is_power_of_2(t->size)) {
|
|
btf_verifier_log_type(env, t, "Unexpected size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* enum type either no name or a valid one */
|
|
if (t->name_off &&
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
for (i = 0; i < nr_enums; i++) {
|
|
if (!btf_name_offset_valid(btf, enums[i].name_off)) {
|
|
btf_verifier_log(env, "\tInvalid name_offset:%u",
|
|
enums[i].name_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* enum member must have a valid name */
|
|
if (!enums[i].name_off ||
|
|
!btf_name_valid_identifier(btf, enums[i].name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->log.level == BPF_LOG_KERNEL)
|
|
continue;
|
|
fmt_str = btf_type_kflag(t) ? "\t%s val=%d\n" : "\t%s val=%u\n";
|
|
btf_verifier_log(env, fmt_str,
|
|
__btf_name_by_offset(btf, enums[i].name_off),
|
|
enums[i].val);
|
|
}
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_enum_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
|
|
}
|
|
|
|
static void btf_enum_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_enum *enums = btf_type_enum(t);
|
|
u32 i, nr_enums = btf_type_vlen(t);
|
|
void *safe_data;
|
|
int v;
|
|
|
|
safe_data = btf_show_start_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
v = *(int *)safe_data;
|
|
|
|
for (i = 0; i < nr_enums; i++) {
|
|
if (v != enums[i].val)
|
|
continue;
|
|
|
|
btf_show_type_value(show, "%s",
|
|
__btf_name_by_offset(btf,
|
|
enums[i].name_off));
|
|
|
|
btf_show_end_type(show);
|
|
return;
|
|
}
|
|
|
|
if (btf_type_kflag(t))
|
|
btf_show_type_value(show, "%d", v);
|
|
else
|
|
btf_show_type_value(show, "%u", v);
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static const struct btf_kind_operations enum_ops = {
|
|
.check_meta = btf_enum_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_enum_check_member,
|
|
.check_kflag_member = btf_enum_check_kflag_member,
|
|
.log_details = btf_enum_log,
|
|
.show = btf_enum_show,
|
|
};
|
|
|
|
static s32 btf_enum64_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_enum64 *enums = btf_type_enum64(t);
|
|
struct btf *btf = env->btf;
|
|
const char *fmt_str;
|
|
u16 i, nr_enums;
|
|
u32 meta_needed;
|
|
|
|
nr_enums = btf_type_vlen(t);
|
|
meta_needed = nr_enums * sizeof(*enums);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->size > 8 || !is_power_of_2(t->size)) {
|
|
btf_verifier_log_type(env, t, "Unexpected size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* enum type either no name or a valid one */
|
|
if (t->name_off &&
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
for (i = 0; i < nr_enums; i++) {
|
|
if (!btf_name_offset_valid(btf, enums[i].name_off)) {
|
|
btf_verifier_log(env, "\tInvalid name_offset:%u",
|
|
enums[i].name_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* enum member must have a valid name */
|
|
if (!enums[i].name_off ||
|
|
!btf_name_valid_identifier(btf, enums[i].name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (env->log.level == BPF_LOG_KERNEL)
|
|
continue;
|
|
|
|
fmt_str = btf_type_kflag(t) ? "\t%s val=%lld\n" : "\t%s val=%llu\n";
|
|
btf_verifier_log(env, fmt_str,
|
|
__btf_name_by_offset(btf, enums[i].name_off),
|
|
btf_enum64_value(enums + i));
|
|
}
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_enum64_show(const struct btf *btf, const struct btf_type *t,
|
|
u32 type_id, void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_enum64 *enums = btf_type_enum64(t);
|
|
u32 i, nr_enums = btf_type_vlen(t);
|
|
void *safe_data;
|
|
s64 v;
|
|
|
|
safe_data = btf_show_start_type(show, t, type_id, data);
|
|
if (!safe_data)
|
|
return;
|
|
|
|
v = *(u64 *)safe_data;
|
|
|
|
for (i = 0; i < nr_enums; i++) {
|
|
if (v != btf_enum64_value(enums + i))
|
|
continue;
|
|
|
|
btf_show_type_value(show, "%s",
|
|
__btf_name_by_offset(btf,
|
|
enums[i].name_off));
|
|
|
|
btf_show_end_type(show);
|
|
return;
|
|
}
|
|
|
|
if (btf_type_kflag(t))
|
|
btf_show_type_value(show, "%lld", v);
|
|
else
|
|
btf_show_type_value(show, "%llu", v);
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static const struct btf_kind_operations enum64_ops = {
|
|
.check_meta = btf_enum64_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_enum_check_member,
|
|
.check_kflag_member = btf_enum_check_kflag_member,
|
|
.log_details = btf_enum_log,
|
|
.show = btf_enum64_show,
|
|
};
|
|
|
|
static s32 btf_func_proto_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
u32 meta_needed = btf_type_vlen(t) * sizeof(struct btf_param);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->name_off) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_func_proto_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
const struct btf_param *args = (const struct btf_param *)(t + 1);
|
|
u16 nr_args = btf_type_vlen(t), i;
|
|
|
|
btf_verifier_log(env, "return=%u args=(", t->type);
|
|
if (!nr_args) {
|
|
btf_verifier_log(env, "void");
|
|
goto done;
|
|
}
|
|
|
|
if (nr_args == 1 && !args[0].type) {
|
|
/* Only one vararg */
|
|
btf_verifier_log(env, "vararg");
|
|
goto done;
|
|
}
|
|
|
|
btf_verifier_log(env, "%u %s", args[0].type,
|
|
__btf_name_by_offset(env->btf,
|
|
args[0].name_off));
|
|
for (i = 1; i < nr_args - 1; i++)
|
|
btf_verifier_log(env, ", %u %s", args[i].type,
|
|
__btf_name_by_offset(env->btf,
|
|
args[i].name_off));
|
|
|
|
if (nr_args > 1) {
|
|
const struct btf_param *last_arg = &args[nr_args - 1];
|
|
|
|
if (last_arg->type)
|
|
btf_verifier_log(env, ", %u %s", last_arg->type,
|
|
__btf_name_by_offset(env->btf,
|
|
last_arg->name_off));
|
|
else
|
|
btf_verifier_log(env, ", vararg");
|
|
}
|
|
|
|
done:
|
|
btf_verifier_log(env, ")");
|
|
}
|
|
|
|
static const struct btf_kind_operations func_proto_ops = {
|
|
.check_meta = btf_func_proto_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
/*
|
|
* BTF_KIND_FUNC_PROTO cannot be directly referred by
|
|
* a struct's member.
|
|
*
|
|
* It should be a function pointer instead.
|
|
* (i.e. struct's member -> BTF_KIND_PTR -> BTF_KIND_FUNC_PROTO)
|
|
*
|
|
* Hence, there is no btf_func_check_member().
|
|
*/
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_func_proto_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static s32 btf_func_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
if (!t->name_off ||
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t) > BTF_FUNC_GLOBAL) {
|
|
btf_verifier_log_type(env, t, "Invalid func linkage");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_func_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *t = v->t;
|
|
u32 next_type_id = t->type;
|
|
int err;
|
|
|
|
err = btf_func_check(env, t);
|
|
if (err)
|
|
return err;
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
return 0;
|
|
}
|
|
|
|
static const struct btf_kind_operations func_ops = {
|
|
.check_meta = btf_func_check_meta,
|
|
.resolve = btf_func_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_ref_type_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static s32 btf_var_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_var *var;
|
|
u32 meta_needed = sizeof(*var);
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!t->name_off ||
|
|
!btf_name_valid_identifier(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* A var cannot be in type void */
|
|
if (!t->type || !BTF_TYPE_ID_VALID(t->type)) {
|
|
btf_verifier_log_type(env, t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
var = btf_type_var(t);
|
|
if (var->linkage != BTF_VAR_STATIC &&
|
|
var->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
|
|
btf_verifier_log_type(env, t, "Linkage not supported");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static void btf_var_log(struct btf_verifier_env *env, const struct btf_type *t)
|
|
{
|
|
const struct btf_var *var = btf_type_var(t);
|
|
|
|
btf_verifier_log(env, "type_id=%u linkage=%u", t->type, var->linkage);
|
|
}
|
|
|
|
static const struct btf_kind_operations var_ops = {
|
|
.check_meta = btf_var_check_meta,
|
|
.resolve = btf_var_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_var_log,
|
|
.show = btf_var_show,
|
|
};
|
|
|
|
static s32 btf_datasec_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_var_secinfo *vsi;
|
|
u64 last_vsi_end_off = 0, sum = 0;
|
|
u32 i, meta_needed;
|
|
|
|
meta_needed = btf_type_vlen(t) * sizeof(*vsi);
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!t->size) {
|
|
btf_verifier_log_type(env, t, "size == 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!t->name_off ||
|
|
!btf_name_valid_section(env->btf, t->name_off)) {
|
|
btf_verifier_log_type(env, t, "Invalid name");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
for_each_vsi(i, t, vsi) {
|
|
/* A var cannot be in type void */
|
|
if (!vsi->type || !BTF_TYPE_ID_VALID(vsi->type)) {
|
|
btf_verifier_log_vsi(env, t, vsi,
|
|
"Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (vsi->offset < last_vsi_end_off || vsi->offset >= t->size) {
|
|
btf_verifier_log_vsi(env, t, vsi,
|
|
"Invalid offset");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!vsi->size || vsi->size > t->size) {
|
|
btf_verifier_log_vsi(env, t, vsi,
|
|
"Invalid size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
last_vsi_end_off = vsi->offset + vsi->size;
|
|
if (last_vsi_end_off > t->size) {
|
|
btf_verifier_log_vsi(env, t, vsi,
|
|
"Invalid offset+size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_vsi(env, t, vsi, NULL);
|
|
sum += vsi->size;
|
|
}
|
|
|
|
if (t->size < sum) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static int btf_datasec_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_var_secinfo *vsi;
|
|
struct btf *btf = env->btf;
|
|
u16 i;
|
|
|
|
env->resolve_mode = RESOLVE_TBD;
|
|
for_each_vsi_from(i, v->next_member, v->t, vsi) {
|
|
u32 var_type_id = vsi->type, type_id, type_size = 0;
|
|
const struct btf_type *var_type = btf_type_by_id(env->btf,
|
|
var_type_id);
|
|
if (!var_type || !btf_type_is_var(var_type)) {
|
|
btf_verifier_log_vsi(env, v->t, vsi,
|
|
"Not a VAR kind member");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, var_type) &&
|
|
!env_type_is_resolved(env, var_type_id)) {
|
|
env_stack_set_next_member(env, i + 1);
|
|
return env_stack_push(env, var_type, var_type_id);
|
|
}
|
|
|
|
type_id = var_type->type;
|
|
if (!btf_type_id_size(btf, &type_id, &type_size)) {
|
|
btf_verifier_log_vsi(env, v->t, vsi, "Invalid type");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (vsi->size < type_size) {
|
|
btf_verifier_log_vsi(env, v->t, vsi, "Invalid size");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
env_stack_pop_resolved(env, 0, 0);
|
|
return 0;
|
|
}
|
|
|
|
static void btf_datasec_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "size=%u vlen=%u", t->size, btf_type_vlen(t));
|
|
}
|
|
|
|
static void btf_datasec_show(const struct btf *btf,
|
|
const struct btf_type *t, u32 type_id,
|
|
void *data, u8 bits_offset,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_var_secinfo *vsi;
|
|
const struct btf_type *var;
|
|
u32 i;
|
|
|
|
if (!btf_show_start_type(show, t, type_id, data))
|
|
return;
|
|
|
|
btf_show_type_value(show, "section (\"%s\") = {",
|
|
__btf_name_by_offset(btf, t->name_off));
|
|
for_each_vsi(i, t, vsi) {
|
|
var = btf_type_by_id(btf, vsi->type);
|
|
if (i)
|
|
btf_show(show, ",");
|
|
btf_type_ops(var)->show(btf, var, vsi->type,
|
|
data + vsi->offset, bits_offset, show);
|
|
}
|
|
btf_show_end_type(show);
|
|
}
|
|
|
|
static const struct btf_kind_operations datasec_ops = {
|
|
.check_meta = btf_datasec_check_meta,
|
|
.resolve = btf_datasec_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_datasec_log,
|
|
.show = btf_datasec_show,
|
|
};
|
|
|
|
static s32 btf_float_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (t->size != 2 && t->size != 4 && t->size != 8 && t->size != 12 &&
|
|
t->size != 16) {
|
|
btf_verifier_log_type(env, t, "Invalid type_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_float_check_member(struct btf_verifier_env *env,
|
|
const struct btf_type *struct_type,
|
|
const struct btf_member *member,
|
|
const struct btf_type *member_type)
|
|
{
|
|
u64 start_offset_bytes;
|
|
u64 end_offset_bytes;
|
|
u64 misalign_bits;
|
|
u64 align_bytes;
|
|
u64 align_bits;
|
|
|
|
/* Different architectures have different alignment requirements, so
|
|
* here we check only for the reasonable minimum. This way we ensure
|
|
* that types after CO-RE can pass the kernel BTF verifier.
|
|
*/
|
|
align_bytes = min_t(u64, sizeof(void *), member_type->size);
|
|
align_bits = align_bytes * BITS_PER_BYTE;
|
|
div64_u64_rem(member->offset, align_bits, &misalign_bits);
|
|
if (misalign_bits) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member is not properly aligned");
|
|
return -EINVAL;
|
|
}
|
|
|
|
start_offset_bytes = member->offset / BITS_PER_BYTE;
|
|
end_offset_bytes = start_offset_bytes + member_type->size;
|
|
if (end_offset_bytes > struct_type->size) {
|
|
btf_verifier_log_member(env, struct_type, member,
|
|
"Member exceeds struct_size");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_float_log(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "size=%u", t->size);
|
|
}
|
|
|
|
static const struct btf_kind_operations float_ops = {
|
|
.check_meta = btf_float_check_meta,
|
|
.resolve = btf_df_resolve,
|
|
.check_member = btf_float_check_member,
|
|
.check_kflag_member = btf_generic_check_kflag_member,
|
|
.log_details = btf_float_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static s32 btf_decl_tag_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
const struct btf_decl_tag *tag;
|
|
u32 meta_needed = sizeof(*tag);
|
|
s32 component_idx;
|
|
const char *value;
|
|
|
|
if (meta_left < meta_needed) {
|
|
btf_verifier_log_basic(env, t,
|
|
"meta_left:%u meta_needed:%u",
|
|
meta_left, meta_needed);
|
|
return -EINVAL;
|
|
}
|
|
|
|
value = btf_name_by_offset(env->btf, t->name_off);
|
|
if (!value || !value[0]) {
|
|
btf_verifier_log_type(env, t, "Invalid value");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_vlen(t)) {
|
|
btf_verifier_log_type(env, t, "vlen != 0");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_kflag(t)) {
|
|
btf_verifier_log_type(env, t, "Invalid btf_info kind_flag");
|
|
return -EINVAL;
|
|
}
|
|
|
|
component_idx = btf_type_decl_tag(t)->component_idx;
|
|
if (component_idx < -1) {
|
|
btf_verifier_log_type(env, t, "Invalid component_idx");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_verifier_log_type(env, t, NULL);
|
|
|
|
return meta_needed;
|
|
}
|
|
|
|
static int btf_decl_tag_resolve(struct btf_verifier_env *env,
|
|
const struct resolve_vertex *v)
|
|
{
|
|
const struct btf_type *next_type;
|
|
const struct btf_type *t = v->t;
|
|
u32 next_type_id = t->type;
|
|
struct btf *btf = env->btf;
|
|
s32 component_idx;
|
|
u32 vlen;
|
|
|
|
next_type = btf_type_by_id(btf, next_type_id);
|
|
if (!next_type || !btf_type_is_decl_tag_target(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env_type_is_resolve_sink(env, next_type) &&
|
|
!env_type_is_resolved(env, next_type_id))
|
|
return env_stack_push(env, next_type, next_type_id);
|
|
|
|
component_idx = btf_type_decl_tag(t)->component_idx;
|
|
if (component_idx != -1) {
|
|
if (btf_type_is_var(next_type) || btf_type_is_typedef(next_type)) {
|
|
btf_verifier_log_type(env, v->t, "Invalid component_idx");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_is_struct(next_type)) {
|
|
vlen = btf_type_vlen(next_type);
|
|
} else {
|
|
/* next_type should be a function */
|
|
next_type = btf_type_by_id(btf, next_type->type);
|
|
vlen = btf_type_vlen(next_type);
|
|
}
|
|
|
|
if ((u32)component_idx >= vlen) {
|
|
btf_verifier_log_type(env, v->t, "Invalid component_idx");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
env_stack_pop_resolved(env, next_type_id, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_decl_tag_log(struct btf_verifier_env *env, const struct btf_type *t)
|
|
{
|
|
btf_verifier_log(env, "type=%u component_idx=%d", t->type,
|
|
btf_type_decl_tag(t)->component_idx);
|
|
}
|
|
|
|
static const struct btf_kind_operations decl_tag_ops = {
|
|
.check_meta = btf_decl_tag_check_meta,
|
|
.resolve = btf_decl_tag_resolve,
|
|
.check_member = btf_df_check_member,
|
|
.check_kflag_member = btf_df_check_kflag_member,
|
|
.log_details = btf_decl_tag_log,
|
|
.show = btf_df_show,
|
|
};
|
|
|
|
static int btf_func_proto_check(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
const struct btf_type *ret_type;
|
|
const struct btf_param *args;
|
|
const struct btf *btf;
|
|
u16 nr_args, i;
|
|
int err;
|
|
|
|
btf = env->btf;
|
|
args = (const struct btf_param *)(t + 1);
|
|
nr_args = btf_type_vlen(t);
|
|
|
|
/* Check func return type which could be "void" (t->type == 0) */
|
|
if (t->type) {
|
|
u32 ret_type_id = t->type;
|
|
|
|
ret_type = btf_type_by_id(btf, ret_type_id);
|
|
if (!ret_type) {
|
|
btf_verifier_log_type(env, t, "Invalid return type");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_is_resolve_source_only(ret_type)) {
|
|
btf_verifier_log_type(env, t, "Invalid return type");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_needs_resolve(ret_type) &&
|
|
!env_type_is_resolved(env, ret_type_id)) {
|
|
err = btf_resolve(env, ret_type, ret_type_id);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
/* Ensure the return type is a type that has a size */
|
|
if (!btf_type_id_size(btf, &ret_type_id, NULL)) {
|
|
btf_verifier_log_type(env, t, "Invalid return type");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
if (!nr_args)
|
|
return 0;
|
|
|
|
/* Last func arg type_id could be 0 if it is a vararg */
|
|
if (!args[nr_args - 1].type) {
|
|
if (args[nr_args - 1].name_off) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u",
|
|
nr_args);
|
|
return -EINVAL;
|
|
}
|
|
nr_args--;
|
|
}
|
|
|
|
for (i = 0; i < nr_args; i++) {
|
|
const struct btf_type *arg_type;
|
|
u32 arg_type_id;
|
|
|
|
arg_type_id = args[i].type;
|
|
arg_type = btf_type_by_id(btf, arg_type_id);
|
|
if (!arg_type) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_is_resolve_source_only(arg_type)) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (args[i].name_off &&
|
|
(!btf_name_offset_valid(btf, args[i].name_off) ||
|
|
!btf_name_valid_identifier(btf, args[i].name_off))) {
|
|
btf_verifier_log_type(env, t,
|
|
"Invalid arg#%u", i + 1);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (btf_type_needs_resolve(arg_type) &&
|
|
!env_type_is_resolved(env, arg_type_id)) {
|
|
err = btf_resolve(env, arg_type, arg_type_id);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (!btf_type_id_size(btf, &arg_type_id, NULL)) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_func_check(struct btf_verifier_env *env,
|
|
const struct btf_type *t)
|
|
{
|
|
const struct btf_type *proto_type;
|
|
const struct btf_param *args;
|
|
const struct btf *btf;
|
|
u16 nr_args, i;
|
|
|
|
btf = env->btf;
|
|
proto_type = btf_type_by_id(btf, t->type);
|
|
|
|
if (!proto_type || !btf_type_is_func_proto(proto_type)) {
|
|
btf_verifier_log_type(env, t, "Invalid type_id");
|
|
return -EINVAL;
|
|
}
|
|
|
|
args = (const struct btf_param *)(proto_type + 1);
|
|
nr_args = btf_type_vlen(proto_type);
|
|
for (i = 0; i < nr_args; i++) {
|
|
if (!args[i].name_off && args[i].type) {
|
|
btf_verifier_log_type(env, t, "Invalid arg#%u", i + 1);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct btf_kind_operations * const kind_ops[NR_BTF_KINDS] = {
|
|
[BTF_KIND_INT] = &int_ops,
|
|
[BTF_KIND_PTR] = &ptr_ops,
|
|
[BTF_KIND_ARRAY] = &array_ops,
|
|
[BTF_KIND_STRUCT] = &struct_ops,
|
|
[BTF_KIND_UNION] = &struct_ops,
|
|
[BTF_KIND_ENUM] = &enum_ops,
|
|
[BTF_KIND_FWD] = &fwd_ops,
|
|
[BTF_KIND_TYPEDEF] = &modifier_ops,
|
|
[BTF_KIND_VOLATILE] = &modifier_ops,
|
|
[BTF_KIND_CONST] = &modifier_ops,
|
|
[BTF_KIND_RESTRICT] = &modifier_ops,
|
|
[BTF_KIND_FUNC] = &func_ops,
|
|
[BTF_KIND_FUNC_PROTO] = &func_proto_ops,
|
|
[BTF_KIND_VAR] = &var_ops,
|
|
[BTF_KIND_DATASEC] = &datasec_ops,
|
|
[BTF_KIND_FLOAT] = &float_ops,
|
|
[BTF_KIND_DECL_TAG] = &decl_tag_ops,
|
|
[BTF_KIND_TYPE_TAG] = &modifier_ops,
|
|
[BTF_KIND_ENUM64] = &enum64_ops,
|
|
};
|
|
|
|
static s32 btf_check_meta(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 meta_left)
|
|
{
|
|
u32 saved_meta_left = meta_left;
|
|
s32 var_meta_size;
|
|
|
|
if (meta_left < sizeof(*t)) {
|
|
btf_verifier_log(env, "[%u] meta_left:%u meta_needed:%zu",
|
|
env->log_type_id, meta_left, sizeof(*t));
|
|
return -EINVAL;
|
|
}
|
|
meta_left -= sizeof(*t);
|
|
|
|
if (t->info & ~BTF_INFO_MASK) {
|
|
btf_verifier_log(env, "[%u] Invalid btf_info:%x",
|
|
env->log_type_id, t->info);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (BTF_INFO_KIND(t->info) > BTF_KIND_MAX ||
|
|
BTF_INFO_KIND(t->info) == BTF_KIND_UNKN) {
|
|
btf_verifier_log(env, "[%u] Invalid kind:%u",
|
|
env->log_type_id, BTF_INFO_KIND(t->info));
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!btf_name_offset_valid(env->btf, t->name_off)) {
|
|
btf_verifier_log(env, "[%u] Invalid name_offset:%u",
|
|
env->log_type_id, t->name_off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
var_meta_size = btf_type_ops(t)->check_meta(env, t, meta_left);
|
|
if (var_meta_size < 0)
|
|
return var_meta_size;
|
|
|
|
meta_left -= var_meta_size;
|
|
|
|
return saved_meta_left - meta_left;
|
|
}
|
|
|
|
static int btf_check_all_metas(struct btf_verifier_env *env)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
struct btf_header *hdr;
|
|
void *cur, *end;
|
|
|
|
hdr = &btf->hdr;
|
|
cur = btf->nohdr_data + hdr->type_off;
|
|
end = cur + hdr->type_len;
|
|
|
|
env->log_type_id = btf->base_btf ? btf->start_id : 1;
|
|
while (cur < end) {
|
|
struct btf_type *t = cur;
|
|
s32 meta_size;
|
|
|
|
meta_size = btf_check_meta(env, t, end - cur);
|
|
if (meta_size < 0)
|
|
return meta_size;
|
|
|
|
btf_add_type(env, t);
|
|
cur += meta_size;
|
|
env->log_type_id++;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static bool btf_resolve_valid(struct btf_verifier_env *env,
|
|
const struct btf_type *t,
|
|
u32 type_id)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
|
|
if (!env_type_is_resolved(env, type_id))
|
|
return false;
|
|
|
|
if (btf_type_is_struct(t) || btf_type_is_datasec(t))
|
|
return !btf_resolved_type_id(btf, type_id) &&
|
|
!btf_resolved_type_size(btf, type_id);
|
|
|
|
if (btf_type_is_decl_tag(t) || btf_type_is_func(t))
|
|
return btf_resolved_type_id(btf, type_id) &&
|
|
!btf_resolved_type_size(btf, type_id);
|
|
|
|
if (btf_type_is_modifier(t) || btf_type_is_ptr(t) ||
|
|
btf_type_is_var(t)) {
|
|
t = btf_type_id_resolve(btf, &type_id);
|
|
return t &&
|
|
!btf_type_is_modifier(t) &&
|
|
!btf_type_is_var(t) &&
|
|
!btf_type_is_datasec(t);
|
|
}
|
|
|
|
if (btf_type_is_array(t)) {
|
|
const struct btf_array *array = btf_type_array(t);
|
|
const struct btf_type *elem_type;
|
|
u32 elem_type_id = array->type;
|
|
u32 elem_size;
|
|
|
|
elem_type = btf_type_id_size(btf, &elem_type_id, &elem_size);
|
|
return elem_type && !btf_type_is_modifier(elem_type) &&
|
|
(array->nelems * elem_size ==
|
|
btf_resolved_type_size(btf, type_id));
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int btf_resolve(struct btf_verifier_env *env,
|
|
const struct btf_type *t, u32 type_id)
|
|
{
|
|
u32 save_log_type_id = env->log_type_id;
|
|
const struct resolve_vertex *v;
|
|
int err = 0;
|
|
|
|
env->resolve_mode = RESOLVE_TBD;
|
|
env_stack_push(env, t, type_id);
|
|
while (!err && (v = env_stack_peak(env))) {
|
|
env->log_type_id = v->type_id;
|
|
err = btf_type_ops(v->t)->resolve(env, v);
|
|
}
|
|
|
|
env->log_type_id = type_id;
|
|
if (err == -E2BIG) {
|
|
btf_verifier_log_type(env, t,
|
|
"Exceeded max resolving depth:%u",
|
|
MAX_RESOLVE_DEPTH);
|
|
} else if (err == -EEXIST) {
|
|
btf_verifier_log_type(env, t, "Loop detected");
|
|
}
|
|
|
|
/* Final sanity check */
|
|
if (!err && !btf_resolve_valid(env, t, type_id)) {
|
|
btf_verifier_log_type(env, t, "Invalid resolve state");
|
|
err = -EINVAL;
|
|
}
|
|
|
|
env->log_type_id = save_log_type_id;
|
|
return err;
|
|
}
|
|
|
|
static int btf_check_all_types(struct btf_verifier_env *env)
|
|
{
|
|
struct btf *btf = env->btf;
|
|
const struct btf_type *t;
|
|
u32 type_id, i;
|
|
int err;
|
|
|
|
err = env_resolve_init(env);
|
|
if (err)
|
|
return err;
|
|
|
|
env->phase++;
|
|
for (i = btf->base_btf ? 0 : 1; i < btf->nr_types; i++) {
|
|
type_id = btf->start_id + i;
|
|
t = btf_type_by_id(btf, type_id);
|
|
|
|
env->log_type_id = type_id;
|
|
if (btf_type_needs_resolve(t) &&
|
|
!env_type_is_resolved(env, type_id)) {
|
|
err = btf_resolve(env, t, type_id);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
if (btf_type_is_func_proto(t)) {
|
|
err = btf_func_proto_check(env, t);
|
|
if (err)
|
|
return err;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_parse_type_sec(struct btf_verifier_env *env)
|
|
{
|
|
const struct btf_header *hdr = &env->btf->hdr;
|
|
int err;
|
|
|
|
/* Type section must align to 4 bytes */
|
|
if (hdr->type_off & (sizeof(u32) - 1)) {
|
|
btf_verifier_log(env, "Unaligned type_off");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (!env->btf->base_btf && !hdr->type_len) {
|
|
btf_verifier_log(env, "No type found");
|
|
return -EINVAL;
|
|
}
|
|
|
|
err = btf_check_all_metas(env);
|
|
if (err)
|
|
return err;
|
|
|
|
return btf_check_all_types(env);
|
|
}
|
|
|
|
static int btf_parse_str_sec(struct btf_verifier_env *env)
|
|
{
|
|
const struct btf_header *hdr;
|
|
struct btf *btf = env->btf;
|
|
const char *start, *end;
|
|
|
|
hdr = &btf->hdr;
|
|
start = btf->nohdr_data + hdr->str_off;
|
|
end = start + hdr->str_len;
|
|
|
|
if (end != btf->data + btf->data_size) {
|
|
btf_verifier_log(env, "String section is not at the end");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf->strings = start;
|
|
|
|
if (btf->base_btf && !hdr->str_len)
|
|
return 0;
|
|
if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_NAME_OFFSET || end[-1]) {
|
|
btf_verifier_log(env, "Invalid string section");
|
|
return -EINVAL;
|
|
}
|
|
if (!btf->base_btf && start[0]) {
|
|
btf_verifier_log(env, "Invalid string section");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const size_t btf_sec_info_offset[] = {
|
|
offsetof(struct btf_header, type_off),
|
|
offsetof(struct btf_header, str_off),
|
|
};
|
|
|
|
static int btf_sec_info_cmp(const void *a, const void *b)
|
|
{
|
|
const struct btf_sec_info *x = a;
|
|
const struct btf_sec_info *y = b;
|
|
|
|
return (int)(x->off - y->off) ? : (int)(x->len - y->len);
|
|
}
|
|
|
|
static int btf_check_sec_info(struct btf_verifier_env *env,
|
|
u32 btf_data_size)
|
|
{
|
|
struct btf_sec_info secs[ARRAY_SIZE(btf_sec_info_offset)];
|
|
u32 total, expected_total, i;
|
|
const struct btf_header *hdr;
|
|
const struct btf *btf;
|
|
|
|
btf = env->btf;
|
|
hdr = &btf->hdr;
|
|
|
|
/* Populate the secs from hdr */
|
|
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++)
|
|
secs[i] = *(struct btf_sec_info *)((void *)hdr +
|
|
btf_sec_info_offset[i]);
|
|
|
|
sort(secs, ARRAY_SIZE(btf_sec_info_offset),
|
|
sizeof(struct btf_sec_info), btf_sec_info_cmp, NULL);
|
|
|
|
/* Check for gaps and overlap among sections */
|
|
total = 0;
|
|
expected_total = btf_data_size - hdr->hdr_len;
|
|
for (i = 0; i < ARRAY_SIZE(btf_sec_info_offset); i++) {
|
|
if (expected_total < secs[i].off) {
|
|
btf_verifier_log(env, "Invalid section offset");
|
|
return -EINVAL;
|
|
}
|
|
if (total < secs[i].off) {
|
|
/* gap */
|
|
btf_verifier_log(env, "Unsupported section found");
|
|
return -EINVAL;
|
|
}
|
|
if (total > secs[i].off) {
|
|
btf_verifier_log(env, "Section overlap found");
|
|
return -EINVAL;
|
|
}
|
|
if (expected_total - total < secs[i].len) {
|
|
btf_verifier_log(env,
|
|
"Total section length too long");
|
|
return -EINVAL;
|
|
}
|
|
total += secs[i].len;
|
|
}
|
|
|
|
/* There is data other than hdr and known sections */
|
|
if (expected_total != total) {
|
|
btf_verifier_log(env, "Unsupported section found");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_parse_hdr(struct btf_verifier_env *env)
|
|
{
|
|
u32 hdr_len, hdr_copy, btf_data_size;
|
|
const struct btf_header *hdr;
|
|
struct btf *btf;
|
|
|
|
btf = env->btf;
|
|
btf_data_size = btf->data_size;
|
|
|
|
if (btf_data_size < offsetofend(struct btf_header, hdr_len)) {
|
|
btf_verifier_log(env, "hdr_len not found");
|
|
return -EINVAL;
|
|
}
|
|
|
|
hdr = btf->data;
|
|
hdr_len = hdr->hdr_len;
|
|
if (btf_data_size < hdr_len) {
|
|
btf_verifier_log(env, "btf_header not found");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Ensure the unsupported header fields are zero */
|
|
if (hdr_len > sizeof(btf->hdr)) {
|
|
u8 *expected_zero = btf->data + sizeof(btf->hdr);
|
|
u8 *end = btf->data + hdr_len;
|
|
|
|
for (; expected_zero < end; expected_zero++) {
|
|
if (*expected_zero) {
|
|
btf_verifier_log(env, "Unsupported btf_header");
|
|
return -E2BIG;
|
|
}
|
|
}
|
|
}
|
|
|
|
hdr_copy = min_t(u32, hdr_len, sizeof(btf->hdr));
|
|
memcpy(&btf->hdr, btf->data, hdr_copy);
|
|
|
|
hdr = &btf->hdr;
|
|
|
|
btf_verifier_log_hdr(env, btf_data_size);
|
|
|
|
if (hdr->magic != BTF_MAGIC) {
|
|
btf_verifier_log(env, "Invalid magic");
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (hdr->version != BTF_VERSION) {
|
|
btf_verifier_log(env, "Unsupported version");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (hdr->flags) {
|
|
btf_verifier_log(env, "Unsupported flags");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
if (!btf->base_btf && btf_data_size == hdr->hdr_len) {
|
|
btf_verifier_log(env, "No data");
|
|
return -EINVAL;
|
|
}
|
|
|
|
return btf_check_sec_info(env, btf_data_size);
|
|
}
|
|
|
|
static const char *alloc_obj_fields[] = {
|
|
"bpf_spin_lock",
|
|
"bpf_list_head",
|
|
"bpf_list_node",
|
|
"bpf_rb_root",
|
|
"bpf_rb_node",
|
|
"bpf_refcount",
|
|
};
|
|
|
|
static struct btf_struct_metas *
|
|
btf_parse_struct_metas(struct bpf_verifier_log *log, struct btf *btf)
|
|
{
|
|
struct btf_struct_metas *tab = NULL;
|
|
struct btf_id_set *aof;
|
|
int i, n, id, ret;
|
|
|
|
BUILD_BUG_ON(offsetof(struct btf_id_set, cnt) != 0);
|
|
BUILD_BUG_ON(sizeof(struct btf_id_set) != sizeof(u32));
|
|
|
|
aof = kmalloc(sizeof(*aof), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!aof)
|
|
return ERR_PTR(-ENOMEM);
|
|
aof->cnt = 0;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(alloc_obj_fields); i++) {
|
|
/* Try to find whether this special type exists in user BTF, and
|
|
* if so remember its ID so we can easily find it among members
|
|
* of structs that we iterate in the next loop.
|
|
*/
|
|
struct btf_id_set *new_aof;
|
|
|
|
id = btf_find_by_name_kind(btf, alloc_obj_fields[i], BTF_KIND_STRUCT);
|
|
if (id < 0)
|
|
continue;
|
|
|
|
new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!new_aof) {
|
|
ret = -ENOMEM;
|
|
goto free_aof;
|
|
}
|
|
aof = new_aof;
|
|
aof->ids[aof->cnt++] = id;
|
|
}
|
|
|
|
n = btf_nr_types(btf);
|
|
for (i = 1; i < n; i++) {
|
|
/* Try to find if there are kptrs in user BTF and remember their ID */
|
|
struct btf_id_set *new_aof;
|
|
struct btf_field_info tmp;
|
|
const struct btf_type *t;
|
|
|
|
t = btf_type_by_id(btf, i);
|
|
if (!t) {
|
|
ret = -EINVAL;
|
|
goto free_aof;
|
|
}
|
|
|
|
ret = btf_find_kptr(btf, t, 0, 0, &tmp, BPF_KPTR);
|
|
if (ret != BTF_FIELD_FOUND)
|
|
continue;
|
|
|
|
new_aof = krealloc(aof, offsetof(struct btf_id_set, ids[aof->cnt + 1]),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!new_aof) {
|
|
ret = -ENOMEM;
|
|
goto free_aof;
|
|
}
|
|
aof = new_aof;
|
|
aof->ids[aof->cnt++] = i;
|
|
}
|
|
|
|
if (!aof->cnt) {
|
|
kfree(aof);
|
|
return NULL;
|
|
}
|
|
sort(&aof->ids, aof->cnt, sizeof(aof->ids[0]), btf_id_cmp_func, NULL);
|
|
|
|
for (i = 1; i < n; i++) {
|
|
struct btf_struct_metas *new_tab;
|
|
const struct btf_member *member;
|
|
struct btf_struct_meta *type;
|
|
struct btf_record *record;
|
|
const struct btf_type *t;
|
|
int j, tab_cnt;
|
|
|
|
t = btf_type_by_id(btf, i);
|
|
if (!__btf_type_is_struct(t))
|
|
continue;
|
|
|
|
cond_resched();
|
|
|
|
for_each_member(j, t, member) {
|
|
if (btf_id_set_contains(aof, member->type))
|
|
goto parse;
|
|
}
|
|
continue;
|
|
parse:
|
|
tab_cnt = tab ? tab->cnt : 0;
|
|
new_tab = krealloc(tab, offsetof(struct btf_struct_metas, types[tab_cnt + 1]),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!new_tab) {
|
|
ret = -ENOMEM;
|
|
goto free;
|
|
}
|
|
if (!tab)
|
|
new_tab->cnt = 0;
|
|
tab = new_tab;
|
|
|
|
type = &tab->types[tab->cnt];
|
|
type->btf_id = i;
|
|
record = btf_parse_fields(btf, t, BPF_SPIN_LOCK | BPF_LIST_HEAD | BPF_LIST_NODE |
|
|
BPF_RB_ROOT | BPF_RB_NODE | BPF_REFCOUNT |
|
|
BPF_KPTR, t->size);
|
|
/* The record cannot be unset, treat it as an error if so */
|
|
if (IS_ERR_OR_NULL(record)) {
|
|
ret = PTR_ERR_OR_ZERO(record) ?: -EFAULT;
|
|
goto free;
|
|
}
|
|
type->record = record;
|
|
tab->cnt++;
|
|
}
|
|
kfree(aof);
|
|
return tab;
|
|
free:
|
|
btf_struct_metas_free(tab);
|
|
free_aof:
|
|
kfree(aof);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
struct btf_struct_meta *btf_find_struct_meta(const struct btf *btf, u32 btf_id)
|
|
{
|
|
struct btf_struct_metas *tab;
|
|
|
|
BUILD_BUG_ON(offsetof(struct btf_struct_meta, btf_id) != 0);
|
|
tab = btf->struct_meta_tab;
|
|
if (!tab)
|
|
return NULL;
|
|
return bsearch(&btf_id, tab->types, tab->cnt, sizeof(tab->types[0]), btf_id_cmp_func);
|
|
}
|
|
|
|
static int btf_check_type_tags(struct btf_verifier_env *env,
|
|
struct btf *btf, int start_id)
|
|
{
|
|
int i, n, good_id = start_id - 1;
|
|
bool in_tags;
|
|
|
|
n = btf_nr_types(btf);
|
|
for (i = start_id; i < n; i++) {
|
|
const struct btf_type *t;
|
|
int chain_limit = 32;
|
|
u32 cur_id = i;
|
|
|
|
t = btf_type_by_id(btf, i);
|
|
if (!t)
|
|
return -EINVAL;
|
|
if (!btf_type_is_modifier(t))
|
|
continue;
|
|
|
|
cond_resched();
|
|
|
|
in_tags = btf_type_is_type_tag(t);
|
|
while (btf_type_is_modifier(t)) {
|
|
if (!chain_limit--) {
|
|
btf_verifier_log(env, "Max chain length or cycle detected");
|
|
return -ELOOP;
|
|
}
|
|
if (btf_type_is_type_tag(t)) {
|
|
if (!in_tags) {
|
|
btf_verifier_log(env, "Type tags don't precede modifiers");
|
|
return -EINVAL;
|
|
}
|
|
} else if (in_tags) {
|
|
in_tags = false;
|
|
}
|
|
if (cur_id <= good_id)
|
|
break;
|
|
/* Move to next type */
|
|
cur_id = t->type;
|
|
t = btf_type_by_id(btf, cur_id);
|
|
if (!t)
|
|
return -EINVAL;
|
|
}
|
|
good_id = i;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int finalize_log(struct bpf_verifier_log *log, bpfptr_t uattr, u32 uattr_size)
|
|
{
|
|
u32 log_true_size;
|
|
int err;
|
|
|
|
err = bpf_vlog_finalize(log, &log_true_size);
|
|
|
|
if (uattr_size >= offsetofend(union bpf_attr, btf_log_true_size) &&
|
|
copy_to_bpfptr_offset(uattr, offsetof(union bpf_attr, btf_log_true_size),
|
|
&log_true_size, sizeof(log_true_size)))
|
|
err = -EFAULT;
|
|
|
|
return err;
|
|
}
|
|
|
|
static struct btf *btf_parse(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
|
|
{
|
|
bpfptr_t btf_data = make_bpfptr(attr->btf, uattr.is_kernel);
|
|
char __user *log_ubuf = u64_to_user_ptr(attr->btf_log_buf);
|
|
struct btf_struct_metas *struct_meta_tab;
|
|
struct btf_verifier_env *env = NULL;
|
|
struct btf *btf = NULL;
|
|
u8 *data;
|
|
int err, ret;
|
|
|
|
if (attr->btf_size > BTF_MAX_SIZE)
|
|
return ERR_PTR(-E2BIG);
|
|
|
|
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!env)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
/* user could have requested verbose verifier output
|
|
* and supplied buffer to store the verification trace
|
|
*/
|
|
err = bpf_vlog_init(&env->log, attr->btf_log_level,
|
|
log_ubuf, attr->btf_log_size);
|
|
if (err)
|
|
goto errout_free;
|
|
|
|
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!btf) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
env->btf = btf;
|
|
|
|
data = kvmalloc(attr->btf_size, GFP_KERNEL | __GFP_NOWARN);
|
|
if (!data) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
|
|
btf->data = data;
|
|
btf->data_size = attr->btf_size;
|
|
|
|
if (copy_from_bpfptr(data, btf_data, attr->btf_size)) {
|
|
err = -EFAULT;
|
|
goto errout;
|
|
}
|
|
|
|
err = btf_parse_hdr(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
|
|
|
|
err = btf_parse_str_sec(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_parse_type_sec(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_type_tags(env, btf, 1);
|
|
if (err)
|
|
goto errout;
|
|
|
|
struct_meta_tab = btf_parse_struct_metas(&env->log, btf);
|
|
if (IS_ERR(struct_meta_tab)) {
|
|
err = PTR_ERR(struct_meta_tab);
|
|
goto errout;
|
|
}
|
|
btf->struct_meta_tab = struct_meta_tab;
|
|
|
|
if (struct_meta_tab) {
|
|
int i;
|
|
|
|
for (i = 0; i < struct_meta_tab->cnt; i++) {
|
|
err = btf_check_and_fixup_fields(btf, struct_meta_tab->types[i].record);
|
|
if (err < 0)
|
|
goto errout_meta;
|
|
}
|
|
}
|
|
|
|
err = finalize_log(&env->log, uattr, uattr_size);
|
|
if (err)
|
|
goto errout_free;
|
|
|
|
btf_verifier_env_free(env);
|
|
refcount_set(&btf->refcnt, 1);
|
|
return btf;
|
|
|
|
errout_meta:
|
|
btf_free_struct_meta_tab(btf);
|
|
errout:
|
|
/* overwrite err with -ENOSPC or -EFAULT */
|
|
ret = finalize_log(&env->log, uattr, uattr_size);
|
|
if (ret)
|
|
err = ret;
|
|
errout_free:
|
|
btf_verifier_env_free(env);
|
|
if (btf)
|
|
btf_free(btf);
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
extern char __start_BTF[];
|
|
extern char __stop_BTF[];
|
|
extern struct btf *btf_vmlinux;
|
|
|
|
#define BPF_MAP_TYPE(_id, _ops)
|
|
#define BPF_LINK_TYPE(_id, _name)
|
|
static union {
|
|
struct bpf_ctx_convert {
|
|
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
|
|
prog_ctx_type _id##_prog; \
|
|
kern_ctx_type _id##_kern;
|
|
#include <linux/bpf_types.h>
|
|
#undef BPF_PROG_TYPE
|
|
} *__t;
|
|
/* 't' is written once under lock. Read many times. */
|
|
const struct btf_type *t;
|
|
} bpf_ctx_convert;
|
|
enum {
|
|
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
|
|
__ctx_convert##_id,
|
|
#include <linux/bpf_types.h>
|
|
#undef BPF_PROG_TYPE
|
|
__ctx_convert_unused, /* to avoid empty enum in extreme .config */
|
|
};
|
|
static u8 bpf_ctx_convert_map[] = {
|
|
#define BPF_PROG_TYPE(_id, _name, prog_ctx_type, kern_ctx_type) \
|
|
[_id] = __ctx_convert##_id,
|
|
#include <linux/bpf_types.h>
|
|
#undef BPF_PROG_TYPE
|
|
0, /* avoid empty array */
|
|
};
|
|
#undef BPF_MAP_TYPE
|
|
#undef BPF_LINK_TYPE
|
|
|
|
static const struct btf_type *find_canonical_prog_ctx_type(enum bpf_prog_type prog_type)
|
|
{
|
|
const struct btf_type *conv_struct;
|
|
const struct btf_member *ctx_type;
|
|
|
|
conv_struct = bpf_ctx_convert.t;
|
|
if (!conv_struct)
|
|
return NULL;
|
|
/* prog_type is valid bpf program type. No need for bounds check. */
|
|
ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2;
|
|
/* ctx_type is a pointer to prog_ctx_type in vmlinux.
|
|
* Like 'struct __sk_buff'
|
|
*/
|
|
return btf_type_by_id(btf_vmlinux, ctx_type->type);
|
|
}
|
|
|
|
static int find_kern_ctx_type_id(enum bpf_prog_type prog_type)
|
|
{
|
|
const struct btf_type *conv_struct;
|
|
const struct btf_member *ctx_type;
|
|
|
|
conv_struct = bpf_ctx_convert.t;
|
|
if (!conv_struct)
|
|
return -EFAULT;
|
|
/* prog_type is valid bpf program type. No need for bounds check. */
|
|
ctx_type = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
|
|
/* ctx_type is a pointer to prog_ctx_type in vmlinux.
|
|
* Like 'struct sk_buff'
|
|
*/
|
|
return ctx_type->type;
|
|
}
|
|
|
|
bool btf_is_projection_of(const char *pname, const char *tname)
|
|
{
|
|
if (strcmp(pname, "__sk_buff") == 0 && strcmp(tname, "sk_buff") == 0)
|
|
return true;
|
|
if (strcmp(pname, "xdp_md") == 0 && strcmp(tname, "xdp_buff") == 0)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
bool btf_is_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
|
|
const struct btf_type *t, enum bpf_prog_type prog_type,
|
|
int arg)
|
|
{
|
|
const struct btf_type *ctx_type;
|
|
const char *tname, *ctx_tname;
|
|
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
/* KPROBE programs allow bpf_user_pt_regs_t typedef, which we need to
|
|
* check before we skip all the typedef below.
|
|
*/
|
|
if (prog_type == BPF_PROG_TYPE_KPROBE) {
|
|
while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
if (btf_type_is_typedef(t)) {
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
|
|
return true;
|
|
}
|
|
}
|
|
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!btf_type_is_struct(t)) {
|
|
/* Only pointer to struct is supported for now.
|
|
* That means that BPF_PROG_TYPE_TRACEPOINT with BTF
|
|
* is not supported yet.
|
|
* BPF_PROG_TYPE_RAW_TRACEPOINT is fine.
|
|
*/
|
|
return false;
|
|
}
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (!tname) {
|
|
bpf_log(log, "arg#%d struct doesn't have a name\n", arg);
|
|
return false;
|
|
}
|
|
|
|
ctx_type = find_canonical_prog_ctx_type(prog_type);
|
|
if (!ctx_type) {
|
|
bpf_log(log, "btf_vmlinux is malformed\n");
|
|
/* should not happen */
|
|
return false;
|
|
}
|
|
again:
|
|
ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
|
|
if (!ctx_tname) {
|
|
/* should not happen */
|
|
bpf_log(log, "Please fix kernel include/linux/bpf_types.h\n");
|
|
return false;
|
|
}
|
|
/* program types without named context types work only with arg:ctx tag */
|
|
if (ctx_tname[0] == '\0')
|
|
return false;
|
|
/* only compare that prog's ctx type name is the same as
|
|
* kernel expects. No need to compare field by field.
|
|
* It's ok for bpf prog to do:
|
|
* struct __sk_buff {};
|
|
* int socket_filter_bpf_prog(struct __sk_buff *skb)
|
|
* { // no fields of skb are ever used }
|
|
*/
|
|
if (btf_is_projection_of(ctx_tname, tname))
|
|
return true;
|
|
if (strcmp(ctx_tname, tname)) {
|
|
/* bpf_user_pt_regs_t is a typedef, so resolve it to
|
|
* underlying struct and check name again
|
|
*/
|
|
if (!btf_type_is_modifier(ctx_type))
|
|
return false;
|
|
while (btf_type_is_modifier(ctx_type))
|
|
ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
|
|
goto again;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/* forward declarations for arch-specific underlying types of
|
|
* bpf_user_pt_regs_t; this avoids the need for arch-specific #ifdef
|
|
* compilation guards below for BPF_PROG_TYPE_PERF_EVENT checks, but still
|
|
* works correctly with __builtin_types_compatible_p() on respective
|
|
* architectures
|
|
*/
|
|
struct user_regs_struct;
|
|
struct user_pt_regs;
|
|
|
|
static int btf_validate_prog_ctx_type(struct bpf_verifier_log *log, const struct btf *btf,
|
|
const struct btf_type *t, int arg,
|
|
enum bpf_prog_type prog_type,
|
|
enum bpf_attach_type attach_type)
|
|
{
|
|
const struct btf_type *ctx_type;
|
|
const char *tname, *ctx_tname;
|
|
|
|
if (!btf_is_ptr(t)) {
|
|
bpf_log(log, "arg#%d type isn't a pointer\n", arg);
|
|
return -EINVAL;
|
|
}
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
/* KPROBE and PERF_EVENT programs allow bpf_user_pt_regs_t typedef */
|
|
if (prog_type == BPF_PROG_TYPE_KPROBE || prog_type == BPF_PROG_TYPE_PERF_EVENT) {
|
|
while (btf_type_is_modifier(t) && !btf_type_is_typedef(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
if (btf_type_is_typedef(t)) {
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (tname && strcmp(tname, "bpf_user_pt_regs_t") == 0)
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* all other program types don't use typedefs for context type */
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
/* `void *ctx __arg_ctx` is always valid */
|
|
if (btf_type_is_void(t))
|
|
return 0;
|
|
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (str_is_empty(tname)) {
|
|
bpf_log(log, "arg#%d type doesn't have a name\n", arg);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* special cases */
|
|
switch (prog_type) {
|
|
case BPF_PROG_TYPE_KPROBE:
|
|
if (__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
|
|
return 0;
|
|
break;
|
|
case BPF_PROG_TYPE_PERF_EVENT:
|
|
if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct pt_regs) &&
|
|
__btf_type_is_struct(t) && strcmp(tname, "pt_regs") == 0)
|
|
return 0;
|
|
if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_pt_regs) &&
|
|
__btf_type_is_struct(t) && strcmp(tname, "user_pt_regs") == 0)
|
|
return 0;
|
|
if (__builtin_types_compatible_p(bpf_user_pt_regs_t, struct user_regs_struct) &&
|
|
__btf_type_is_struct(t) && strcmp(tname, "user_regs_struct") == 0)
|
|
return 0;
|
|
break;
|
|
case BPF_PROG_TYPE_RAW_TRACEPOINT:
|
|
case BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE:
|
|
/* allow u64* as ctx */
|
|
if (btf_is_int(t) && t->size == 8)
|
|
return 0;
|
|
break;
|
|
case BPF_PROG_TYPE_TRACING:
|
|
switch (attach_type) {
|
|
case BPF_TRACE_RAW_TP:
|
|
/* tp_btf program is TRACING, so need special case here */
|
|
if (__btf_type_is_struct(t) &&
|
|
strcmp(tname, "bpf_raw_tracepoint_args") == 0)
|
|
return 0;
|
|
/* allow u64* as ctx */
|
|
if (btf_is_int(t) && t->size == 8)
|
|
return 0;
|
|
break;
|
|
case BPF_TRACE_ITER:
|
|
/* allow struct bpf_iter__xxx types only */
|
|
if (__btf_type_is_struct(t) &&
|
|
strncmp(tname, "bpf_iter__", sizeof("bpf_iter__") - 1) == 0)
|
|
return 0;
|
|
break;
|
|
case BPF_TRACE_FENTRY:
|
|
case BPF_TRACE_FEXIT:
|
|
case BPF_MODIFY_RETURN:
|
|
/* allow u64* as ctx */
|
|
if (btf_is_int(t) && t->size == 8)
|
|
return 0;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
break;
|
|
case BPF_PROG_TYPE_LSM:
|
|
case BPF_PROG_TYPE_STRUCT_OPS:
|
|
/* allow u64* as ctx */
|
|
if (btf_is_int(t) && t->size == 8)
|
|
return 0;
|
|
break;
|
|
case BPF_PROG_TYPE_TRACEPOINT:
|
|
case BPF_PROG_TYPE_SYSCALL:
|
|
case BPF_PROG_TYPE_EXT:
|
|
return 0; /* anything goes */
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ctx_type = find_canonical_prog_ctx_type(prog_type);
|
|
if (!ctx_type) {
|
|
/* should not happen */
|
|
bpf_log(log, "btf_vmlinux is malformed\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* resolve typedefs and check that underlying structs are matching as well */
|
|
while (btf_type_is_modifier(ctx_type))
|
|
ctx_type = btf_type_by_id(btf_vmlinux, ctx_type->type);
|
|
|
|
/* if program type doesn't have distinctly named struct type for
|
|
* context, then __arg_ctx argument can only be `void *`, which we
|
|
* already checked above
|
|
*/
|
|
if (!__btf_type_is_struct(ctx_type)) {
|
|
bpf_log(log, "arg#%d should be void pointer\n", arg);
|
|
return -EINVAL;
|
|
}
|
|
|
|
ctx_tname = btf_name_by_offset(btf_vmlinux, ctx_type->name_off);
|
|
if (!__btf_type_is_struct(t) || strcmp(ctx_tname, tname) != 0) {
|
|
bpf_log(log, "arg#%d should be `struct %s *`\n", arg, ctx_tname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_translate_to_vmlinux(struct bpf_verifier_log *log,
|
|
struct btf *btf,
|
|
const struct btf_type *t,
|
|
enum bpf_prog_type prog_type,
|
|
int arg)
|
|
{
|
|
if (!btf_is_prog_ctx_type(log, btf, t, prog_type, arg))
|
|
return -ENOENT;
|
|
return find_kern_ctx_type_id(prog_type);
|
|
}
|
|
|
|
int get_kern_ctx_btf_id(struct bpf_verifier_log *log, enum bpf_prog_type prog_type)
|
|
{
|
|
const struct btf_member *kctx_member;
|
|
const struct btf_type *conv_struct;
|
|
const struct btf_type *kctx_type;
|
|
u32 kctx_type_id;
|
|
|
|
conv_struct = bpf_ctx_convert.t;
|
|
/* get member for kernel ctx type */
|
|
kctx_member = btf_type_member(conv_struct) + bpf_ctx_convert_map[prog_type] * 2 + 1;
|
|
kctx_type_id = kctx_member->type;
|
|
kctx_type = btf_type_by_id(btf_vmlinux, kctx_type_id);
|
|
if (!btf_type_is_struct(kctx_type)) {
|
|
bpf_log(log, "kern ctx type id %u is not a struct\n", kctx_type_id);
|
|
return -EINVAL;
|
|
}
|
|
|
|
return kctx_type_id;
|
|
}
|
|
|
|
BTF_ID_LIST(bpf_ctx_convert_btf_id)
|
|
BTF_ID(struct, bpf_ctx_convert)
|
|
|
|
static struct btf *btf_parse_base(struct btf_verifier_env *env, const char *name,
|
|
void *data, unsigned int data_size)
|
|
{
|
|
struct btf *btf = NULL;
|
|
int err;
|
|
|
|
if (!IS_ENABLED(CONFIG_DEBUG_INFO_BTF))
|
|
return ERR_PTR(-ENOENT);
|
|
|
|
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!btf) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
env->btf = btf;
|
|
|
|
btf->data = data;
|
|
btf->data_size = data_size;
|
|
btf->kernel_btf = true;
|
|
snprintf(btf->name, sizeof(btf->name), "%s", name);
|
|
|
|
err = btf_parse_hdr(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
|
|
|
|
err = btf_parse_str_sec(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_all_metas(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_type_tags(env, btf, 1);
|
|
if (err)
|
|
goto errout;
|
|
|
|
refcount_set(&btf->refcnt, 1);
|
|
|
|
return btf;
|
|
|
|
errout:
|
|
if (btf) {
|
|
kvfree(btf->types);
|
|
kfree(btf);
|
|
}
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
struct btf *btf_parse_vmlinux(void)
|
|
{
|
|
struct btf_verifier_env *env = NULL;
|
|
struct bpf_verifier_log *log;
|
|
struct btf *btf;
|
|
int err;
|
|
|
|
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!env)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
log = &env->log;
|
|
log->level = BPF_LOG_KERNEL;
|
|
btf = btf_parse_base(env, "vmlinux", __start_BTF, __stop_BTF - __start_BTF);
|
|
if (IS_ERR(btf))
|
|
goto err_out;
|
|
|
|
/* btf_parse_vmlinux() runs under bpf_verifier_lock */
|
|
bpf_ctx_convert.t = btf_type_by_id(btf, bpf_ctx_convert_btf_id[0]);
|
|
err = btf_alloc_id(btf);
|
|
if (err) {
|
|
btf_free(btf);
|
|
btf = ERR_PTR(err);
|
|
}
|
|
err_out:
|
|
btf_verifier_env_free(env);
|
|
return btf;
|
|
}
|
|
|
|
/* If .BTF_ids section was created with distilled base BTF, both base and
|
|
* split BTF ids will need to be mapped to actual base/split ids for
|
|
* BTF now that it has been relocated.
|
|
*/
|
|
static __u32 btf_relocate_id(const struct btf *btf, __u32 id)
|
|
{
|
|
if (!btf->base_btf || !btf->base_id_map)
|
|
return id;
|
|
return btf->base_id_map[id];
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
|
|
static struct btf *btf_parse_module(const char *module_name, const void *data,
|
|
unsigned int data_size, void *base_data,
|
|
unsigned int base_data_size)
|
|
{
|
|
struct btf *btf = NULL, *vmlinux_btf, *base_btf = NULL;
|
|
struct btf_verifier_env *env = NULL;
|
|
struct bpf_verifier_log *log;
|
|
int err = 0;
|
|
|
|
vmlinux_btf = bpf_get_btf_vmlinux();
|
|
if (IS_ERR(vmlinux_btf))
|
|
return vmlinux_btf;
|
|
if (!vmlinux_btf)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
env = kzalloc(sizeof(*env), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!env)
|
|
return ERR_PTR(-ENOMEM);
|
|
|
|
log = &env->log;
|
|
log->level = BPF_LOG_KERNEL;
|
|
|
|
if (base_data) {
|
|
base_btf = btf_parse_base(env, ".BTF.base", base_data, base_data_size);
|
|
if (IS_ERR(base_btf)) {
|
|
err = PTR_ERR(base_btf);
|
|
goto errout;
|
|
}
|
|
} else {
|
|
base_btf = vmlinux_btf;
|
|
}
|
|
|
|
btf = kzalloc(sizeof(*btf), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!btf) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
env->btf = btf;
|
|
|
|
btf->base_btf = base_btf;
|
|
btf->start_id = base_btf->nr_types;
|
|
btf->start_str_off = base_btf->hdr.str_len;
|
|
btf->kernel_btf = true;
|
|
snprintf(btf->name, sizeof(btf->name), "%s", module_name);
|
|
|
|
btf->data = kvmemdup(data, data_size, GFP_KERNEL | __GFP_NOWARN);
|
|
if (!btf->data) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
btf->data_size = data_size;
|
|
|
|
err = btf_parse_hdr(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
btf->nohdr_data = btf->data + btf->hdr.hdr_len;
|
|
|
|
err = btf_parse_str_sec(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_all_metas(env);
|
|
if (err)
|
|
goto errout;
|
|
|
|
err = btf_check_type_tags(env, btf, btf_nr_types(base_btf));
|
|
if (err)
|
|
goto errout;
|
|
|
|
if (base_btf != vmlinux_btf) {
|
|
err = btf_relocate(btf, vmlinux_btf, &btf->base_id_map);
|
|
if (err)
|
|
goto errout;
|
|
btf_free(base_btf);
|
|
base_btf = vmlinux_btf;
|
|
}
|
|
|
|
btf_verifier_env_free(env);
|
|
refcount_set(&btf->refcnt, 1);
|
|
return btf;
|
|
|
|
errout:
|
|
btf_verifier_env_free(env);
|
|
if (!IS_ERR(base_btf) && base_btf != vmlinux_btf)
|
|
btf_free(base_btf);
|
|
if (btf) {
|
|
kvfree(btf->data);
|
|
kvfree(btf->types);
|
|
kfree(btf);
|
|
}
|
|
return ERR_PTR(err);
|
|
}
|
|
|
|
#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
|
|
|
|
struct btf *bpf_prog_get_target_btf(const struct bpf_prog *prog)
|
|
{
|
|
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
|
|
|
|
if (tgt_prog)
|
|
return tgt_prog->aux->btf;
|
|
else
|
|
return prog->aux->attach_btf;
|
|
}
|
|
|
|
static bool is_int_ptr(struct btf *btf, const struct btf_type *t)
|
|
{
|
|
/* skip modifiers */
|
|
t = btf_type_skip_modifiers(btf, t->type, NULL);
|
|
|
|
return btf_type_is_int(t);
|
|
}
|
|
|
|
static u32 get_ctx_arg_idx(struct btf *btf, const struct btf_type *func_proto,
|
|
int off)
|
|
{
|
|
const struct btf_param *args;
|
|
const struct btf_type *t;
|
|
u32 offset = 0, nr_args;
|
|
int i;
|
|
|
|
if (!func_proto)
|
|
return off / 8;
|
|
|
|
nr_args = btf_type_vlen(func_proto);
|
|
args = (const struct btf_param *)(func_proto + 1);
|
|
for (i = 0; i < nr_args; i++) {
|
|
t = btf_type_skip_modifiers(btf, args[i].type, NULL);
|
|
offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
|
|
if (off < offset)
|
|
return i;
|
|
}
|
|
|
|
t = btf_type_skip_modifiers(btf, func_proto->type, NULL);
|
|
offset += btf_type_is_ptr(t) ? 8 : roundup(t->size, 8);
|
|
if (off < offset)
|
|
return nr_args;
|
|
|
|
return nr_args + 1;
|
|
}
|
|
|
|
static bool prog_args_trusted(const struct bpf_prog *prog)
|
|
{
|
|
enum bpf_attach_type atype = prog->expected_attach_type;
|
|
|
|
switch (prog->type) {
|
|
case BPF_PROG_TYPE_TRACING:
|
|
return atype == BPF_TRACE_RAW_TP || atype == BPF_TRACE_ITER;
|
|
case BPF_PROG_TYPE_LSM:
|
|
return bpf_lsm_is_trusted(prog);
|
|
case BPF_PROG_TYPE_STRUCT_OPS:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
int btf_ctx_arg_offset(const struct btf *btf, const struct btf_type *func_proto,
|
|
u32 arg_no)
|
|
{
|
|
const struct btf_param *args;
|
|
const struct btf_type *t;
|
|
int off = 0, i;
|
|
u32 sz;
|
|
|
|
args = btf_params(func_proto);
|
|
for (i = 0; i < arg_no; i++) {
|
|
t = btf_type_by_id(btf, args[i].type);
|
|
t = btf_resolve_size(btf, t, &sz);
|
|
if (IS_ERR(t))
|
|
return PTR_ERR(t);
|
|
off += roundup(sz, 8);
|
|
}
|
|
|
|
return off;
|
|
}
|
|
|
|
struct bpf_raw_tp_null_args {
|
|
const char *func;
|
|
u64 mask;
|
|
};
|
|
|
|
static const struct bpf_raw_tp_null_args raw_tp_null_args[] = {
|
|
/* sched */
|
|
{ "sched_pi_setprio", 0x10 },
|
|
/* ... from sched_numa_pair_template event class */
|
|
{ "sched_stick_numa", 0x100 },
|
|
{ "sched_swap_numa", 0x100 },
|
|
/* afs */
|
|
{ "afs_make_fs_call", 0x10 },
|
|
{ "afs_make_fs_calli", 0x10 },
|
|
{ "afs_make_fs_call1", 0x10 },
|
|
{ "afs_make_fs_call2", 0x10 },
|
|
{ "afs_protocol_error", 0x1 },
|
|
{ "afs_flock_ev", 0x10 },
|
|
/* cachefiles */
|
|
{ "cachefiles_lookup", 0x1 | 0x200 },
|
|
{ "cachefiles_unlink", 0x1 },
|
|
{ "cachefiles_rename", 0x1 },
|
|
{ "cachefiles_prep_read", 0x1 },
|
|
{ "cachefiles_mark_active", 0x1 },
|
|
{ "cachefiles_mark_failed", 0x1 },
|
|
{ "cachefiles_mark_inactive", 0x1 },
|
|
{ "cachefiles_vfs_error", 0x1 },
|
|
{ "cachefiles_io_error", 0x1 },
|
|
{ "cachefiles_ondemand_open", 0x1 },
|
|
{ "cachefiles_ondemand_copen", 0x1 },
|
|
{ "cachefiles_ondemand_close", 0x1 },
|
|
{ "cachefiles_ondemand_read", 0x1 },
|
|
{ "cachefiles_ondemand_cread", 0x1 },
|
|
{ "cachefiles_ondemand_fd_write", 0x1 },
|
|
{ "cachefiles_ondemand_fd_release", 0x1 },
|
|
/* ext4, from ext4__mballoc event class */
|
|
{ "ext4_mballoc_discard", 0x10 },
|
|
{ "ext4_mballoc_free", 0x10 },
|
|
/* fib */
|
|
{ "fib_table_lookup", 0x100 },
|
|
/* filelock */
|
|
/* ... from filelock_lock event class */
|
|
{ "posix_lock_inode", 0x10 },
|
|
{ "fcntl_setlk", 0x10 },
|
|
{ "locks_remove_posix", 0x10 },
|
|
{ "flock_lock_inode", 0x10 },
|
|
/* ... from filelock_lease event class */
|
|
{ "break_lease_noblock", 0x10 },
|
|
{ "break_lease_block", 0x10 },
|
|
{ "break_lease_unblock", 0x10 },
|
|
{ "generic_delete_lease", 0x10 },
|
|
{ "time_out_leases", 0x10 },
|
|
/* host1x */
|
|
{ "host1x_cdma_push_gather", 0x10000 },
|
|
/* huge_memory */
|
|
{ "mm_khugepaged_scan_pmd", 0x10 },
|
|
{ "mm_collapse_huge_page_isolate", 0x1 },
|
|
{ "mm_khugepaged_scan_file", 0x10 },
|
|
{ "mm_khugepaged_collapse_file", 0x10 },
|
|
/* kmem */
|
|
{ "mm_page_alloc", 0x1 },
|
|
{ "mm_page_pcpu_drain", 0x1 },
|
|
/* .. from mm_page event class */
|
|
{ "mm_page_alloc_zone_locked", 0x1 },
|
|
/* netfs */
|
|
{ "netfs_failure", 0x10 },
|
|
/* power */
|
|
{ "device_pm_callback_start", 0x10 },
|
|
/* qdisc */
|
|
{ "qdisc_dequeue", 0x1000 },
|
|
/* rxrpc */
|
|
{ "rxrpc_recvdata", 0x1 },
|
|
{ "rxrpc_resend", 0x10 },
|
|
/* sunrpc */
|
|
{ "xs_stream_read_data", 0x1 },
|
|
/* ... from xprt_cong_event event class */
|
|
{ "xprt_reserve_cong", 0x10 },
|
|
{ "xprt_release_cong", 0x10 },
|
|
{ "xprt_get_cong", 0x10 },
|
|
{ "xprt_put_cong", 0x10 },
|
|
/* tcp */
|
|
{ "tcp_send_reset", 0x11 },
|
|
/* tegra_apb_dma */
|
|
{ "tegra_dma_tx_status", 0x100 },
|
|
/* timer_migration */
|
|
{ "tmigr_update_events", 0x1 },
|
|
/* writeback, from writeback_folio_template event class */
|
|
{ "writeback_dirty_folio", 0x10 },
|
|
{ "folio_wait_writeback", 0x10 },
|
|
/* rdma */
|
|
{ "mr_integ_alloc", 0x2000 },
|
|
/* bpf_testmod */
|
|
{ "bpf_testmod_test_read", 0x0 },
|
|
};
|
|
|
|
bool btf_ctx_access(int off, int size, enum bpf_access_type type,
|
|
const struct bpf_prog *prog,
|
|
struct bpf_insn_access_aux *info)
|
|
{
|
|
const struct btf_type *t = prog->aux->attach_func_proto;
|
|
struct bpf_prog *tgt_prog = prog->aux->dst_prog;
|
|
struct btf *btf = bpf_prog_get_target_btf(prog);
|
|
const char *tname = prog->aux->attach_func_name;
|
|
struct bpf_verifier_log *log = info->log;
|
|
const struct btf_param *args;
|
|
bool ptr_err_raw_tp = false;
|
|
const char *tag_value;
|
|
u32 nr_args, arg;
|
|
int i, ret;
|
|
|
|
if (off % 8) {
|
|
bpf_log(log, "func '%s' offset %d is not multiple of 8\n",
|
|
tname, off);
|
|
return false;
|
|
}
|
|
arg = get_ctx_arg_idx(btf, t, off);
|
|
args = (const struct btf_param *)(t + 1);
|
|
/* if (t == NULL) Fall back to default BPF prog with
|
|
* MAX_BPF_FUNC_REG_ARGS u64 arguments.
|
|
*/
|
|
nr_args = t ? btf_type_vlen(t) : MAX_BPF_FUNC_REG_ARGS;
|
|
if (prog->aux->attach_btf_trace) {
|
|
/* skip first 'void *__data' argument in btf_trace_##name typedef */
|
|
args++;
|
|
nr_args--;
|
|
}
|
|
|
|
if (arg > nr_args) {
|
|
bpf_log(log, "func '%s' doesn't have %d-th argument\n",
|
|
tname, arg + 1);
|
|
return false;
|
|
}
|
|
|
|
if (arg == nr_args) {
|
|
switch (prog->expected_attach_type) {
|
|
case BPF_LSM_MAC:
|
|
/* mark we are accessing the return value */
|
|
info->is_retval = true;
|
|
fallthrough;
|
|
case BPF_LSM_CGROUP:
|
|
case BPF_TRACE_FEXIT:
|
|
/* When LSM programs are attached to void LSM hooks
|
|
* they use FEXIT trampolines and when attached to
|
|
* int LSM hooks, they use MODIFY_RETURN trampolines.
|
|
*
|
|
* While the LSM programs are BPF_MODIFY_RETURN-like
|
|
* the check:
|
|
*
|
|
* if (ret_type != 'int')
|
|
* return -EINVAL;
|
|
*
|
|
* is _not_ done here. This is still safe as LSM hooks
|
|
* have only void and int return types.
|
|
*/
|
|
if (!t)
|
|
return true;
|
|
t = btf_type_by_id(btf, t->type);
|
|
break;
|
|
case BPF_MODIFY_RETURN:
|
|
/* For now the BPF_MODIFY_RETURN can only be attached to
|
|
* functions that return an int.
|
|
*/
|
|
if (!t)
|
|
return false;
|
|
|
|
t = btf_type_skip_modifiers(btf, t->type, NULL);
|
|
if (!btf_type_is_small_int(t)) {
|
|
bpf_log(log,
|
|
"ret type %s not allowed for fmod_ret\n",
|
|
btf_type_str(t));
|
|
return false;
|
|
}
|
|
break;
|
|
default:
|
|
bpf_log(log, "func '%s' doesn't have %d-th argument\n",
|
|
tname, arg + 1);
|
|
return false;
|
|
}
|
|
} else {
|
|
if (!t)
|
|
/* Default prog with MAX_BPF_FUNC_REG_ARGS args */
|
|
return true;
|
|
t = btf_type_by_id(btf, args[arg].type);
|
|
}
|
|
|
|
/* skip modifiers */
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (btf_type_is_small_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
|
|
/* accessing a scalar */
|
|
return true;
|
|
if (!btf_type_is_ptr(t)) {
|
|
bpf_log(log,
|
|
"func '%s' arg%d '%s' has type %s. Only pointer access is allowed\n",
|
|
tname, arg,
|
|
__btf_name_by_offset(btf, t->name_off),
|
|
btf_type_str(t));
|
|
return false;
|
|
}
|
|
|
|
if (size != sizeof(u64)) {
|
|
bpf_log(log, "func '%s' size %d must be 8\n",
|
|
tname, size);
|
|
return false;
|
|
}
|
|
|
|
/* check for PTR_TO_RDONLY_BUF_OR_NULL or PTR_TO_RDWR_BUF_OR_NULL */
|
|
for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
|
|
const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
|
|
u32 type, flag;
|
|
|
|
type = base_type(ctx_arg_info->reg_type);
|
|
flag = type_flag(ctx_arg_info->reg_type);
|
|
if (ctx_arg_info->offset == off && type == PTR_TO_BUF &&
|
|
(flag & PTR_MAYBE_NULL)) {
|
|
info->reg_type = ctx_arg_info->reg_type;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
if (t->type == 0)
|
|
/* This is a pointer to void.
|
|
* It is the same as scalar from the verifier safety pov.
|
|
* No further pointer walking is allowed.
|
|
*/
|
|
return true;
|
|
|
|
if (is_int_ptr(btf, t))
|
|
return true;
|
|
|
|
/* this is a pointer to another type */
|
|
for (i = 0; i < prog->aux->ctx_arg_info_size; i++) {
|
|
const struct bpf_ctx_arg_aux *ctx_arg_info = &prog->aux->ctx_arg_info[i];
|
|
|
|
if (ctx_arg_info->offset == off) {
|
|
if (!ctx_arg_info->btf_id) {
|
|
bpf_log(log,"invalid btf_id for context argument offset %u\n", off);
|
|
return false;
|
|
}
|
|
|
|
info->reg_type = ctx_arg_info->reg_type;
|
|
info->btf = ctx_arg_info->btf ? : btf_vmlinux;
|
|
info->btf_id = ctx_arg_info->btf_id;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
info->reg_type = PTR_TO_BTF_ID;
|
|
if (prog_args_trusted(prog))
|
|
info->reg_type |= PTR_TRUSTED;
|
|
|
|
if (btf_param_match_suffix(btf, &args[arg], "__nullable"))
|
|
info->reg_type |= PTR_MAYBE_NULL;
|
|
|
|
if (prog->expected_attach_type == BPF_TRACE_RAW_TP) {
|
|
struct btf *btf = prog->aux->attach_btf;
|
|
const struct btf_type *t;
|
|
const char *tname;
|
|
|
|
/* BTF lookups cannot fail, return false on error */
|
|
t = btf_type_by_id(btf, prog->aux->attach_btf_id);
|
|
if (!t)
|
|
return false;
|
|
tname = btf_name_by_offset(btf, t->name_off);
|
|
if (!tname)
|
|
return false;
|
|
/* Checked by bpf_check_attach_target */
|
|
tname += sizeof("btf_trace_") - 1;
|
|
for (i = 0; i < ARRAY_SIZE(raw_tp_null_args); i++) {
|
|
/* Is this a func with potential NULL args? */
|
|
if (strcmp(tname, raw_tp_null_args[i].func))
|
|
continue;
|
|
if (raw_tp_null_args[i].mask & (0x1 << (arg * 4)))
|
|
info->reg_type |= PTR_MAYBE_NULL;
|
|
/* Is the current arg IS_ERR? */
|
|
if (raw_tp_null_args[i].mask & (0x2 << (arg * 4)))
|
|
ptr_err_raw_tp = true;
|
|
break;
|
|
}
|
|
/* If we don't know NULL-ness specification and the tracepoint
|
|
* is coming from a loadable module, be conservative and mark
|
|
* argument as PTR_MAYBE_NULL.
|
|
*/
|
|
if (i == ARRAY_SIZE(raw_tp_null_args) && btf_is_module(btf))
|
|
info->reg_type |= PTR_MAYBE_NULL;
|
|
}
|
|
|
|
if (tgt_prog) {
|
|
enum bpf_prog_type tgt_type;
|
|
|
|
if (tgt_prog->type == BPF_PROG_TYPE_EXT)
|
|
tgt_type = tgt_prog->aux->saved_dst_prog_type;
|
|
else
|
|
tgt_type = tgt_prog->type;
|
|
|
|
ret = btf_translate_to_vmlinux(log, btf, t, tgt_type, arg);
|
|
if (ret > 0) {
|
|
info->btf = btf_vmlinux;
|
|
info->btf_id = ret;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
info->btf = btf;
|
|
info->btf_id = t->type;
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
if (btf_type_is_type_tag(t)) {
|
|
tag_value = __btf_name_by_offset(btf, t->name_off);
|
|
if (strcmp(tag_value, "user") == 0)
|
|
info->reg_type |= MEM_USER;
|
|
if (strcmp(tag_value, "percpu") == 0)
|
|
info->reg_type |= MEM_PERCPU;
|
|
}
|
|
|
|
/* skip modifiers */
|
|
while (btf_type_is_modifier(t)) {
|
|
info->btf_id = t->type;
|
|
t = btf_type_by_id(btf, t->type);
|
|
}
|
|
if (!btf_type_is_struct(t)) {
|
|
bpf_log(log,
|
|
"func '%s' arg%d type %s is not a struct\n",
|
|
tname, arg, btf_type_str(t));
|
|
return false;
|
|
}
|
|
bpf_log(log, "func '%s' arg%d has btf_id %d type %s '%s'\n",
|
|
tname, arg, info->btf_id, btf_type_str(t),
|
|
__btf_name_by_offset(btf, t->name_off));
|
|
|
|
/* Perform all checks on the validity of type for this argument, but if
|
|
* we know it can be IS_ERR at runtime, scrub pointer type and mark as
|
|
* scalar.
|
|
*/
|
|
if (ptr_err_raw_tp) {
|
|
bpf_log(log, "marking pointer arg%d as scalar as it may encode error", arg);
|
|
info->reg_type = SCALAR_VALUE;
|
|
}
|
|
return true;
|
|
}
|
|
EXPORT_SYMBOL_GPL(btf_ctx_access);
|
|
|
|
enum bpf_struct_walk_result {
|
|
/* < 0 error */
|
|
WALK_SCALAR = 0,
|
|
WALK_PTR,
|
|
WALK_STRUCT,
|
|
};
|
|
|
|
static int btf_struct_walk(struct bpf_verifier_log *log, const struct btf *btf,
|
|
const struct btf_type *t, int off, int size,
|
|
u32 *next_btf_id, enum bpf_type_flag *flag,
|
|
const char **field_name)
|
|
{
|
|
u32 i, moff, mtrue_end, msize = 0, total_nelems = 0;
|
|
const struct btf_type *mtype, *elem_type = NULL;
|
|
const struct btf_member *member;
|
|
const char *tname, *mname, *tag_value;
|
|
u32 vlen, elem_id, mid;
|
|
|
|
again:
|
|
if (btf_type_is_modifier(t))
|
|
t = btf_type_skip_modifiers(btf, t->type, NULL);
|
|
tname = __btf_name_by_offset(btf, t->name_off);
|
|
if (!btf_type_is_struct(t)) {
|
|
bpf_log(log, "Type '%s' is not a struct\n", tname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
vlen = btf_type_vlen(t);
|
|
if (BTF_INFO_KIND(t->info) == BTF_KIND_UNION && vlen != 1 && !(*flag & PTR_UNTRUSTED))
|
|
/*
|
|
* walking unions yields untrusted pointers
|
|
* with exception of __bpf_md_ptr and other
|
|
* unions with a single member
|
|
*/
|
|
*flag |= PTR_UNTRUSTED;
|
|
|
|
if (off + size > t->size) {
|
|
/* If the last element is a variable size array, we may
|
|
* need to relax the rule.
|
|
*/
|
|
struct btf_array *array_elem;
|
|
|
|
if (vlen == 0)
|
|
goto error;
|
|
|
|
member = btf_type_member(t) + vlen - 1;
|
|
mtype = btf_type_skip_modifiers(btf, member->type,
|
|
NULL);
|
|
if (!btf_type_is_array(mtype))
|
|
goto error;
|
|
|
|
array_elem = (struct btf_array *)(mtype + 1);
|
|
if (array_elem->nelems != 0)
|
|
goto error;
|
|
|
|
moff = __btf_member_bit_offset(t, member) / 8;
|
|
if (off < moff)
|
|
goto error;
|
|
|
|
/* allow structure and integer */
|
|
t = btf_type_skip_modifiers(btf, array_elem->type,
|
|
NULL);
|
|
|
|
if (btf_type_is_int(t))
|
|
return WALK_SCALAR;
|
|
|
|
if (!btf_type_is_struct(t))
|
|
goto error;
|
|
|
|
off = (off - moff) % t->size;
|
|
goto again;
|
|
|
|
error:
|
|
bpf_log(log, "access beyond struct %s at off %u size %u\n",
|
|
tname, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
for_each_member(i, t, member) {
|
|
/* offset of the field in bytes */
|
|
moff = __btf_member_bit_offset(t, member) / 8;
|
|
if (off + size <= moff)
|
|
/* won't find anything, field is already too far */
|
|
break;
|
|
|
|
if (__btf_member_bitfield_size(t, member)) {
|
|
u32 end_bit = __btf_member_bit_offset(t, member) +
|
|
__btf_member_bitfield_size(t, member);
|
|
|
|
/* off <= moff instead of off == moff because clang
|
|
* does not generate a BTF member for anonymous
|
|
* bitfield like the ":16" here:
|
|
* struct {
|
|
* int :16;
|
|
* int x:8;
|
|
* };
|
|
*/
|
|
if (off <= moff &&
|
|
BITS_ROUNDUP_BYTES(end_bit) <= off + size)
|
|
return WALK_SCALAR;
|
|
|
|
/* off may be accessing a following member
|
|
*
|
|
* or
|
|
*
|
|
* Doing partial access at either end of this
|
|
* bitfield. Continue on this case also to
|
|
* treat it as not accessing this bitfield
|
|
* and eventually error out as field not
|
|
* found to keep it simple.
|
|
* It could be relaxed if there was a legit
|
|
* partial access case later.
|
|
*/
|
|
continue;
|
|
}
|
|
|
|
/* In case of "off" is pointing to holes of a struct */
|
|
if (off < moff)
|
|
break;
|
|
|
|
/* type of the field */
|
|
mid = member->type;
|
|
mtype = btf_type_by_id(btf, member->type);
|
|
mname = __btf_name_by_offset(btf, member->name_off);
|
|
|
|
mtype = __btf_resolve_size(btf, mtype, &msize,
|
|
&elem_type, &elem_id, &total_nelems,
|
|
&mid);
|
|
if (IS_ERR(mtype)) {
|
|
bpf_log(log, "field %s doesn't have size\n", mname);
|
|
return -EFAULT;
|
|
}
|
|
|
|
mtrue_end = moff + msize;
|
|
if (off >= mtrue_end)
|
|
/* no overlap with member, keep iterating */
|
|
continue;
|
|
|
|
if (btf_type_is_array(mtype)) {
|
|
u32 elem_idx;
|
|
|
|
/* __btf_resolve_size() above helps to
|
|
* linearize a multi-dimensional array.
|
|
*
|
|
* The logic here is treating an array
|
|
* in a struct as the following way:
|
|
*
|
|
* struct outer {
|
|
* struct inner array[2][2];
|
|
* };
|
|
*
|
|
* looks like:
|
|
*
|
|
* struct outer {
|
|
* struct inner array_elem0;
|
|
* struct inner array_elem1;
|
|
* struct inner array_elem2;
|
|
* struct inner array_elem3;
|
|
* };
|
|
*
|
|
* When accessing outer->array[1][0], it moves
|
|
* moff to "array_elem2", set mtype to
|
|
* "struct inner", and msize also becomes
|
|
* sizeof(struct inner). Then most of the
|
|
* remaining logic will fall through without
|
|
* caring the current member is an array or
|
|
* not.
|
|
*
|
|
* Unlike mtype/msize/moff, mtrue_end does not
|
|
* change. The naming difference ("_true") tells
|
|
* that it is not always corresponding to
|
|
* the current mtype/msize/moff.
|
|
* It is the true end of the current
|
|
* member (i.e. array in this case). That
|
|
* will allow an int array to be accessed like
|
|
* a scratch space,
|
|
* i.e. allow access beyond the size of
|
|
* the array's element as long as it is
|
|
* within the mtrue_end boundary.
|
|
*/
|
|
|
|
/* skip empty array */
|
|
if (moff == mtrue_end)
|
|
continue;
|
|
|
|
msize /= total_nelems;
|
|
elem_idx = (off - moff) / msize;
|
|
moff += elem_idx * msize;
|
|
mtype = elem_type;
|
|
mid = elem_id;
|
|
}
|
|
|
|
/* the 'off' we're looking for is either equal to start
|
|
* of this field or inside of this struct
|
|
*/
|
|
if (btf_type_is_struct(mtype)) {
|
|
/* our field must be inside that union or struct */
|
|
t = mtype;
|
|
|
|
/* return if the offset matches the member offset */
|
|
if (off == moff) {
|
|
*next_btf_id = mid;
|
|
return WALK_STRUCT;
|
|
}
|
|
|
|
/* adjust offset we're looking for */
|
|
off -= moff;
|
|
goto again;
|
|
}
|
|
|
|
if (btf_type_is_ptr(mtype)) {
|
|
const struct btf_type *stype, *t;
|
|
enum bpf_type_flag tmp_flag = 0;
|
|
u32 id;
|
|
|
|
if (msize != size || off != moff) {
|
|
bpf_log(log,
|
|
"cannot access ptr member %s with moff %u in struct %s with off %u size %u\n",
|
|
mname, moff, tname, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
/* check type tag */
|
|
t = btf_type_by_id(btf, mtype->type);
|
|
if (btf_type_is_type_tag(t)) {
|
|
tag_value = __btf_name_by_offset(btf, t->name_off);
|
|
/* check __user tag */
|
|
if (strcmp(tag_value, "user") == 0)
|
|
tmp_flag = MEM_USER;
|
|
/* check __percpu tag */
|
|
if (strcmp(tag_value, "percpu") == 0)
|
|
tmp_flag = MEM_PERCPU;
|
|
/* check __rcu tag */
|
|
if (strcmp(tag_value, "rcu") == 0)
|
|
tmp_flag = MEM_RCU;
|
|
}
|
|
|
|
stype = btf_type_skip_modifiers(btf, mtype->type, &id);
|
|
if (btf_type_is_struct(stype)) {
|
|
*next_btf_id = id;
|
|
*flag |= tmp_flag;
|
|
if (field_name)
|
|
*field_name = mname;
|
|
return WALK_PTR;
|
|
}
|
|
}
|
|
|
|
/* Allow more flexible access within an int as long as
|
|
* it is within mtrue_end.
|
|
* Since mtrue_end could be the end of an array,
|
|
* that also allows using an array of int as a scratch
|
|
* space. e.g. skb->cb[].
|
|
*/
|
|
if (off + size > mtrue_end && !(*flag & PTR_UNTRUSTED)) {
|
|
bpf_log(log,
|
|
"access beyond the end of member %s (mend:%u) in struct %s with off %u size %u\n",
|
|
mname, mtrue_end, tname, off, size);
|
|
return -EACCES;
|
|
}
|
|
|
|
return WALK_SCALAR;
|
|
}
|
|
bpf_log(log, "struct %s doesn't have field at offset %d\n", tname, off);
|
|
return -EINVAL;
|
|
}
|
|
|
|
int btf_struct_access(struct bpf_verifier_log *log,
|
|
const struct bpf_reg_state *reg,
|
|
int off, int size, enum bpf_access_type atype __maybe_unused,
|
|
u32 *next_btf_id, enum bpf_type_flag *flag,
|
|
const char **field_name)
|
|
{
|
|
const struct btf *btf = reg->btf;
|
|
enum bpf_type_flag tmp_flag = 0;
|
|
const struct btf_type *t;
|
|
u32 id = reg->btf_id;
|
|
int err;
|
|
|
|
while (type_is_alloc(reg->type)) {
|
|
struct btf_struct_meta *meta;
|
|
struct btf_record *rec;
|
|
int i;
|
|
|
|
meta = btf_find_struct_meta(btf, id);
|
|
if (!meta)
|
|
break;
|
|
rec = meta->record;
|
|
for (i = 0; i < rec->cnt; i++) {
|
|
struct btf_field *field = &rec->fields[i];
|
|
u32 offset = field->offset;
|
|
if (off < offset + field->size && offset < off + size) {
|
|
bpf_log(log,
|
|
"direct access to %s is disallowed\n",
|
|
btf_field_type_name(field->type));
|
|
return -EACCES;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
t = btf_type_by_id(btf, id);
|
|
do {
|
|
err = btf_struct_walk(log, btf, t, off, size, &id, &tmp_flag, field_name);
|
|
|
|
switch (err) {
|
|
case WALK_PTR:
|
|
/* For local types, the destination register cannot
|
|
* become a pointer again.
|
|
*/
|
|
if (type_is_alloc(reg->type))
|
|
return SCALAR_VALUE;
|
|
/* If we found the pointer or scalar on t+off,
|
|
* we're done.
|
|
*/
|
|
*next_btf_id = id;
|
|
*flag = tmp_flag;
|
|
return PTR_TO_BTF_ID;
|
|
case WALK_SCALAR:
|
|
return SCALAR_VALUE;
|
|
case WALK_STRUCT:
|
|
/* We found nested struct, so continue the search
|
|
* by diving in it. At this point the offset is
|
|
* aligned with the new type, so set it to 0.
|
|
*/
|
|
t = btf_type_by_id(btf, id);
|
|
off = 0;
|
|
break;
|
|
default:
|
|
/* It's either error or unknown return value..
|
|
* scream and leave.
|
|
*/
|
|
if (WARN_ONCE(err > 0, "unknown btf_struct_walk return value"))
|
|
return -EINVAL;
|
|
return err;
|
|
}
|
|
} while (t);
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* Check that two BTF types, each specified as an BTF object + id, are exactly
|
|
* the same. Trivial ID check is not enough due to module BTFs, because we can
|
|
* end up with two different module BTFs, but IDs point to the common type in
|
|
* vmlinux BTF.
|
|
*/
|
|
bool btf_types_are_same(const struct btf *btf1, u32 id1,
|
|
const struct btf *btf2, u32 id2)
|
|
{
|
|
if (id1 != id2)
|
|
return false;
|
|
if (btf1 == btf2)
|
|
return true;
|
|
return btf_type_by_id(btf1, id1) == btf_type_by_id(btf2, id2);
|
|
}
|
|
|
|
bool btf_struct_ids_match(struct bpf_verifier_log *log,
|
|
const struct btf *btf, u32 id, int off,
|
|
const struct btf *need_btf, u32 need_type_id,
|
|
bool strict)
|
|
{
|
|
const struct btf_type *type;
|
|
enum bpf_type_flag flag = 0;
|
|
int err;
|
|
|
|
/* Are we already done? */
|
|
if (off == 0 && btf_types_are_same(btf, id, need_btf, need_type_id))
|
|
return true;
|
|
/* In case of strict type match, we do not walk struct, the top level
|
|
* type match must succeed. When strict is true, off should have already
|
|
* been 0.
|
|
*/
|
|
if (strict)
|
|
return false;
|
|
again:
|
|
type = btf_type_by_id(btf, id);
|
|
if (!type)
|
|
return false;
|
|
err = btf_struct_walk(log, btf, type, off, 1, &id, &flag, NULL);
|
|
if (err != WALK_STRUCT)
|
|
return false;
|
|
|
|
/* We found nested struct object. If it matches
|
|
* the requested ID, we're done. Otherwise let's
|
|
* continue the search with offset 0 in the new
|
|
* type.
|
|
*/
|
|
if (!btf_types_are_same(btf, id, need_btf, need_type_id)) {
|
|
off = 0;
|
|
goto again;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int __get_type_size(struct btf *btf, u32 btf_id,
|
|
const struct btf_type **ret_type)
|
|
{
|
|
const struct btf_type *t;
|
|
|
|
*ret_type = btf_type_by_id(btf, 0);
|
|
if (!btf_id)
|
|
/* void */
|
|
return 0;
|
|
t = btf_type_by_id(btf, btf_id);
|
|
while (t && btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!t)
|
|
return -EINVAL;
|
|
*ret_type = t;
|
|
if (btf_type_is_ptr(t))
|
|
/* kernel size of pointer. Not BPF's size of pointer*/
|
|
return sizeof(void *);
|
|
if (btf_type_is_int(t) || btf_is_any_enum(t) || __btf_type_is_struct(t))
|
|
return t->size;
|
|
return -EINVAL;
|
|
}
|
|
|
|
static u8 __get_type_fmodel_flags(const struct btf_type *t)
|
|
{
|
|
u8 flags = 0;
|
|
|
|
if (__btf_type_is_struct(t))
|
|
flags |= BTF_FMODEL_STRUCT_ARG;
|
|
if (btf_type_is_signed_int(t))
|
|
flags |= BTF_FMODEL_SIGNED_ARG;
|
|
|
|
return flags;
|
|
}
|
|
|
|
int btf_distill_func_proto(struct bpf_verifier_log *log,
|
|
struct btf *btf,
|
|
const struct btf_type *func,
|
|
const char *tname,
|
|
struct btf_func_model *m)
|
|
{
|
|
const struct btf_param *args;
|
|
const struct btf_type *t;
|
|
u32 i, nargs;
|
|
int ret;
|
|
|
|
if (!func) {
|
|
/* BTF function prototype doesn't match the verifier types.
|
|
* Fall back to MAX_BPF_FUNC_REG_ARGS u64 args.
|
|
*/
|
|
for (i = 0; i < MAX_BPF_FUNC_REG_ARGS; i++) {
|
|
m->arg_size[i] = 8;
|
|
m->arg_flags[i] = 0;
|
|
}
|
|
m->ret_size = 8;
|
|
m->ret_flags = 0;
|
|
m->nr_args = MAX_BPF_FUNC_REG_ARGS;
|
|
return 0;
|
|
}
|
|
args = (const struct btf_param *)(func + 1);
|
|
nargs = btf_type_vlen(func);
|
|
if (nargs > MAX_BPF_FUNC_ARGS) {
|
|
bpf_log(log,
|
|
"The function %s has %d arguments. Too many.\n",
|
|
tname, nargs);
|
|
return -EINVAL;
|
|
}
|
|
ret = __get_type_size(btf, func->type, &t);
|
|
if (ret < 0 || __btf_type_is_struct(t)) {
|
|
bpf_log(log,
|
|
"The function %s return type %s is unsupported.\n",
|
|
tname, btf_type_str(t));
|
|
return -EINVAL;
|
|
}
|
|
m->ret_size = ret;
|
|
m->ret_flags = __get_type_fmodel_flags(t);
|
|
|
|
for (i = 0; i < nargs; i++) {
|
|
if (i == nargs - 1 && args[i].type == 0) {
|
|
bpf_log(log,
|
|
"The function %s with variable args is unsupported.\n",
|
|
tname);
|
|
return -EINVAL;
|
|
}
|
|
ret = __get_type_size(btf, args[i].type, &t);
|
|
|
|
/* No support of struct argument size greater than 16 bytes */
|
|
if (ret < 0 || ret > 16) {
|
|
bpf_log(log,
|
|
"The function %s arg%d type %s is unsupported.\n",
|
|
tname, i, btf_type_str(t));
|
|
return -EINVAL;
|
|
}
|
|
if (ret == 0) {
|
|
bpf_log(log,
|
|
"The function %s has malformed void argument.\n",
|
|
tname);
|
|
return -EINVAL;
|
|
}
|
|
m->arg_size[i] = ret;
|
|
m->arg_flags[i] = __get_type_fmodel_flags(t);
|
|
}
|
|
m->nr_args = nargs;
|
|
return 0;
|
|
}
|
|
|
|
/* Compare BTFs of two functions assuming only scalars and pointers to context.
|
|
* t1 points to BTF_KIND_FUNC in btf1
|
|
* t2 points to BTF_KIND_FUNC in btf2
|
|
* Returns:
|
|
* EINVAL - function prototype mismatch
|
|
* EFAULT - verifier bug
|
|
* 0 - 99% match. The last 1% is validated by the verifier.
|
|
*/
|
|
static int btf_check_func_type_match(struct bpf_verifier_log *log,
|
|
struct btf *btf1, const struct btf_type *t1,
|
|
struct btf *btf2, const struct btf_type *t2)
|
|
{
|
|
const struct btf_param *args1, *args2;
|
|
const char *fn1, *fn2, *s1, *s2;
|
|
u32 nargs1, nargs2, i;
|
|
|
|
fn1 = btf_name_by_offset(btf1, t1->name_off);
|
|
fn2 = btf_name_by_offset(btf2, t2->name_off);
|
|
|
|
if (btf_func_linkage(t1) != BTF_FUNC_GLOBAL) {
|
|
bpf_log(log, "%s() is not a global function\n", fn1);
|
|
return -EINVAL;
|
|
}
|
|
if (btf_func_linkage(t2) != BTF_FUNC_GLOBAL) {
|
|
bpf_log(log, "%s() is not a global function\n", fn2);
|
|
return -EINVAL;
|
|
}
|
|
|
|
t1 = btf_type_by_id(btf1, t1->type);
|
|
if (!t1 || !btf_type_is_func_proto(t1))
|
|
return -EFAULT;
|
|
t2 = btf_type_by_id(btf2, t2->type);
|
|
if (!t2 || !btf_type_is_func_proto(t2))
|
|
return -EFAULT;
|
|
|
|
args1 = (const struct btf_param *)(t1 + 1);
|
|
nargs1 = btf_type_vlen(t1);
|
|
args2 = (const struct btf_param *)(t2 + 1);
|
|
nargs2 = btf_type_vlen(t2);
|
|
|
|
if (nargs1 != nargs2) {
|
|
bpf_log(log, "%s() has %d args while %s() has %d args\n",
|
|
fn1, nargs1, fn2, nargs2);
|
|
return -EINVAL;
|
|
}
|
|
|
|
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
|
|
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
|
|
if (t1->info != t2->info) {
|
|
bpf_log(log,
|
|
"Return type %s of %s() doesn't match type %s of %s()\n",
|
|
btf_type_str(t1), fn1,
|
|
btf_type_str(t2), fn2);
|
|
return -EINVAL;
|
|
}
|
|
|
|
for (i = 0; i < nargs1; i++) {
|
|
t1 = btf_type_skip_modifiers(btf1, args1[i].type, NULL);
|
|
t2 = btf_type_skip_modifiers(btf2, args2[i].type, NULL);
|
|
|
|
if (t1->info != t2->info) {
|
|
bpf_log(log, "arg%d in %s() is %s while %s() has %s\n",
|
|
i, fn1, btf_type_str(t1),
|
|
fn2, btf_type_str(t2));
|
|
return -EINVAL;
|
|
}
|
|
if (btf_type_has_size(t1) && t1->size != t2->size) {
|
|
bpf_log(log,
|
|
"arg%d in %s() has size %d while %s() has %d\n",
|
|
i, fn1, t1->size,
|
|
fn2, t2->size);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/* global functions are validated with scalars and pointers
|
|
* to context only. And only global functions can be replaced.
|
|
* Hence type check only those types.
|
|
*/
|
|
if (btf_type_is_int(t1) || btf_is_any_enum(t1))
|
|
continue;
|
|
if (!btf_type_is_ptr(t1)) {
|
|
bpf_log(log,
|
|
"arg%d in %s() has unrecognized type\n",
|
|
i, fn1);
|
|
return -EINVAL;
|
|
}
|
|
t1 = btf_type_skip_modifiers(btf1, t1->type, NULL);
|
|
t2 = btf_type_skip_modifiers(btf2, t2->type, NULL);
|
|
if (!btf_type_is_struct(t1)) {
|
|
bpf_log(log,
|
|
"arg%d in %s() is not a pointer to context\n",
|
|
i, fn1);
|
|
return -EINVAL;
|
|
}
|
|
if (!btf_type_is_struct(t2)) {
|
|
bpf_log(log,
|
|
"arg%d in %s() is not a pointer to context\n",
|
|
i, fn2);
|
|
return -EINVAL;
|
|
}
|
|
/* This is an optional check to make program writing easier.
|
|
* Compare names of structs and report an error to the user.
|
|
* btf_prepare_func_args() already checked that t2 struct
|
|
* is a context type. btf_prepare_func_args() will check
|
|
* later that t1 struct is a context type as well.
|
|
*/
|
|
s1 = btf_name_by_offset(btf1, t1->name_off);
|
|
s2 = btf_name_by_offset(btf2, t2->name_off);
|
|
if (strcmp(s1, s2)) {
|
|
bpf_log(log,
|
|
"arg%d %s(struct %s *) doesn't match %s(struct %s *)\n",
|
|
i, fn1, s1, fn2, s2);
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* Compare BTFs of given program with BTF of target program */
|
|
int btf_check_type_match(struct bpf_verifier_log *log, const struct bpf_prog *prog,
|
|
struct btf *btf2, const struct btf_type *t2)
|
|
{
|
|
struct btf *btf1 = prog->aux->btf;
|
|
const struct btf_type *t1;
|
|
u32 btf_id = 0;
|
|
|
|
if (!prog->aux->func_info) {
|
|
bpf_log(log, "Program extension requires BTF\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
btf_id = prog->aux->func_info[0].type_id;
|
|
if (!btf_id)
|
|
return -EFAULT;
|
|
|
|
t1 = btf_type_by_id(btf1, btf_id);
|
|
if (!t1 || !btf_type_is_func(t1))
|
|
return -EFAULT;
|
|
|
|
return btf_check_func_type_match(log, btf1, t1, btf2, t2);
|
|
}
|
|
|
|
static bool btf_is_dynptr_ptr(const struct btf *btf, const struct btf_type *t)
|
|
{
|
|
const char *name;
|
|
|
|
t = btf_type_by_id(btf, t->type); /* skip PTR */
|
|
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
|
|
/* allow either struct or struct forward declaration */
|
|
if (btf_type_is_struct(t) ||
|
|
(btf_type_is_fwd(t) && btf_type_kflag(t) == 0)) {
|
|
name = btf_str_by_offset(btf, t->name_off);
|
|
return name && strcmp(name, "bpf_dynptr") == 0;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
struct bpf_cand_cache {
|
|
const char *name;
|
|
u32 name_len;
|
|
u16 kind;
|
|
u16 cnt;
|
|
struct {
|
|
const struct btf *btf;
|
|
u32 id;
|
|
} cands[];
|
|
};
|
|
|
|
static DEFINE_MUTEX(cand_cache_mutex);
|
|
|
|
static struct bpf_cand_cache *
|
|
bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id);
|
|
|
|
static int btf_get_ptr_to_btf_id(struct bpf_verifier_log *log, int arg_idx,
|
|
const struct btf *btf, const struct btf_type *t)
|
|
{
|
|
struct bpf_cand_cache *cc;
|
|
struct bpf_core_ctx ctx = {
|
|
.btf = btf,
|
|
.log = log,
|
|
};
|
|
u32 kern_type_id, type_id;
|
|
int err = 0;
|
|
|
|
/* skip PTR and modifiers */
|
|
type_id = t->type;
|
|
t = btf_type_by_id(btf, t->type);
|
|
while (btf_type_is_modifier(t)) {
|
|
type_id = t->type;
|
|
t = btf_type_by_id(btf, t->type);
|
|
}
|
|
|
|
mutex_lock(&cand_cache_mutex);
|
|
cc = bpf_core_find_cands(&ctx, type_id);
|
|
if (IS_ERR(cc)) {
|
|
err = PTR_ERR(cc);
|
|
bpf_log(log, "arg#%d reference type('%s %s') candidate matching error: %d\n",
|
|
arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
|
|
err);
|
|
goto cand_cache_unlock;
|
|
}
|
|
if (cc->cnt != 1) {
|
|
bpf_log(log, "arg#%d reference type('%s %s') %s\n",
|
|
arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off),
|
|
cc->cnt == 0 ? "has no matches" : "is ambiguous");
|
|
err = cc->cnt == 0 ? -ENOENT : -ESRCH;
|
|
goto cand_cache_unlock;
|
|
}
|
|
if (btf_is_module(cc->cands[0].btf)) {
|
|
bpf_log(log, "arg#%d reference type('%s %s') points to kernel module type (unsupported)\n",
|
|
arg_idx, btf_type_str(t), __btf_name_by_offset(btf, t->name_off));
|
|
err = -EOPNOTSUPP;
|
|
goto cand_cache_unlock;
|
|
}
|
|
kern_type_id = cc->cands[0].id;
|
|
|
|
cand_cache_unlock:
|
|
mutex_unlock(&cand_cache_mutex);
|
|
if (err)
|
|
return err;
|
|
|
|
return kern_type_id;
|
|
}
|
|
|
|
enum btf_arg_tag {
|
|
ARG_TAG_CTX = BIT_ULL(0),
|
|
ARG_TAG_NONNULL = BIT_ULL(1),
|
|
ARG_TAG_TRUSTED = BIT_ULL(2),
|
|
ARG_TAG_NULLABLE = BIT_ULL(3),
|
|
ARG_TAG_ARENA = BIT_ULL(4),
|
|
};
|
|
|
|
/* Process BTF of a function to produce high-level expectation of function
|
|
* arguments (like ARG_PTR_TO_CTX, or ARG_PTR_TO_MEM, etc). This information
|
|
* is cached in subprog info for reuse.
|
|
* Returns:
|
|
* EFAULT - there is a verifier bug. Abort verification.
|
|
* EINVAL - cannot convert BTF.
|
|
* 0 - Successfully processed BTF and constructed argument expectations.
|
|
*/
|
|
int btf_prepare_func_args(struct bpf_verifier_env *env, int subprog)
|
|
{
|
|
bool is_global = subprog_aux(env, subprog)->linkage == BTF_FUNC_GLOBAL;
|
|
struct bpf_subprog_info *sub = subprog_info(env, subprog);
|
|
struct bpf_verifier_log *log = &env->log;
|
|
struct bpf_prog *prog = env->prog;
|
|
enum bpf_prog_type prog_type = prog->type;
|
|
struct btf *btf = prog->aux->btf;
|
|
const struct btf_param *args;
|
|
const struct btf_type *t, *ref_t, *fn_t;
|
|
u32 i, nargs, btf_id;
|
|
const char *tname;
|
|
|
|
if (sub->args_cached)
|
|
return 0;
|
|
|
|
if (!prog->aux->func_info) {
|
|
bpf_log(log, "Verifier bug\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
btf_id = prog->aux->func_info[subprog].type_id;
|
|
if (!btf_id) {
|
|
if (!is_global) /* not fatal for static funcs */
|
|
return -EINVAL;
|
|
bpf_log(log, "Global functions need valid BTF\n");
|
|
return -EFAULT;
|
|
}
|
|
|
|
fn_t = btf_type_by_id(btf, btf_id);
|
|
if (!fn_t || !btf_type_is_func(fn_t)) {
|
|
/* These checks were already done by the verifier while loading
|
|
* struct bpf_func_info
|
|
*/
|
|
bpf_log(log, "BTF of func#%d doesn't point to KIND_FUNC\n",
|
|
subprog);
|
|
return -EFAULT;
|
|
}
|
|
tname = btf_name_by_offset(btf, fn_t->name_off);
|
|
|
|
if (prog->aux->func_info_aux[subprog].unreliable) {
|
|
bpf_log(log, "Verifier bug in function %s()\n", tname);
|
|
return -EFAULT;
|
|
}
|
|
if (prog_type == BPF_PROG_TYPE_EXT)
|
|
prog_type = prog->aux->dst_prog->type;
|
|
|
|
t = btf_type_by_id(btf, fn_t->type);
|
|
if (!t || !btf_type_is_func_proto(t)) {
|
|
bpf_log(log, "Invalid type of function %s()\n", tname);
|
|
return -EFAULT;
|
|
}
|
|
args = (const struct btf_param *)(t + 1);
|
|
nargs = btf_type_vlen(t);
|
|
if (nargs > MAX_BPF_FUNC_REG_ARGS) {
|
|
if (!is_global)
|
|
return -EINVAL;
|
|
bpf_log(log, "Global function %s() with %d > %d args. Buggy compiler.\n",
|
|
tname, nargs, MAX_BPF_FUNC_REG_ARGS);
|
|
return -EINVAL;
|
|
}
|
|
/* check that function returns int, exception cb also requires this */
|
|
t = btf_type_by_id(btf, t->type);
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!btf_type_is_int(t) && !btf_is_any_enum(t)) {
|
|
if (!is_global)
|
|
return -EINVAL;
|
|
bpf_log(log,
|
|
"Global function %s() doesn't return scalar. Only those are supported.\n",
|
|
tname);
|
|
return -EINVAL;
|
|
}
|
|
/* Convert BTF function arguments into verifier types.
|
|
* Only PTR_TO_CTX and SCALAR are supported atm.
|
|
*/
|
|
for (i = 0; i < nargs; i++) {
|
|
u32 tags = 0;
|
|
int id = 0;
|
|
|
|
/* 'arg:<tag>' decl_tag takes precedence over derivation of
|
|
* register type from BTF type itself
|
|
*/
|
|
while ((id = btf_find_next_decl_tag(btf, fn_t, i, "arg:", id)) > 0) {
|
|
const struct btf_type *tag_t = btf_type_by_id(btf, id);
|
|
const char *tag = __btf_name_by_offset(btf, tag_t->name_off) + 4;
|
|
|
|
/* disallow arg tags in static subprogs */
|
|
if (!is_global) {
|
|
bpf_log(log, "arg#%d type tag is not supported in static functions\n", i);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
|
|
if (strcmp(tag, "ctx") == 0) {
|
|
tags |= ARG_TAG_CTX;
|
|
} else if (strcmp(tag, "trusted") == 0) {
|
|
tags |= ARG_TAG_TRUSTED;
|
|
} else if (strcmp(tag, "nonnull") == 0) {
|
|
tags |= ARG_TAG_NONNULL;
|
|
} else if (strcmp(tag, "nullable") == 0) {
|
|
tags |= ARG_TAG_NULLABLE;
|
|
} else if (strcmp(tag, "arena") == 0) {
|
|
tags |= ARG_TAG_ARENA;
|
|
} else {
|
|
bpf_log(log, "arg#%d has unsupported set of tags\n", i);
|
|
return -EOPNOTSUPP;
|
|
}
|
|
}
|
|
if (id != -ENOENT) {
|
|
bpf_log(log, "arg#%d type tag fetching failure: %d\n", i, id);
|
|
return id;
|
|
}
|
|
|
|
t = btf_type_by_id(btf, args[i].type);
|
|
while (btf_type_is_modifier(t))
|
|
t = btf_type_by_id(btf, t->type);
|
|
if (!btf_type_is_ptr(t))
|
|
goto skip_pointer;
|
|
|
|
if ((tags & ARG_TAG_CTX) || btf_is_prog_ctx_type(log, btf, t, prog_type, i)) {
|
|
if (tags & ~ARG_TAG_CTX) {
|
|
bpf_log(log, "arg#%d has invalid combination of tags\n", i);
|
|
return -EINVAL;
|
|
}
|
|
if ((tags & ARG_TAG_CTX) &&
|
|
btf_validate_prog_ctx_type(log, btf, t, i, prog_type,
|
|
prog->expected_attach_type))
|
|
return -EINVAL;
|
|
sub->args[i].arg_type = ARG_PTR_TO_CTX;
|
|
continue;
|
|
}
|
|
if (btf_is_dynptr_ptr(btf, t)) {
|
|
if (tags) {
|
|
bpf_log(log, "arg#%d has invalid combination of tags\n", i);
|
|
return -EINVAL;
|
|
}
|
|
sub->args[i].arg_type = ARG_PTR_TO_DYNPTR | MEM_RDONLY;
|
|
continue;
|
|
}
|
|
if (tags & ARG_TAG_TRUSTED) {
|
|
int kern_type_id;
|
|
|
|
if (tags & ARG_TAG_NONNULL) {
|
|
bpf_log(log, "arg#%d has invalid combination of tags\n", i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
kern_type_id = btf_get_ptr_to_btf_id(log, i, btf, t);
|
|
if (kern_type_id < 0)
|
|
return kern_type_id;
|
|
|
|
sub->args[i].arg_type = ARG_PTR_TO_BTF_ID | PTR_TRUSTED;
|
|
if (tags & ARG_TAG_NULLABLE)
|
|
sub->args[i].arg_type |= PTR_MAYBE_NULL;
|
|
sub->args[i].btf_id = kern_type_id;
|
|
continue;
|
|
}
|
|
if (tags & ARG_TAG_ARENA) {
|
|
if (tags & ~ARG_TAG_ARENA) {
|
|
bpf_log(log, "arg#%d arena cannot be combined with any other tags\n", i);
|
|
return -EINVAL;
|
|
}
|
|
sub->args[i].arg_type = ARG_PTR_TO_ARENA;
|
|
continue;
|
|
}
|
|
if (is_global) { /* generic user data pointer */
|
|
u32 mem_size;
|
|
|
|
if (tags & ARG_TAG_NULLABLE) {
|
|
bpf_log(log, "arg#%d has invalid combination of tags\n", i);
|
|
return -EINVAL;
|
|
}
|
|
|
|
t = btf_type_skip_modifiers(btf, t->type, NULL);
|
|
ref_t = btf_resolve_size(btf, t, &mem_size);
|
|
if (IS_ERR(ref_t)) {
|
|
bpf_log(log, "arg#%d reference type('%s %s') size cannot be determined: %ld\n",
|
|
i, btf_type_str(t), btf_name_by_offset(btf, t->name_off),
|
|
PTR_ERR(ref_t));
|
|
return -EINVAL;
|
|
}
|
|
|
|
sub->args[i].arg_type = ARG_PTR_TO_MEM | PTR_MAYBE_NULL;
|
|
if (tags & ARG_TAG_NONNULL)
|
|
sub->args[i].arg_type &= ~PTR_MAYBE_NULL;
|
|
sub->args[i].mem_size = mem_size;
|
|
continue;
|
|
}
|
|
|
|
skip_pointer:
|
|
if (tags) {
|
|
bpf_log(log, "arg#%d has pointer tag, but is not a pointer type\n", i);
|
|
return -EINVAL;
|
|
}
|
|
if (btf_type_is_int(t) || btf_is_any_enum(t)) {
|
|
sub->args[i].arg_type = ARG_ANYTHING;
|
|
continue;
|
|
}
|
|
if (!is_global)
|
|
return -EINVAL;
|
|
bpf_log(log, "Arg#%d type %s in %s() is not supported yet.\n",
|
|
i, btf_type_str(t), tname);
|
|
return -EINVAL;
|
|
}
|
|
|
|
sub->arg_cnt = nargs;
|
|
sub->args_cached = true;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void btf_type_show(const struct btf *btf, u32 type_id, void *obj,
|
|
struct btf_show *show)
|
|
{
|
|
const struct btf_type *t = btf_type_by_id(btf, type_id);
|
|
|
|
show->btf = btf;
|
|
memset(&show->state, 0, sizeof(show->state));
|
|
memset(&show->obj, 0, sizeof(show->obj));
|
|
|
|
btf_type_ops(t)->show(btf, t, type_id, obj, 0, show);
|
|
}
|
|
|
|
__printf(2, 0) static void btf_seq_show(struct btf_show *show, const char *fmt,
|
|
va_list args)
|
|
{
|
|
seq_vprintf((struct seq_file *)show->target, fmt, args);
|
|
}
|
|
|
|
int btf_type_seq_show_flags(const struct btf *btf, u32 type_id,
|
|
void *obj, struct seq_file *m, u64 flags)
|
|
{
|
|
struct btf_show sseq;
|
|
|
|
sseq.target = m;
|
|
sseq.showfn = btf_seq_show;
|
|
sseq.flags = flags;
|
|
|
|
btf_type_show(btf, type_id, obj, &sseq);
|
|
|
|
return sseq.state.status;
|
|
}
|
|
|
|
void btf_type_seq_show(const struct btf *btf, u32 type_id, void *obj,
|
|
struct seq_file *m)
|
|
{
|
|
(void) btf_type_seq_show_flags(btf, type_id, obj, m,
|
|
BTF_SHOW_NONAME | BTF_SHOW_COMPACT |
|
|
BTF_SHOW_ZERO | BTF_SHOW_UNSAFE);
|
|
}
|
|
|
|
struct btf_show_snprintf {
|
|
struct btf_show show;
|
|
int len_left; /* space left in string */
|
|
int len; /* length we would have written */
|
|
};
|
|
|
|
__printf(2, 0) static void btf_snprintf_show(struct btf_show *show, const char *fmt,
|
|
va_list args)
|
|
{
|
|
struct btf_show_snprintf *ssnprintf = (struct btf_show_snprintf *)show;
|
|
int len;
|
|
|
|
len = vsnprintf(show->target, ssnprintf->len_left, fmt, args);
|
|
|
|
if (len < 0) {
|
|
ssnprintf->len_left = 0;
|
|
ssnprintf->len = len;
|
|
} else if (len >= ssnprintf->len_left) {
|
|
/* no space, drive on to get length we would have written */
|
|
ssnprintf->len_left = 0;
|
|
ssnprintf->len += len;
|
|
} else {
|
|
ssnprintf->len_left -= len;
|
|
ssnprintf->len += len;
|
|
show->target += len;
|
|
}
|
|
}
|
|
|
|
int btf_type_snprintf_show(const struct btf *btf, u32 type_id, void *obj,
|
|
char *buf, int len, u64 flags)
|
|
{
|
|
struct btf_show_snprintf ssnprintf;
|
|
|
|
ssnprintf.show.target = buf;
|
|
ssnprintf.show.flags = flags;
|
|
ssnprintf.show.showfn = btf_snprintf_show;
|
|
ssnprintf.len_left = len;
|
|
ssnprintf.len = 0;
|
|
|
|
btf_type_show(btf, type_id, obj, (struct btf_show *)&ssnprintf);
|
|
|
|
/* If we encountered an error, return it. */
|
|
if (ssnprintf.show.state.status)
|
|
return ssnprintf.show.state.status;
|
|
|
|
/* Otherwise return length we would have written */
|
|
return ssnprintf.len;
|
|
}
|
|
|
|
#ifdef CONFIG_PROC_FS
|
|
static void bpf_btf_show_fdinfo(struct seq_file *m, struct file *filp)
|
|
{
|
|
const struct btf *btf = filp->private_data;
|
|
|
|
seq_printf(m, "btf_id:\t%u\n", btf->id);
|
|
}
|
|
#endif
|
|
|
|
static int btf_release(struct inode *inode, struct file *filp)
|
|
{
|
|
btf_put(filp->private_data);
|
|
return 0;
|
|
}
|
|
|
|
const struct file_operations btf_fops = {
|
|
#ifdef CONFIG_PROC_FS
|
|
.show_fdinfo = bpf_btf_show_fdinfo,
|
|
#endif
|
|
.release = btf_release,
|
|
};
|
|
|
|
static int __btf_new_fd(struct btf *btf)
|
|
{
|
|
return anon_inode_getfd("btf", &btf_fops, btf, O_RDONLY | O_CLOEXEC);
|
|
}
|
|
|
|
int btf_new_fd(const union bpf_attr *attr, bpfptr_t uattr, u32 uattr_size)
|
|
{
|
|
struct btf *btf;
|
|
int ret;
|
|
|
|
btf = btf_parse(attr, uattr, uattr_size);
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
|
|
ret = btf_alloc_id(btf);
|
|
if (ret) {
|
|
btf_free(btf);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The BTF ID is published to the userspace.
|
|
* All BTF free must go through call_rcu() from
|
|
* now on (i.e. free by calling btf_put()).
|
|
*/
|
|
|
|
ret = __btf_new_fd(btf);
|
|
if (ret < 0)
|
|
btf_put(btf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
struct btf *btf_get_by_fd(int fd)
|
|
{
|
|
struct btf *btf;
|
|
CLASS(fd, f)(fd);
|
|
|
|
if (fd_empty(f))
|
|
return ERR_PTR(-EBADF);
|
|
|
|
if (fd_file(f)->f_op != &btf_fops)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
btf = fd_file(f)->private_data;
|
|
refcount_inc(&btf->refcnt);
|
|
|
|
return btf;
|
|
}
|
|
|
|
int btf_get_info_by_fd(const struct btf *btf,
|
|
const union bpf_attr *attr,
|
|
union bpf_attr __user *uattr)
|
|
{
|
|
struct bpf_btf_info __user *uinfo;
|
|
struct bpf_btf_info info;
|
|
u32 info_copy, btf_copy;
|
|
void __user *ubtf;
|
|
char __user *uname;
|
|
u32 uinfo_len, uname_len, name_len;
|
|
int ret = 0;
|
|
|
|
uinfo = u64_to_user_ptr(attr->info.info);
|
|
uinfo_len = attr->info.info_len;
|
|
|
|
info_copy = min_t(u32, uinfo_len, sizeof(info));
|
|
memset(&info, 0, sizeof(info));
|
|
if (copy_from_user(&info, uinfo, info_copy))
|
|
return -EFAULT;
|
|
|
|
info.id = btf->id;
|
|
ubtf = u64_to_user_ptr(info.btf);
|
|
btf_copy = min_t(u32, btf->data_size, info.btf_size);
|
|
if (copy_to_user(ubtf, btf->data, btf_copy))
|
|
return -EFAULT;
|
|
info.btf_size = btf->data_size;
|
|
|
|
info.kernel_btf = btf->kernel_btf;
|
|
|
|
uname = u64_to_user_ptr(info.name);
|
|
uname_len = info.name_len;
|
|
if (!uname ^ !uname_len)
|
|
return -EINVAL;
|
|
|
|
name_len = strlen(btf->name);
|
|
info.name_len = name_len;
|
|
|
|
if (uname) {
|
|
if (uname_len >= name_len + 1) {
|
|
if (copy_to_user(uname, btf->name, name_len + 1))
|
|
return -EFAULT;
|
|
} else {
|
|
char zero = '\0';
|
|
|
|
if (copy_to_user(uname, btf->name, uname_len - 1))
|
|
return -EFAULT;
|
|
if (put_user(zero, uname + uname_len - 1))
|
|
return -EFAULT;
|
|
/* let user-space know about too short buffer */
|
|
ret = -ENOSPC;
|
|
}
|
|
}
|
|
|
|
if (copy_to_user(uinfo, &info, info_copy) ||
|
|
put_user(info_copy, &uattr->info.info_len))
|
|
return -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int btf_get_fd_by_id(u32 id)
|
|
{
|
|
struct btf *btf;
|
|
int fd;
|
|
|
|
rcu_read_lock();
|
|
btf = idr_find(&btf_idr, id);
|
|
if (!btf || !refcount_inc_not_zero(&btf->refcnt))
|
|
btf = ERR_PTR(-ENOENT);
|
|
rcu_read_unlock();
|
|
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
|
|
fd = __btf_new_fd(btf);
|
|
if (fd < 0)
|
|
btf_put(btf);
|
|
|
|
return fd;
|
|
}
|
|
|
|
u32 btf_obj_id(const struct btf *btf)
|
|
{
|
|
return btf->id;
|
|
}
|
|
|
|
bool btf_is_kernel(const struct btf *btf)
|
|
{
|
|
return btf->kernel_btf;
|
|
}
|
|
|
|
bool btf_is_module(const struct btf *btf)
|
|
{
|
|
return btf->kernel_btf && strcmp(btf->name, "vmlinux") != 0;
|
|
}
|
|
|
|
enum {
|
|
BTF_MODULE_F_LIVE = (1 << 0),
|
|
};
|
|
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
struct btf_module {
|
|
struct list_head list;
|
|
struct module *module;
|
|
struct btf *btf;
|
|
struct bin_attribute *sysfs_attr;
|
|
int flags;
|
|
};
|
|
|
|
static LIST_HEAD(btf_modules);
|
|
static DEFINE_MUTEX(btf_module_mutex);
|
|
|
|
static ssize_t
|
|
btf_module_read(struct file *file, struct kobject *kobj,
|
|
struct bin_attribute *bin_attr,
|
|
char *buf, loff_t off, size_t len)
|
|
{
|
|
const struct btf *btf = bin_attr->private;
|
|
|
|
memcpy(buf, btf->data + off, len);
|
|
return len;
|
|
}
|
|
|
|
static void purge_cand_cache(struct btf *btf);
|
|
|
|
static int btf_module_notify(struct notifier_block *nb, unsigned long op,
|
|
void *module)
|
|
{
|
|
struct btf_module *btf_mod, *tmp;
|
|
struct module *mod = module;
|
|
struct btf *btf;
|
|
int err = 0;
|
|
|
|
if (mod->btf_data_size == 0 ||
|
|
(op != MODULE_STATE_COMING && op != MODULE_STATE_LIVE &&
|
|
op != MODULE_STATE_GOING))
|
|
goto out;
|
|
|
|
switch (op) {
|
|
case MODULE_STATE_COMING:
|
|
btf_mod = kzalloc(sizeof(*btf_mod), GFP_KERNEL);
|
|
if (!btf_mod) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
btf = btf_parse_module(mod->name, mod->btf_data, mod->btf_data_size,
|
|
mod->btf_base_data, mod->btf_base_data_size);
|
|
if (IS_ERR(btf)) {
|
|
kfree(btf_mod);
|
|
if (!IS_ENABLED(CONFIG_MODULE_ALLOW_BTF_MISMATCH)) {
|
|
pr_warn("failed to validate module [%s] BTF: %ld\n",
|
|
mod->name, PTR_ERR(btf));
|
|
err = PTR_ERR(btf);
|
|
} else {
|
|
pr_warn_once("Kernel module BTF mismatch detected, BTF debug info may be unavailable for some modules\n");
|
|
}
|
|
goto out;
|
|
}
|
|
err = btf_alloc_id(btf);
|
|
if (err) {
|
|
btf_free(btf);
|
|
kfree(btf_mod);
|
|
goto out;
|
|
}
|
|
|
|
purge_cand_cache(NULL);
|
|
mutex_lock(&btf_module_mutex);
|
|
btf_mod->module = module;
|
|
btf_mod->btf = btf;
|
|
list_add(&btf_mod->list, &btf_modules);
|
|
mutex_unlock(&btf_module_mutex);
|
|
|
|
if (IS_ENABLED(CONFIG_SYSFS)) {
|
|
struct bin_attribute *attr;
|
|
|
|
attr = kzalloc(sizeof(*attr), GFP_KERNEL);
|
|
if (!attr)
|
|
goto out;
|
|
|
|
sysfs_bin_attr_init(attr);
|
|
attr->attr.name = btf->name;
|
|
attr->attr.mode = 0444;
|
|
attr->size = btf->data_size;
|
|
attr->private = btf;
|
|
attr->read = btf_module_read;
|
|
|
|
err = sysfs_create_bin_file(btf_kobj, attr);
|
|
if (err) {
|
|
pr_warn("failed to register module [%s] BTF in sysfs: %d\n",
|
|
mod->name, err);
|
|
kfree(attr);
|
|
err = 0;
|
|
goto out;
|
|
}
|
|
|
|
btf_mod->sysfs_attr = attr;
|
|
}
|
|
|
|
break;
|
|
case MODULE_STATE_LIVE:
|
|
mutex_lock(&btf_module_mutex);
|
|
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
|
|
if (btf_mod->module != module)
|
|
continue;
|
|
|
|
btf_mod->flags |= BTF_MODULE_F_LIVE;
|
|
break;
|
|
}
|
|
mutex_unlock(&btf_module_mutex);
|
|
break;
|
|
case MODULE_STATE_GOING:
|
|
mutex_lock(&btf_module_mutex);
|
|
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
|
|
if (btf_mod->module != module)
|
|
continue;
|
|
|
|
list_del(&btf_mod->list);
|
|
if (btf_mod->sysfs_attr)
|
|
sysfs_remove_bin_file(btf_kobj, btf_mod->sysfs_attr);
|
|
purge_cand_cache(btf_mod->btf);
|
|
btf_put(btf_mod->btf);
|
|
kfree(btf_mod->sysfs_attr);
|
|
kfree(btf_mod);
|
|
break;
|
|
}
|
|
mutex_unlock(&btf_module_mutex);
|
|
break;
|
|
}
|
|
out:
|
|
return notifier_from_errno(err);
|
|
}
|
|
|
|
static struct notifier_block btf_module_nb = {
|
|
.notifier_call = btf_module_notify,
|
|
};
|
|
|
|
static int __init btf_module_init(void)
|
|
{
|
|
register_module_notifier(&btf_module_nb);
|
|
return 0;
|
|
}
|
|
|
|
fs_initcall(btf_module_init);
|
|
#endif /* CONFIG_DEBUG_INFO_BTF_MODULES */
|
|
|
|
struct module *btf_try_get_module(const struct btf *btf)
|
|
{
|
|
struct module *res = NULL;
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
struct btf_module *btf_mod, *tmp;
|
|
|
|
mutex_lock(&btf_module_mutex);
|
|
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
|
|
if (btf_mod->btf != btf)
|
|
continue;
|
|
|
|
/* We must only consider module whose __init routine has
|
|
* finished, hence we must check for BTF_MODULE_F_LIVE flag,
|
|
* which is set from the notifier callback for
|
|
* MODULE_STATE_LIVE.
|
|
*/
|
|
if ((btf_mod->flags & BTF_MODULE_F_LIVE) && try_module_get(btf_mod->module))
|
|
res = btf_mod->module;
|
|
|
|
break;
|
|
}
|
|
mutex_unlock(&btf_module_mutex);
|
|
#endif
|
|
|
|
return res;
|
|
}
|
|
|
|
/* Returns struct btf corresponding to the struct module.
|
|
* This function can return NULL or ERR_PTR.
|
|
*/
|
|
static struct btf *btf_get_module_btf(const struct module *module)
|
|
{
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
struct btf_module *btf_mod, *tmp;
|
|
#endif
|
|
struct btf *btf = NULL;
|
|
|
|
if (!module) {
|
|
btf = bpf_get_btf_vmlinux();
|
|
if (!IS_ERR_OR_NULL(btf))
|
|
btf_get(btf);
|
|
return btf;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
mutex_lock(&btf_module_mutex);
|
|
list_for_each_entry_safe(btf_mod, tmp, &btf_modules, list) {
|
|
if (btf_mod->module != module)
|
|
continue;
|
|
|
|
btf_get(btf_mod->btf);
|
|
btf = btf_mod->btf;
|
|
break;
|
|
}
|
|
mutex_unlock(&btf_module_mutex);
|
|
#endif
|
|
|
|
return btf;
|
|
}
|
|
|
|
static int check_btf_kconfigs(const struct module *module, const char *feature)
|
|
{
|
|
if (!module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF)) {
|
|
pr_err("missing vmlinux BTF, cannot register %s\n", feature);
|
|
return -ENOENT;
|
|
}
|
|
if (module && IS_ENABLED(CONFIG_DEBUG_INFO_BTF_MODULES))
|
|
pr_warn("missing module BTF, cannot register %s\n", feature);
|
|
return 0;
|
|
}
|
|
|
|
BPF_CALL_4(bpf_btf_find_by_name_kind, char *, name, int, name_sz, u32, kind, int, flags)
|
|
{
|
|
struct btf *btf = NULL;
|
|
int btf_obj_fd = 0;
|
|
long ret;
|
|
|
|
if (flags)
|
|
return -EINVAL;
|
|
|
|
if (name_sz <= 1 || name[name_sz - 1])
|
|
return -EINVAL;
|
|
|
|
ret = bpf_find_btf_id(name, kind, &btf);
|
|
if (ret > 0 && btf_is_module(btf)) {
|
|
btf_obj_fd = __btf_new_fd(btf);
|
|
if (btf_obj_fd < 0) {
|
|
btf_put(btf);
|
|
return btf_obj_fd;
|
|
}
|
|
return ret | (((u64)btf_obj_fd) << 32);
|
|
}
|
|
if (ret > 0)
|
|
btf_put(btf);
|
|
return ret;
|
|
}
|
|
|
|
const struct bpf_func_proto bpf_btf_find_by_name_kind_proto = {
|
|
.func = bpf_btf_find_by_name_kind,
|
|
.gpl_only = false,
|
|
.ret_type = RET_INTEGER,
|
|
.arg1_type = ARG_PTR_TO_MEM | MEM_RDONLY,
|
|
.arg2_type = ARG_CONST_SIZE,
|
|
.arg3_type = ARG_ANYTHING,
|
|
.arg4_type = ARG_ANYTHING,
|
|
};
|
|
|
|
BTF_ID_LIST_GLOBAL(btf_tracing_ids, MAX_BTF_TRACING_TYPE)
|
|
#define BTF_TRACING_TYPE(name, type) BTF_ID(struct, type)
|
|
BTF_TRACING_TYPE_xxx
|
|
#undef BTF_TRACING_TYPE
|
|
|
|
/* Validate well-formedness of iter argument type.
|
|
* On success, return positive BTF ID of iter state's STRUCT type.
|
|
* On error, negative error is returned.
|
|
*/
|
|
int btf_check_iter_arg(struct btf *btf, const struct btf_type *func, int arg_idx)
|
|
{
|
|
const struct btf_param *arg;
|
|
const struct btf_type *t;
|
|
const char *name;
|
|
int btf_id;
|
|
|
|
if (btf_type_vlen(func) <= arg_idx)
|
|
return -EINVAL;
|
|
|
|
arg = &btf_params(func)[arg_idx];
|
|
t = btf_type_skip_modifiers(btf, arg->type, NULL);
|
|
if (!t || !btf_type_is_ptr(t))
|
|
return -EINVAL;
|
|
t = btf_type_skip_modifiers(btf, t->type, &btf_id);
|
|
if (!t || !__btf_type_is_struct(t))
|
|
return -EINVAL;
|
|
|
|
name = btf_name_by_offset(btf, t->name_off);
|
|
if (!name || strncmp(name, ITER_PREFIX, sizeof(ITER_PREFIX) - 1))
|
|
return -EINVAL;
|
|
|
|
return btf_id;
|
|
}
|
|
|
|
static int btf_check_iter_kfuncs(struct btf *btf, const char *func_name,
|
|
const struct btf_type *func, u32 func_flags)
|
|
{
|
|
u32 flags = func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY);
|
|
const char *sfx, *iter_name;
|
|
const struct btf_type *t;
|
|
char exp_name[128];
|
|
u32 nr_args;
|
|
int btf_id;
|
|
|
|
/* exactly one of KF_ITER_{NEW,NEXT,DESTROY} can be set */
|
|
if (!flags || (flags & (flags - 1)))
|
|
return -EINVAL;
|
|
|
|
/* any BPF iter kfunc should have `struct bpf_iter_<type> *` first arg */
|
|
nr_args = btf_type_vlen(func);
|
|
if (nr_args < 1)
|
|
return -EINVAL;
|
|
|
|
btf_id = btf_check_iter_arg(btf, func, 0);
|
|
if (btf_id < 0)
|
|
return btf_id;
|
|
|
|
/* sizeof(struct bpf_iter_<type>) should be a multiple of 8 to
|
|
* fit nicely in stack slots
|
|
*/
|
|
t = btf_type_by_id(btf, btf_id);
|
|
if (t->size == 0 || (t->size % 8))
|
|
return -EINVAL;
|
|
|
|
/* validate bpf_iter_<type>_{new,next,destroy}(struct bpf_iter_<type> *)
|
|
* naming pattern
|
|
*/
|
|
iter_name = btf_name_by_offset(btf, t->name_off) + sizeof(ITER_PREFIX) - 1;
|
|
if (flags & KF_ITER_NEW)
|
|
sfx = "new";
|
|
else if (flags & KF_ITER_NEXT)
|
|
sfx = "next";
|
|
else /* (flags & KF_ITER_DESTROY) */
|
|
sfx = "destroy";
|
|
|
|
snprintf(exp_name, sizeof(exp_name), "bpf_iter_%s_%s", iter_name, sfx);
|
|
if (strcmp(func_name, exp_name))
|
|
return -EINVAL;
|
|
|
|
/* only iter constructor should have extra arguments */
|
|
if (!(flags & KF_ITER_NEW) && nr_args != 1)
|
|
return -EINVAL;
|
|
|
|
if (flags & KF_ITER_NEXT) {
|
|
/* bpf_iter_<type>_next() should return pointer */
|
|
t = btf_type_skip_modifiers(btf, func->type, NULL);
|
|
if (!t || !btf_type_is_ptr(t))
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (flags & KF_ITER_DESTROY) {
|
|
/* bpf_iter_<type>_destroy() should return void */
|
|
t = btf_type_by_id(btf, func->type);
|
|
if (!t || !btf_type_is_void(t))
|
|
return -EINVAL;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int btf_check_kfunc_protos(struct btf *btf, u32 func_id, u32 func_flags)
|
|
{
|
|
const struct btf_type *func;
|
|
const char *func_name;
|
|
int err;
|
|
|
|
/* any kfunc should be FUNC -> FUNC_PROTO */
|
|
func = btf_type_by_id(btf, func_id);
|
|
if (!func || !btf_type_is_func(func))
|
|
return -EINVAL;
|
|
|
|
/* sanity check kfunc name */
|
|
func_name = btf_name_by_offset(btf, func->name_off);
|
|
if (!func_name || !func_name[0])
|
|
return -EINVAL;
|
|
|
|
func = btf_type_by_id(btf, func->type);
|
|
if (!func || !btf_type_is_func_proto(func))
|
|
return -EINVAL;
|
|
|
|
if (func_flags & (KF_ITER_NEW | KF_ITER_NEXT | KF_ITER_DESTROY)) {
|
|
err = btf_check_iter_kfuncs(btf, func_name, func, func_flags);
|
|
if (err)
|
|
return err;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Kernel Function (kfunc) BTF ID set registration API */
|
|
|
|
static int btf_populate_kfunc_set(struct btf *btf, enum btf_kfunc_hook hook,
|
|
const struct btf_kfunc_id_set *kset)
|
|
{
|
|
struct btf_kfunc_hook_filter *hook_filter;
|
|
struct btf_id_set8 *add_set = kset->set;
|
|
bool vmlinux_set = !btf_is_module(btf);
|
|
bool add_filter = !!kset->filter;
|
|
struct btf_kfunc_set_tab *tab;
|
|
struct btf_id_set8 *set;
|
|
u32 set_cnt, i;
|
|
int ret;
|
|
|
|
if (hook >= BTF_KFUNC_HOOK_MAX) {
|
|
ret = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
if (!add_set->cnt)
|
|
return 0;
|
|
|
|
tab = btf->kfunc_set_tab;
|
|
|
|
if (tab && add_filter) {
|
|
u32 i;
|
|
|
|
hook_filter = &tab->hook_filters[hook];
|
|
for (i = 0; i < hook_filter->nr_filters; i++) {
|
|
if (hook_filter->filters[i] == kset->filter) {
|
|
add_filter = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (add_filter && hook_filter->nr_filters == BTF_KFUNC_FILTER_MAX_CNT) {
|
|
ret = -E2BIG;
|
|
goto end;
|
|
}
|
|
}
|
|
|
|
if (!tab) {
|
|
tab = kzalloc(sizeof(*tab), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!tab)
|
|
return -ENOMEM;
|
|
btf->kfunc_set_tab = tab;
|
|
}
|
|
|
|
set = tab->sets[hook];
|
|
/* Warn when register_btf_kfunc_id_set is called twice for the same hook
|
|
* for module sets.
|
|
*/
|
|
if (WARN_ON_ONCE(set && !vmlinux_set)) {
|
|
ret = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
/* In case of vmlinux sets, there may be more than one set being
|
|
* registered per hook. To create a unified set, we allocate a new set
|
|
* and concatenate all individual sets being registered. While each set
|
|
* is individually sorted, they may become unsorted when concatenated,
|
|
* hence re-sorting the final set again is required to make binary
|
|
* searching the set using btf_id_set8_contains function work.
|
|
*
|
|
* For module sets, we need to allocate as we may need to relocate
|
|
* BTF ids.
|
|
*/
|
|
set_cnt = set ? set->cnt : 0;
|
|
|
|
if (set_cnt > U32_MAX - add_set->cnt) {
|
|
ret = -EOVERFLOW;
|
|
goto end;
|
|
}
|
|
|
|
if (set_cnt + add_set->cnt > BTF_KFUNC_SET_MAX_CNT) {
|
|
ret = -E2BIG;
|
|
goto end;
|
|
}
|
|
|
|
/* Grow set */
|
|
set = krealloc(tab->sets[hook],
|
|
offsetof(struct btf_id_set8, pairs[set_cnt + add_set->cnt]),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!set) {
|
|
ret = -ENOMEM;
|
|
goto end;
|
|
}
|
|
|
|
/* For newly allocated set, initialize set->cnt to 0 */
|
|
if (!tab->sets[hook])
|
|
set->cnt = 0;
|
|
tab->sets[hook] = set;
|
|
|
|
/* Concatenate the two sets */
|
|
memcpy(set->pairs + set->cnt, add_set->pairs, add_set->cnt * sizeof(set->pairs[0]));
|
|
/* Now that the set is copied, update with relocated BTF ids */
|
|
for (i = set->cnt; i < set->cnt + add_set->cnt; i++)
|
|
set->pairs[i].id = btf_relocate_id(btf, set->pairs[i].id);
|
|
|
|
set->cnt += add_set->cnt;
|
|
|
|
sort(set->pairs, set->cnt, sizeof(set->pairs[0]), btf_id_cmp_func, NULL);
|
|
|
|
if (add_filter) {
|
|
hook_filter = &tab->hook_filters[hook];
|
|
hook_filter->filters[hook_filter->nr_filters++] = kset->filter;
|
|
}
|
|
return 0;
|
|
end:
|
|
btf_free_kfunc_set_tab(btf);
|
|
return ret;
|
|
}
|
|
|
|
static u32 *__btf_kfunc_id_set_contains(const struct btf *btf,
|
|
enum btf_kfunc_hook hook,
|
|
u32 kfunc_btf_id,
|
|
const struct bpf_prog *prog)
|
|
{
|
|
struct btf_kfunc_hook_filter *hook_filter;
|
|
struct btf_id_set8 *set;
|
|
u32 *id, i;
|
|
|
|
if (hook >= BTF_KFUNC_HOOK_MAX)
|
|
return NULL;
|
|
if (!btf->kfunc_set_tab)
|
|
return NULL;
|
|
hook_filter = &btf->kfunc_set_tab->hook_filters[hook];
|
|
for (i = 0; i < hook_filter->nr_filters; i++) {
|
|
if (hook_filter->filters[i](prog, kfunc_btf_id))
|
|
return NULL;
|
|
}
|
|
set = btf->kfunc_set_tab->sets[hook];
|
|
if (!set)
|
|
return NULL;
|
|
id = btf_id_set8_contains(set, kfunc_btf_id);
|
|
if (!id)
|
|
return NULL;
|
|
/* The flags for BTF ID are located next to it */
|
|
return id + 1;
|
|
}
|
|
|
|
static int bpf_prog_type_to_kfunc_hook(enum bpf_prog_type prog_type)
|
|
{
|
|
switch (prog_type) {
|
|
case BPF_PROG_TYPE_UNSPEC:
|
|
return BTF_KFUNC_HOOK_COMMON;
|
|
case BPF_PROG_TYPE_XDP:
|
|
return BTF_KFUNC_HOOK_XDP;
|
|
case BPF_PROG_TYPE_SCHED_CLS:
|
|
return BTF_KFUNC_HOOK_TC;
|
|
case BPF_PROG_TYPE_STRUCT_OPS:
|
|
return BTF_KFUNC_HOOK_STRUCT_OPS;
|
|
case BPF_PROG_TYPE_TRACING:
|
|
case BPF_PROG_TYPE_TRACEPOINT:
|
|
case BPF_PROG_TYPE_PERF_EVENT:
|
|
case BPF_PROG_TYPE_LSM:
|
|
return BTF_KFUNC_HOOK_TRACING;
|
|
case BPF_PROG_TYPE_SYSCALL:
|
|
return BTF_KFUNC_HOOK_SYSCALL;
|
|
case BPF_PROG_TYPE_CGROUP_SKB:
|
|
case BPF_PROG_TYPE_CGROUP_SOCK:
|
|
case BPF_PROG_TYPE_CGROUP_DEVICE:
|
|
case BPF_PROG_TYPE_CGROUP_SOCK_ADDR:
|
|
case BPF_PROG_TYPE_CGROUP_SOCKOPT:
|
|
case BPF_PROG_TYPE_CGROUP_SYSCTL:
|
|
return BTF_KFUNC_HOOK_CGROUP;
|
|
case BPF_PROG_TYPE_SCHED_ACT:
|
|
return BTF_KFUNC_HOOK_SCHED_ACT;
|
|
case BPF_PROG_TYPE_SK_SKB:
|
|
return BTF_KFUNC_HOOK_SK_SKB;
|
|
case BPF_PROG_TYPE_SOCKET_FILTER:
|
|
return BTF_KFUNC_HOOK_SOCKET_FILTER;
|
|
case BPF_PROG_TYPE_LWT_OUT:
|
|
case BPF_PROG_TYPE_LWT_IN:
|
|
case BPF_PROG_TYPE_LWT_XMIT:
|
|
case BPF_PROG_TYPE_LWT_SEG6LOCAL:
|
|
return BTF_KFUNC_HOOK_LWT;
|
|
case BPF_PROG_TYPE_NETFILTER:
|
|
return BTF_KFUNC_HOOK_NETFILTER;
|
|
case BPF_PROG_TYPE_KPROBE:
|
|
return BTF_KFUNC_HOOK_KPROBE;
|
|
default:
|
|
return BTF_KFUNC_HOOK_MAX;
|
|
}
|
|
}
|
|
|
|
/* Caution:
|
|
* Reference to the module (obtained using btf_try_get_module) corresponding to
|
|
* the struct btf *MUST* be held when calling this function from verifier
|
|
* context. This is usually true as we stash references in prog's kfunc_btf_tab;
|
|
* keeping the reference for the duration of the call provides the necessary
|
|
* protection for looking up a well-formed btf->kfunc_set_tab.
|
|
*/
|
|
u32 *btf_kfunc_id_set_contains(const struct btf *btf,
|
|
u32 kfunc_btf_id,
|
|
const struct bpf_prog *prog)
|
|
{
|
|
enum bpf_prog_type prog_type = resolve_prog_type(prog);
|
|
enum btf_kfunc_hook hook;
|
|
u32 *kfunc_flags;
|
|
|
|
kfunc_flags = __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_COMMON, kfunc_btf_id, prog);
|
|
if (kfunc_flags)
|
|
return kfunc_flags;
|
|
|
|
hook = bpf_prog_type_to_kfunc_hook(prog_type);
|
|
return __btf_kfunc_id_set_contains(btf, hook, kfunc_btf_id, prog);
|
|
}
|
|
|
|
u32 *btf_kfunc_is_modify_return(const struct btf *btf, u32 kfunc_btf_id,
|
|
const struct bpf_prog *prog)
|
|
{
|
|
return __btf_kfunc_id_set_contains(btf, BTF_KFUNC_HOOK_FMODRET, kfunc_btf_id, prog);
|
|
}
|
|
|
|
static int __register_btf_kfunc_id_set(enum btf_kfunc_hook hook,
|
|
const struct btf_kfunc_id_set *kset)
|
|
{
|
|
struct btf *btf;
|
|
int ret, i;
|
|
|
|
btf = btf_get_module_btf(kset->owner);
|
|
if (!btf)
|
|
return check_btf_kconfigs(kset->owner, "kfunc");
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
|
|
for (i = 0; i < kset->set->cnt; i++) {
|
|
ret = btf_check_kfunc_protos(btf, btf_relocate_id(btf, kset->set->pairs[i].id),
|
|
kset->set->pairs[i].flags);
|
|
if (ret)
|
|
goto err_out;
|
|
}
|
|
|
|
ret = btf_populate_kfunc_set(btf, hook, kset);
|
|
|
|
err_out:
|
|
btf_put(btf);
|
|
return ret;
|
|
}
|
|
|
|
/* This function must be invoked only from initcalls/module init functions */
|
|
int register_btf_kfunc_id_set(enum bpf_prog_type prog_type,
|
|
const struct btf_kfunc_id_set *kset)
|
|
{
|
|
enum btf_kfunc_hook hook;
|
|
|
|
/* All kfuncs need to be tagged as such in BTF.
|
|
* WARN() for initcall registrations that do not check errors.
|
|
*/
|
|
if (!(kset->set->flags & BTF_SET8_KFUNCS)) {
|
|
WARN_ON(!kset->owner);
|
|
return -EINVAL;
|
|
}
|
|
|
|
hook = bpf_prog_type_to_kfunc_hook(prog_type);
|
|
return __register_btf_kfunc_id_set(hook, kset);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_btf_kfunc_id_set);
|
|
|
|
/* This function must be invoked only from initcalls/module init functions */
|
|
int register_btf_fmodret_id_set(const struct btf_kfunc_id_set *kset)
|
|
{
|
|
return __register_btf_kfunc_id_set(BTF_KFUNC_HOOK_FMODRET, kset);
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_btf_fmodret_id_set);
|
|
|
|
s32 btf_find_dtor_kfunc(struct btf *btf, u32 btf_id)
|
|
{
|
|
struct btf_id_dtor_kfunc_tab *tab = btf->dtor_kfunc_tab;
|
|
struct btf_id_dtor_kfunc *dtor;
|
|
|
|
if (!tab)
|
|
return -ENOENT;
|
|
/* Even though the size of tab->dtors[0] is > sizeof(u32), we only need
|
|
* to compare the first u32 with btf_id, so we can reuse btf_id_cmp_func.
|
|
*/
|
|
BUILD_BUG_ON(offsetof(struct btf_id_dtor_kfunc, btf_id) != 0);
|
|
dtor = bsearch(&btf_id, tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func);
|
|
if (!dtor)
|
|
return -ENOENT;
|
|
return dtor->kfunc_btf_id;
|
|
}
|
|
|
|
static int btf_check_dtor_kfuncs(struct btf *btf, const struct btf_id_dtor_kfunc *dtors, u32 cnt)
|
|
{
|
|
const struct btf_type *dtor_func, *dtor_func_proto, *t;
|
|
const struct btf_param *args;
|
|
s32 dtor_btf_id;
|
|
u32 nr_args, i;
|
|
|
|
for (i = 0; i < cnt; i++) {
|
|
dtor_btf_id = btf_relocate_id(btf, dtors[i].kfunc_btf_id);
|
|
|
|
dtor_func = btf_type_by_id(btf, dtor_btf_id);
|
|
if (!dtor_func || !btf_type_is_func(dtor_func))
|
|
return -EINVAL;
|
|
|
|
dtor_func_proto = btf_type_by_id(btf, dtor_func->type);
|
|
if (!dtor_func_proto || !btf_type_is_func_proto(dtor_func_proto))
|
|
return -EINVAL;
|
|
|
|
/* Make sure the prototype of the destructor kfunc is 'void func(type *)' */
|
|
t = btf_type_by_id(btf, dtor_func_proto->type);
|
|
if (!t || !btf_type_is_void(t))
|
|
return -EINVAL;
|
|
|
|
nr_args = btf_type_vlen(dtor_func_proto);
|
|
if (nr_args != 1)
|
|
return -EINVAL;
|
|
args = btf_params(dtor_func_proto);
|
|
t = btf_type_by_id(btf, args[0].type);
|
|
/* Allow any pointer type, as width on targets Linux supports
|
|
* will be same for all pointer types (i.e. sizeof(void *))
|
|
*/
|
|
if (!t || !btf_type_is_ptr(t))
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/* This function must be invoked only from initcalls/module init functions */
|
|
int register_btf_id_dtor_kfuncs(const struct btf_id_dtor_kfunc *dtors, u32 add_cnt,
|
|
struct module *owner)
|
|
{
|
|
struct btf_id_dtor_kfunc_tab *tab;
|
|
struct btf *btf;
|
|
u32 tab_cnt, i;
|
|
int ret;
|
|
|
|
btf = btf_get_module_btf(owner);
|
|
if (!btf)
|
|
return check_btf_kconfigs(owner, "dtor kfuncs");
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
|
|
if (add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
|
|
pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
|
|
ret = -E2BIG;
|
|
goto end;
|
|
}
|
|
|
|
/* Ensure that the prototype of dtor kfuncs being registered is sane */
|
|
ret = btf_check_dtor_kfuncs(btf, dtors, add_cnt);
|
|
if (ret < 0)
|
|
goto end;
|
|
|
|
tab = btf->dtor_kfunc_tab;
|
|
/* Only one call allowed for modules */
|
|
if (WARN_ON_ONCE(tab && btf_is_module(btf))) {
|
|
ret = -EINVAL;
|
|
goto end;
|
|
}
|
|
|
|
tab_cnt = tab ? tab->cnt : 0;
|
|
if (tab_cnt > U32_MAX - add_cnt) {
|
|
ret = -EOVERFLOW;
|
|
goto end;
|
|
}
|
|
if (tab_cnt + add_cnt >= BTF_DTOR_KFUNC_MAX_CNT) {
|
|
pr_err("cannot register more than %d kfunc destructors\n", BTF_DTOR_KFUNC_MAX_CNT);
|
|
ret = -E2BIG;
|
|
goto end;
|
|
}
|
|
|
|
tab = krealloc(btf->dtor_kfunc_tab,
|
|
offsetof(struct btf_id_dtor_kfunc_tab, dtors[tab_cnt + add_cnt]),
|
|
GFP_KERNEL | __GFP_NOWARN);
|
|
if (!tab) {
|
|
ret = -ENOMEM;
|
|
goto end;
|
|
}
|
|
|
|
if (!btf->dtor_kfunc_tab)
|
|
tab->cnt = 0;
|
|
btf->dtor_kfunc_tab = tab;
|
|
|
|
memcpy(tab->dtors + tab->cnt, dtors, add_cnt * sizeof(tab->dtors[0]));
|
|
|
|
/* remap BTF ids based on BTF relocation (if any) */
|
|
for (i = tab_cnt; i < tab_cnt + add_cnt; i++) {
|
|
tab->dtors[i].btf_id = btf_relocate_id(btf, tab->dtors[i].btf_id);
|
|
tab->dtors[i].kfunc_btf_id = btf_relocate_id(btf, tab->dtors[i].kfunc_btf_id);
|
|
}
|
|
|
|
tab->cnt += add_cnt;
|
|
|
|
sort(tab->dtors, tab->cnt, sizeof(tab->dtors[0]), btf_id_cmp_func, NULL);
|
|
|
|
end:
|
|
if (ret)
|
|
btf_free_dtor_kfunc_tab(btf);
|
|
btf_put(btf);
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(register_btf_id_dtor_kfuncs);
|
|
|
|
#define MAX_TYPES_ARE_COMPAT_DEPTH 2
|
|
|
|
/* Check local and target types for compatibility. This check is used for
|
|
* type-based CO-RE relocations and follow slightly different rules than
|
|
* field-based relocations. This function assumes that root types were already
|
|
* checked for name match. Beyond that initial root-level name check, names
|
|
* are completely ignored. Compatibility rules are as follows:
|
|
* - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs/ENUM64s are considered compatible, but
|
|
* kind should match for local and target types (i.e., STRUCT is not
|
|
* compatible with UNION);
|
|
* - for ENUMs/ENUM64s, the size is ignored;
|
|
* - for INT, size and signedness are ignored;
|
|
* - for ARRAY, dimensionality is ignored, element types are checked for
|
|
* compatibility recursively;
|
|
* - CONST/VOLATILE/RESTRICT modifiers are ignored;
|
|
* - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
|
|
* - FUNC_PROTOs are compatible if they have compatible signature: same
|
|
* number of input args and compatible return and argument types.
|
|
* These rules are not set in stone and probably will be adjusted as we get
|
|
* more experience with using BPF CO-RE relocations.
|
|
*/
|
|
int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
|
|
const struct btf *targ_btf, __u32 targ_id)
|
|
{
|
|
return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id,
|
|
MAX_TYPES_ARE_COMPAT_DEPTH);
|
|
}
|
|
|
|
#define MAX_TYPES_MATCH_DEPTH 2
|
|
|
|
int bpf_core_types_match(const struct btf *local_btf, u32 local_id,
|
|
const struct btf *targ_btf, u32 targ_id)
|
|
{
|
|
return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false,
|
|
MAX_TYPES_MATCH_DEPTH);
|
|
}
|
|
|
|
static bool bpf_core_is_flavor_sep(const char *s)
|
|
{
|
|
/* check X___Y name pattern, where X and Y are not underscores */
|
|
return s[0] != '_' && /* X */
|
|
s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
|
|
s[4] != '_'; /* Y */
|
|
}
|
|
|
|
size_t bpf_core_essential_name_len(const char *name)
|
|
{
|
|
size_t n = strlen(name);
|
|
int i;
|
|
|
|
for (i = n - 5; i >= 0; i--) {
|
|
if (bpf_core_is_flavor_sep(name + i))
|
|
return i + 1;
|
|
}
|
|
return n;
|
|
}
|
|
|
|
static void bpf_free_cands(struct bpf_cand_cache *cands)
|
|
{
|
|
if (!cands->cnt)
|
|
/* empty candidate array was allocated on stack */
|
|
return;
|
|
kfree(cands);
|
|
}
|
|
|
|
static void bpf_free_cands_from_cache(struct bpf_cand_cache *cands)
|
|
{
|
|
kfree(cands->name);
|
|
kfree(cands);
|
|
}
|
|
|
|
#define VMLINUX_CAND_CACHE_SIZE 31
|
|
static struct bpf_cand_cache *vmlinux_cand_cache[VMLINUX_CAND_CACHE_SIZE];
|
|
|
|
#define MODULE_CAND_CACHE_SIZE 31
|
|
static struct bpf_cand_cache *module_cand_cache[MODULE_CAND_CACHE_SIZE];
|
|
|
|
static void __print_cand_cache(struct bpf_verifier_log *log,
|
|
struct bpf_cand_cache **cache,
|
|
int cache_size)
|
|
{
|
|
struct bpf_cand_cache *cc;
|
|
int i, j;
|
|
|
|
for (i = 0; i < cache_size; i++) {
|
|
cc = cache[i];
|
|
if (!cc)
|
|
continue;
|
|
bpf_log(log, "[%d]%s(", i, cc->name);
|
|
for (j = 0; j < cc->cnt; j++) {
|
|
bpf_log(log, "%d", cc->cands[j].id);
|
|
if (j < cc->cnt - 1)
|
|
bpf_log(log, " ");
|
|
}
|
|
bpf_log(log, "), ");
|
|
}
|
|
}
|
|
|
|
static void print_cand_cache(struct bpf_verifier_log *log)
|
|
{
|
|
mutex_lock(&cand_cache_mutex);
|
|
bpf_log(log, "vmlinux_cand_cache:");
|
|
__print_cand_cache(log, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
|
|
bpf_log(log, "\nmodule_cand_cache:");
|
|
__print_cand_cache(log, module_cand_cache, MODULE_CAND_CACHE_SIZE);
|
|
bpf_log(log, "\n");
|
|
mutex_unlock(&cand_cache_mutex);
|
|
}
|
|
|
|
static u32 hash_cands(struct bpf_cand_cache *cands)
|
|
{
|
|
return jhash(cands->name, cands->name_len, 0);
|
|
}
|
|
|
|
static struct bpf_cand_cache *check_cand_cache(struct bpf_cand_cache *cands,
|
|
struct bpf_cand_cache **cache,
|
|
int cache_size)
|
|
{
|
|
struct bpf_cand_cache *cc = cache[hash_cands(cands) % cache_size];
|
|
|
|
if (cc && cc->name_len == cands->name_len &&
|
|
!strncmp(cc->name, cands->name, cands->name_len))
|
|
return cc;
|
|
return NULL;
|
|
}
|
|
|
|
static size_t sizeof_cands(int cnt)
|
|
{
|
|
return offsetof(struct bpf_cand_cache, cands[cnt]);
|
|
}
|
|
|
|
static struct bpf_cand_cache *populate_cand_cache(struct bpf_cand_cache *cands,
|
|
struct bpf_cand_cache **cache,
|
|
int cache_size)
|
|
{
|
|
struct bpf_cand_cache **cc = &cache[hash_cands(cands) % cache_size], *new_cands;
|
|
|
|
if (*cc) {
|
|
bpf_free_cands_from_cache(*cc);
|
|
*cc = NULL;
|
|
}
|
|
new_cands = kmemdup(cands, sizeof_cands(cands->cnt), GFP_KERNEL);
|
|
if (!new_cands) {
|
|
bpf_free_cands(cands);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
/* strdup the name, since it will stay in cache.
|
|
* the cands->name points to strings in prog's BTF and the prog can be unloaded.
|
|
*/
|
|
new_cands->name = kmemdup_nul(cands->name, cands->name_len, GFP_KERNEL);
|
|
bpf_free_cands(cands);
|
|
if (!new_cands->name) {
|
|
kfree(new_cands);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
*cc = new_cands;
|
|
return new_cands;
|
|
}
|
|
|
|
#ifdef CONFIG_DEBUG_INFO_BTF_MODULES
|
|
static void __purge_cand_cache(struct btf *btf, struct bpf_cand_cache **cache,
|
|
int cache_size)
|
|
{
|
|
struct bpf_cand_cache *cc;
|
|
int i, j;
|
|
|
|
for (i = 0; i < cache_size; i++) {
|
|
cc = cache[i];
|
|
if (!cc)
|
|
continue;
|
|
if (!btf) {
|
|
/* when new module is loaded purge all of module_cand_cache,
|
|
* since new module might have candidates with the name
|
|
* that matches cached cands.
|
|
*/
|
|
bpf_free_cands_from_cache(cc);
|
|
cache[i] = NULL;
|
|
continue;
|
|
}
|
|
/* when module is unloaded purge cache entries
|
|
* that match module's btf
|
|
*/
|
|
for (j = 0; j < cc->cnt; j++)
|
|
if (cc->cands[j].btf == btf) {
|
|
bpf_free_cands_from_cache(cc);
|
|
cache[i] = NULL;
|
|
break;
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
static void purge_cand_cache(struct btf *btf)
|
|
{
|
|
mutex_lock(&cand_cache_mutex);
|
|
__purge_cand_cache(btf, module_cand_cache, MODULE_CAND_CACHE_SIZE);
|
|
mutex_unlock(&cand_cache_mutex);
|
|
}
|
|
#endif
|
|
|
|
static struct bpf_cand_cache *
|
|
bpf_core_add_cands(struct bpf_cand_cache *cands, const struct btf *targ_btf,
|
|
int targ_start_id)
|
|
{
|
|
struct bpf_cand_cache *new_cands;
|
|
const struct btf_type *t;
|
|
const char *targ_name;
|
|
size_t targ_essent_len;
|
|
int n, i;
|
|
|
|
n = btf_nr_types(targ_btf);
|
|
for (i = targ_start_id; i < n; i++) {
|
|
t = btf_type_by_id(targ_btf, i);
|
|
if (btf_kind(t) != cands->kind)
|
|
continue;
|
|
|
|
targ_name = btf_name_by_offset(targ_btf, t->name_off);
|
|
if (!targ_name)
|
|
continue;
|
|
|
|
/* the resched point is before strncmp to make sure that search
|
|
* for non-existing name will have a chance to schedule().
|
|
*/
|
|
cond_resched();
|
|
|
|
if (strncmp(cands->name, targ_name, cands->name_len) != 0)
|
|
continue;
|
|
|
|
targ_essent_len = bpf_core_essential_name_len(targ_name);
|
|
if (targ_essent_len != cands->name_len)
|
|
continue;
|
|
|
|
/* most of the time there is only one candidate for a given kind+name pair */
|
|
new_cands = kmalloc(sizeof_cands(cands->cnt + 1), GFP_KERNEL);
|
|
if (!new_cands) {
|
|
bpf_free_cands(cands);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
memcpy(new_cands, cands, sizeof_cands(cands->cnt));
|
|
bpf_free_cands(cands);
|
|
cands = new_cands;
|
|
cands->cands[cands->cnt].btf = targ_btf;
|
|
cands->cands[cands->cnt].id = i;
|
|
cands->cnt++;
|
|
}
|
|
return cands;
|
|
}
|
|
|
|
static struct bpf_cand_cache *
|
|
bpf_core_find_cands(struct bpf_core_ctx *ctx, u32 local_type_id)
|
|
{
|
|
struct bpf_cand_cache *cands, *cc, local_cand = {};
|
|
const struct btf *local_btf = ctx->btf;
|
|
const struct btf_type *local_type;
|
|
const struct btf *main_btf;
|
|
size_t local_essent_len;
|
|
struct btf *mod_btf;
|
|
const char *name;
|
|
int id;
|
|
|
|
main_btf = bpf_get_btf_vmlinux();
|
|
if (IS_ERR(main_btf))
|
|
return ERR_CAST(main_btf);
|
|
if (!main_btf)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
local_type = btf_type_by_id(local_btf, local_type_id);
|
|
if (!local_type)
|
|
return ERR_PTR(-EINVAL);
|
|
|
|
name = btf_name_by_offset(local_btf, local_type->name_off);
|
|
if (str_is_empty(name))
|
|
return ERR_PTR(-EINVAL);
|
|
local_essent_len = bpf_core_essential_name_len(name);
|
|
|
|
cands = &local_cand;
|
|
cands->name = name;
|
|
cands->kind = btf_kind(local_type);
|
|
cands->name_len = local_essent_len;
|
|
|
|
cc = check_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
|
|
/* cands is a pointer to stack here */
|
|
if (cc) {
|
|
if (cc->cnt)
|
|
return cc;
|
|
goto check_modules;
|
|
}
|
|
|
|
/* Attempt to find target candidates in vmlinux BTF first */
|
|
cands = bpf_core_add_cands(cands, main_btf, 1);
|
|
if (IS_ERR(cands))
|
|
return ERR_CAST(cands);
|
|
|
|
/* cands is a pointer to kmalloced memory here if cands->cnt > 0 */
|
|
|
|
/* populate cache even when cands->cnt == 0 */
|
|
cc = populate_cand_cache(cands, vmlinux_cand_cache, VMLINUX_CAND_CACHE_SIZE);
|
|
if (IS_ERR(cc))
|
|
return ERR_CAST(cc);
|
|
|
|
/* if vmlinux BTF has any candidate, don't go for module BTFs */
|
|
if (cc->cnt)
|
|
return cc;
|
|
|
|
check_modules:
|
|
/* cands is a pointer to stack here and cands->cnt == 0 */
|
|
cc = check_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
|
|
if (cc)
|
|
/* if cache has it return it even if cc->cnt == 0 */
|
|
return cc;
|
|
|
|
/* If candidate is not found in vmlinux's BTF then search in module's BTFs */
|
|
spin_lock_bh(&btf_idr_lock);
|
|
idr_for_each_entry(&btf_idr, mod_btf, id) {
|
|
if (!btf_is_module(mod_btf))
|
|
continue;
|
|
/* linear search could be slow hence unlock/lock
|
|
* the IDR to avoiding holding it for too long
|
|
*/
|
|
btf_get(mod_btf);
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
cands = bpf_core_add_cands(cands, mod_btf, btf_nr_types(main_btf));
|
|
btf_put(mod_btf);
|
|
if (IS_ERR(cands))
|
|
return ERR_CAST(cands);
|
|
spin_lock_bh(&btf_idr_lock);
|
|
}
|
|
spin_unlock_bh(&btf_idr_lock);
|
|
/* cands is a pointer to kmalloced memory here if cands->cnt > 0
|
|
* or pointer to stack if cands->cnd == 0.
|
|
* Copy it into the cache even when cands->cnt == 0 and
|
|
* return the result.
|
|
*/
|
|
return populate_cand_cache(cands, module_cand_cache, MODULE_CAND_CACHE_SIZE);
|
|
}
|
|
|
|
int bpf_core_apply(struct bpf_core_ctx *ctx, const struct bpf_core_relo *relo,
|
|
int relo_idx, void *insn)
|
|
{
|
|
bool need_cands = relo->kind != BPF_CORE_TYPE_ID_LOCAL;
|
|
struct bpf_core_cand_list cands = {};
|
|
struct bpf_core_relo_res targ_res;
|
|
struct bpf_core_spec *specs;
|
|
const struct btf_type *type;
|
|
int err;
|
|
|
|
/* ~4k of temp memory necessary to convert LLVM spec like "0:1:0:5"
|
|
* into arrays of btf_ids of struct fields and array indices.
|
|
*/
|
|
specs = kcalloc(3, sizeof(*specs), GFP_KERNEL);
|
|
if (!specs)
|
|
return -ENOMEM;
|
|
|
|
type = btf_type_by_id(ctx->btf, relo->type_id);
|
|
if (!type) {
|
|
bpf_log(ctx->log, "relo #%u: bad type id %u\n",
|
|
relo_idx, relo->type_id);
|
|
kfree(specs);
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (need_cands) {
|
|
struct bpf_cand_cache *cc;
|
|
int i;
|
|
|
|
mutex_lock(&cand_cache_mutex);
|
|
cc = bpf_core_find_cands(ctx, relo->type_id);
|
|
if (IS_ERR(cc)) {
|
|
bpf_log(ctx->log, "target candidate search failed for %d\n",
|
|
relo->type_id);
|
|
err = PTR_ERR(cc);
|
|
goto out;
|
|
}
|
|
if (cc->cnt) {
|
|
cands.cands = kcalloc(cc->cnt, sizeof(*cands.cands), GFP_KERNEL);
|
|
if (!cands.cands) {
|
|
err = -ENOMEM;
|
|
goto out;
|
|
}
|
|
}
|
|
for (i = 0; i < cc->cnt; i++) {
|
|
bpf_log(ctx->log,
|
|
"CO-RE relocating %s %s: found target candidate [%d]\n",
|
|
btf_kind_str[cc->kind], cc->name, cc->cands[i].id);
|
|
cands.cands[i].btf = cc->cands[i].btf;
|
|
cands.cands[i].id = cc->cands[i].id;
|
|
}
|
|
cands.len = cc->cnt;
|
|
/* cand_cache_mutex needs to span the cache lookup and
|
|
* copy of btf pointer into bpf_core_cand_list,
|
|
* since module can be unloaded while bpf_core_calc_relo_insn
|
|
* is working with module's btf.
|
|
*/
|
|
}
|
|
|
|
err = bpf_core_calc_relo_insn((void *)ctx->log, relo, relo_idx, ctx->btf, &cands, specs,
|
|
&targ_res);
|
|
if (err)
|
|
goto out;
|
|
|
|
err = bpf_core_patch_insn((void *)ctx->log, insn, relo->insn_off / 8, relo, relo_idx,
|
|
&targ_res);
|
|
|
|
out:
|
|
kfree(specs);
|
|
if (need_cands) {
|
|
kfree(cands.cands);
|
|
mutex_unlock(&cand_cache_mutex);
|
|
if (ctx->log->level & BPF_LOG_LEVEL2)
|
|
print_cand_cache(ctx->log);
|
|
}
|
|
return err;
|
|
}
|
|
|
|
bool btf_nested_type_is_trusted(struct bpf_verifier_log *log,
|
|
const struct bpf_reg_state *reg,
|
|
const char *field_name, u32 btf_id, const char *suffix)
|
|
{
|
|
struct btf *btf = reg->btf;
|
|
const struct btf_type *walk_type, *safe_type;
|
|
const char *tname;
|
|
char safe_tname[64];
|
|
long ret, safe_id;
|
|
const struct btf_member *member;
|
|
u32 i;
|
|
|
|
walk_type = btf_type_by_id(btf, reg->btf_id);
|
|
if (!walk_type)
|
|
return false;
|
|
|
|
tname = btf_name_by_offset(btf, walk_type->name_off);
|
|
|
|
ret = snprintf(safe_tname, sizeof(safe_tname), "%s%s", tname, suffix);
|
|
if (ret >= sizeof(safe_tname))
|
|
return false;
|
|
|
|
safe_id = btf_find_by_name_kind(btf, safe_tname, BTF_INFO_KIND(walk_type->info));
|
|
if (safe_id < 0)
|
|
return false;
|
|
|
|
safe_type = btf_type_by_id(btf, safe_id);
|
|
if (!safe_type)
|
|
return false;
|
|
|
|
for_each_member(i, safe_type, member) {
|
|
const char *m_name = __btf_name_by_offset(btf, member->name_off);
|
|
const struct btf_type *mtype = btf_type_by_id(btf, member->type);
|
|
u32 id;
|
|
|
|
if (!btf_type_is_ptr(mtype))
|
|
continue;
|
|
|
|
btf_type_skip_modifiers(btf, mtype->type, &id);
|
|
/* If we match on both type and name, the field is considered trusted. */
|
|
if (btf_id == id && !strcmp(field_name, m_name))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool btf_type_ids_nocast_alias(struct bpf_verifier_log *log,
|
|
const struct btf *reg_btf, u32 reg_id,
|
|
const struct btf *arg_btf, u32 arg_id)
|
|
{
|
|
const char *reg_name, *arg_name, *search_needle;
|
|
const struct btf_type *reg_type, *arg_type;
|
|
int reg_len, arg_len, cmp_len;
|
|
size_t pattern_len = sizeof(NOCAST_ALIAS_SUFFIX) - sizeof(char);
|
|
|
|
reg_type = btf_type_by_id(reg_btf, reg_id);
|
|
if (!reg_type)
|
|
return false;
|
|
|
|
arg_type = btf_type_by_id(arg_btf, arg_id);
|
|
if (!arg_type)
|
|
return false;
|
|
|
|
reg_name = btf_name_by_offset(reg_btf, reg_type->name_off);
|
|
arg_name = btf_name_by_offset(arg_btf, arg_type->name_off);
|
|
|
|
reg_len = strlen(reg_name);
|
|
arg_len = strlen(arg_name);
|
|
|
|
/* Exactly one of the two type names may be suffixed with ___init, so
|
|
* if the strings are the same size, they can't possibly be no-cast
|
|
* aliases of one another. If you have two of the same type names, e.g.
|
|
* they're both nf_conn___init, it would be improper to return true
|
|
* because they are _not_ no-cast aliases, they are the same type.
|
|
*/
|
|
if (reg_len == arg_len)
|
|
return false;
|
|
|
|
/* Either of the two names must be the other name, suffixed with ___init. */
|
|
if ((reg_len != arg_len + pattern_len) &&
|
|
(arg_len != reg_len + pattern_len))
|
|
return false;
|
|
|
|
if (reg_len < arg_len) {
|
|
search_needle = strstr(arg_name, NOCAST_ALIAS_SUFFIX);
|
|
cmp_len = reg_len;
|
|
} else {
|
|
search_needle = strstr(reg_name, NOCAST_ALIAS_SUFFIX);
|
|
cmp_len = arg_len;
|
|
}
|
|
|
|
if (!search_needle)
|
|
return false;
|
|
|
|
/* ___init suffix must come at the end of the name */
|
|
if (*(search_needle + pattern_len) != '\0')
|
|
return false;
|
|
|
|
return !strncmp(reg_name, arg_name, cmp_len);
|
|
}
|
|
|
|
#ifdef CONFIG_BPF_JIT
|
|
static int
|
|
btf_add_struct_ops(struct btf *btf, struct bpf_struct_ops *st_ops,
|
|
struct bpf_verifier_log *log)
|
|
{
|
|
struct btf_struct_ops_tab *tab, *new_tab;
|
|
int i, err;
|
|
|
|
tab = btf->struct_ops_tab;
|
|
if (!tab) {
|
|
tab = kzalloc(offsetof(struct btf_struct_ops_tab, ops[4]),
|
|
GFP_KERNEL);
|
|
if (!tab)
|
|
return -ENOMEM;
|
|
tab->capacity = 4;
|
|
btf->struct_ops_tab = tab;
|
|
}
|
|
|
|
for (i = 0; i < tab->cnt; i++)
|
|
if (tab->ops[i].st_ops == st_ops)
|
|
return -EEXIST;
|
|
|
|
if (tab->cnt == tab->capacity) {
|
|
new_tab = krealloc(tab,
|
|
offsetof(struct btf_struct_ops_tab,
|
|
ops[tab->capacity * 2]),
|
|
GFP_KERNEL);
|
|
if (!new_tab)
|
|
return -ENOMEM;
|
|
tab = new_tab;
|
|
tab->capacity *= 2;
|
|
btf->struct_ops_tab = tab;
|
|
}
|
|
|
|
tab->ops[btf->struct_ops_tab->cnt].st_ops = st_ops;
|
|
|
|
err = bpf_struct_ops_desc_init(&tab->ops[btf->struct_ops_tab->cnt], btf, log);
|
|
if (err)
|
|
return err;
|
|
|
|
btf->struct_ops_tab->cnt++;
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct bpf_struct_ops_desc *
|
|
bpf_struct_ops_find_value(struct btf *btf, u32 value_id)
|
|
{
|
|
const struct bpf_struct_ops_desc *st_ops_list;
|
|
unsigned int i;
|
|
u32 cnt;
|
|
|
|
if (!value_id)
|
|
return NULL;
|
|
if (!btf->struct_ops_tab)
|
|
return NULL;
|
|
|
|
cnt = btf->struct_ops_tab->cnt;
|
|
st_ops_list = btf->struct_ops_tab->ops;
|
|
for (i = 0; i < cnt; i++) {
|
|
if (st_ops_list[i].value_id == value_id)
|
|
return &st_ops_list[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
const struct bpf_struct_ops_desc *
|
|
bpf_struct_ops_find(struct btf *btf, u32 type_id)
|
|
{
|
|
const struct bpf_struct_ops_desc *st_ops_list;
|
|
unsigned int i;
|
|
u32 cnt;
|
|
|
|
if (!type_id)
|
|
return NULL;
|
|
if (!btf->struct_ops_tab)
|
|
return NULL;
|
|
|
|
cnt = btf->struct_ops_tab->cnt;
|
|
st_ops_list = btf->struct_ops_tab->ops;
|
|
for (i = 0; i < cnt; i++) {
|
|
if (st_ops_list[i].type_id == type_id)
|
|
return &st_ops_list[i];
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
int __register_bpf_struct_ops(struct bpf_struct_ops *st_ops)
|
|
{
|
|
struct bpf_verifier_log *log;
|
|
struct btf *btf;
|
|
int err = 0;
|
|
|
|
btf = btf_get_module_btf(st_ops->owner);
|
|
if (!btf)
|
|
return check_btf_kconfigs(st_ops->owner, "struct_ops");
|
|
if (IS_ERR(btf))
|
|
return PTR_ERR(btf);
|
|
|
|
log = kzalloc(sizeof(*log), GFP_KERNEL | __GFP_NOWARN);
|
|
if (!log) {
|
|
err = -ENOMEM;
|
|
goto errout;
|
|
}
|
|
|
|
log->level = BPF_LOG_KERNEL;
|
|
|
|
err = btf_add_struct_ops(btf, st_ops, log);
|
|
|
|
errout:
|
|
kfree(log);
|
|
btf_put(btf);
|
|
|
|
return err;
|
|
}
|
|
EXPORT_SYMBOL_GPL(__register_bpf_struct_ops);
|
|
#endif
|
|
|
|
bool btf_param_match_suffix(const struct btf *btf,
|
|
const struct btf_param *arg,
|
|
const char *suffix)
|
|
{
|
|
int suffix_len = strlen(suffix), len;
|
|
const char *param_name;
|
|
|
|
/* In the future, this can be ported to use BTF tagging */
|
|
param_name = btf_name_by_offset(btf, arg->name_off);
|
|
if (str_is_empty(param_name))
|
|
return false;
|
|
len = strlen(param_name);
|
|
if (len <= suffix_len)
|
|
return false;
|
|
param_name += len - suffix_len;
|
|
return !strncmp(param_name, suffix, suffix_len);
|
|
}
|