Lorenzo Stoakes 52956b0d7f mm: isolate mmap internal logic to mm/vma.c
In previous commits we effected improvements to the mmap() logic in
mmap_region() and its newly introduced internal implementation function
__mmap_region().

However as these changes are intended to be backported, we kept the delta
as small as is possible and made as few changes as possible to the newly
introduced mm/vma.* files.

Take the opportunity to move this logic to mm/vma.c which not only
isolates it, but also makes it available for later userland testing which
can help us catch such logic errors far earlier.

Link: https://lkml.kernel.org/r/93fc2c3aa37dd30590b7e4ee067dfd832007bf7e.1729858176.git.lorenzo.stoakes@oracle.com
Signed-off-by: Lorenzo Stoakes <lorenzo.stoakes@oracle.com>
Reviewed-by: Vlastimil Babka <vbabka@suse.cz>
Cc: Jann Horn <jannh@google.com>
Cc: Liam R. Howlett <Liam.Howlett@Oracle.com>
Cc: Linus Torvalds <torvalds@linux-foundation.org>
Cc: Peter Xu <peterx@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-11-06 20:11:19 -08:00

476 lines
13 KiB
C

/* SPDX-License-Identifier: GPL-2.0-or-later */
/*
* vma.h
*
* Core VMA manipulation API implemented in vma.c.
*/
#ifndef __MM_VMA_H
#define __MM_VMA_H
/*
* VMA lock generalization
*/
struct vma_prepare {
struct vm_area_struct *vma;
struct vm_area_struct *adj_next;
struct file *file;
struct address_space *mapping;
struct anon_vma *anon_vma;
struct vm_area_struct *insert;
struct vm_area_struct *remove;
struct vm_area_struct *remove2;
};
struct unlink_vma_file_batch {
int count;
struct vm_area_struct *vmas[8];
};
/*
* vma munmap operation
*/
struct vma_munmap_struct {
struct vma_iterator *vmi;
struct vm_area_struct *vma; /* The first vma to munmap */
struct vm_area_struct *prev; /* vma before the munmap area */
struct vm_area_struct *next; /* vma after the munmap area */
struct list_head *uf; /* Userfaultfd list_head */
unsigned long start; /* Aligned start addr (inclusive) */
unsigned long end; /* Aligned end addr (exclusive) */
unsigned long unmap_start; /* Unmap PTE start */
unsigned long unmap_end; /* Unmap PTE end */
int vma_count; /* Number of vmas that will be removed */
bool unlock; /* Unlock after the munmap */
bool clear_ptes; /* If there are outstanding PTE to be cleared */
/* 2 byte hole */
unsigned long nr_pages; /* Number of pages being removed */
unsigned long locked_vm; /* Number of locked pages */
unsigned long nr_accounted; /* Number of VM_ACCOUNT pages */
unsigned long exec_vm;
unsigned long stack_vm;
unsigned long data_vm;
};
enum vma_merge_state {
VMA_MERGE_START,
VMA_MERGE_ERROR_NOMEM,
VMA_MERGE_NOMERGE,
VMA_MERGE_SUCCESS,
};
enum vma_merge_flags {
VMG_FLAG_DEFAULT = 0,
/*
* If we can expand, simply do so. We know there is nothing to merge to
* the right. Does not reset state upon failure to merge. The VMA
* iterator is assumed to be positioned at the previous VMA, rather than
* at the gap.
*/
VMG_FLAG_JUST_EXPAND = 1 << 0,
};
/* Represents a VMA merge operation. */
struct vma_merge_struct {
struct mm_struct *mm;
struct vma_iterator *vmi;
pgoff_t pgoff;
struct vm_area_struct *prev;
struct vm_area_struct *next; /* Modified by vma_merge(). */
struct vm_area_struct *vma; /* Either a new VMA or the one being modified. */
unsigned long start;
unsigned long end;
unsigned long flags;
struct file *file;
struct anon_vma *anon_vma;
struct mempolicy *policy;
struct vm_userfaultfd_ctx uffd_ctx;
struct anon_vma_name *anon_name;
enum vma_merge_flags merge_flags;
enum vma_merge_state state;
};
static inline bool vmg_nomem(struct vma_merge_struct *vmg)
{
return vmg->state == VMA_MERGE_ERROR_NOMEM;
}
/* Assumes addr >= vma->vm_start. */
static inline pgoff_t vma_pgoff_offset(struct vm_area_struct *vma,
unsigned long addr)
{
return vma->vm_pgoff + PHYS_PFN(addr - vma->vm_start);
}
#define VMG_STATE(name, mm_, vmi_, start_, end_, flags_, pgoff_) \
struct vma_merge_struct name = { \
.mm = mm_, \
.vmi = vmi_, \
.start = start_, \
.end = end_, \
.flags = flags_, \
.pgoff = pgoff_, \
.state = VMA_MERGE_START, \
.merge_flags = VMG_FLAG_DEFAULT, \
}
#define VMG_VMA_STATE(name, vmi_, prev_, vma_, start_, end_) \
struct vma_merge_struct name = { \
.mm = vma_->vm_mm, \
.vmi = vmi_, \
.prev = prev_, \
.next = NULL, \
.vma = vma_, \
.start = start_, \
.end = end_, \
.flags = vma_->vm_flags, \
.pgoff = vma_pgoff_offset(vma_, start_), \
.file = vma_->vm_file, \
.anon_vma = vma_->anon_vma, \
.policy = vma_policy(vma_), \
.uffd_ctx = vma_->vm_userfaultfd_ctx, \
.anon_name = anon_vma_name(vma_), \
.state = VMA_MERGE_START, \
.merge_flags = VMG_FLAG_DEFAULT, \
}
#ifdef CONFIG_DEBUG_VM_MAPLE_TREE
void validate_mm(struct mm_struct *mm);
#else
#define validate_mm(mm) do { } while (0)
#endif
/* Required for expand_downwards(). */
void anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma);
/* Required for expand_downwards(). */
void anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma);
int vma_expand(struct vma_merge_struct *vmg);
int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
unsigned long start, unsigned long end, pgoff_t pgoff);
static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
struct vm_area_struct *vma, gfp_t gfp)
{
if (vmi->mas.status != ma_start &&
((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
vma_iter_invalidate(vmi);
__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
mas_store_gfp(&vmi->mas, vma, gfp);
if (unlikely(mas_is_err(&vmi->mas)))
return -ENOMEM;
return 0;
}
int
do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
struct mm_struct *mm, unsigned long start,
unsigned long end, struct list_head *uf, bool unlock);
int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
unsigned long start, size_t len, struct list_head *uf,
bool unlock);
void remove_vma(struct vm_area_struct *vma, bool unreachable);
void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
struct vm_area_struct *prev, struct vm_area_struct *next);
/* We are about to modify the VMA's flags. */
struct vm_area_struct *vma_modify_flags(struct vma_iterator *vmi,
struct vm_area_struct *prev, struct vm_area_struct *vma,
unsigned long start, unsigned long end,
unsigned long new_flags);
/* We are about to modify the VMA's flags and/or anon_name. */
struct vm_area_struct
*vma_modify_flags_name(struct vma_iterator *vmi,
struct vm_area_struct *prev,
struct vm_area_struct *vma,
unsigned long start,
unsigned long end,
unsigned long new_flags,
struct anon_vma_name *new_name);
/* We are about to modify the VMA's memory policy. */
struct vm_area_struct
*vma_modify_policy(struct vma_iterator *vmi,
struct vm_area_struct *prev,
struct vm_area_struct *vma,
unsigned long start, unsigned long end,
struct mempolicy *new_pol);
/* We are about to modify the VMA's flags and/or uffd context. */
struct vm_area_struct
*vma_modify_flags_uffd(struct vma_iterator *vmi,
struct vm_area_struct *prev,
struct vm_area_struct *vma,
unsigned long start, unsigned long end,
unsigned long new_flags,
struct vm_userfaultfd_ctx new_ctx);
struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg);
struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
struct vm_area_struct *vma,
unsigned long delta);
void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb);
void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb);
void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
struct vm_area_struct *vma);
void unlink_file_vma(struct vm_area_struct *vma);
void vma_link_file(struct vm_area_struct *vma);
int vma_link(struct mm_struct *mm, struct vm_area_struct *vma);
struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
unsigned long addr, unsigned long len, pgoff_t pgoff,
bool *need_rmap_locks);
struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma);
bool vma_needs_dirty_tracking(struct vm_area_struct *vma);
bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
int mm_take_all_locks(struct mm_struct *mm);
void mm_drop_all_locks(struct mm_struct *mm);
unsigned long __mmap_region(struct file *file, unsigned long addr,
unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
struct list_head *uf);
static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
{
/*
* We want to check manually if we can change individual PTEs writable
* if we can't do that automatically for all PTEs in a mapping. For
* private mappings, that's always the case when we have write
* permissions as we properly have to handle COW.
*/
if (vma->vm_flags & VM_SHARED)
return vma_wants_writenotify(vma, vma->vm_page_prot);
return !!(vma->vm_flags & VM_WRITE);
}
#ifdef CONFIG_MMU
static inline pgprot_t vm_pgprot_modify(pgprot_t oldprot, unsigned long vm_flags)
{
return pgprot_modify(oldprot, vm_get_page_prot(vm_flags));
}
#endif
static inline struct vm_area_struct *vma_prev_limit(struct vma_iterator *vmi,
unsigned long min)
{
return mas_prev(&vmi->mas, min);
}
/*
* These three helpers classifies VMAs for virtual memory accounting.
*/
/*
* Executable code area - executable, not writable, not stack
*/
static inline bool is_exec_mapping(vm_flags_t flags)
{
return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
}
/*
* Stack area (including shadow stacks)
*
* VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
* do_mmap() forbids all other combinations.
*/
static inline bool is_stack_mapping(vm_flags_t flags)
{
return ((flags & VM_STACK) == VM_STACK) || (flags & VM_SHADOW_STACK);
}
/*
* Data area - private, writable, not stack
*/
static inline bool is_data_mapping(vm_flags_t flags)
{
return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
}
static inline void vma_iter_config(struct vma_iterator *vmi,
unsigned long index, unsigned long last)
{
__mas_set_range(&vmi->mas, index, last - 1);
}
static inline void vma_iter_reset(struct vma_iterator *vmi)
{
mas_reset(&vmi->mas);
}
static inline
struct vm_area_struct *vma_iter_prev_range_limit(struct vma_iterator *vmi, unsigned long min)
{
return mas_prev_range(&vmi->mas, min);
}
static inline
struct vm_area_struct *vma_iter_next_range_limit(struct vma_iterator *vmi, unsigned long max)
{
return mas_next_range(&vmi->mas, max);
}
static inline int vma_iter_area_lowest(struct vma_iterator *vmi, unsigned long min,
unsigned long max, unsigned long size)
{
return mas_empty_area(&vmi->mas, min, max - 1, size);
}
static inline int vma_iter_area_highest(struct vma_iterator *vmi, unsigned long min,
unsigned long max, unsigned long size)
{
return mas_empty_area_rev(&vmi->mas, min, max - 1, size);
}
/*
* VMA Iterator functions shared between nommu and mmap
*/
static inline int vma_iter_prealloc(struct vma_iterator *vmi,
struct vm_area_struct *vma)
{
return mas_preallocate(&vmi->mas, vma, GFP_KERNEL);
}
static inline void vma_iter_clear(struct vma_iterator *vmi)
{
mas_store_prealloc(&vmi->mas, NULL);
}
static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
{
return mas_walk(&vmi->mas);
}
/* Store a VMA with preallocated memory */
static inline void vma_iter_store(struct vma_iterator *vmi,
struct vm_area_struct *vma)
{
#if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
vmi->mas.index > vma->vm_start)) {
pr_warn("%lx > %lx\n store vma %lx-%lx\n into slot %lx-%lx\n",
vmi->mas.index, vma->vm_start, vma->vm_start,
vma->vm_end, vmi->mas.index, vmi->mas.last);
}
if (MAS_WARN_ON(&vmi->mas, vmi->mas.status != ma_start &&
vmi->mas.last < vma->vm_start)) {
pr_warn("%lx < %lx\nstore vma %lx-%lx\ninto slot %lx-%lx\n",
vmi->mas.last, vma->vm_start, vma->vm_start, vma->vm_end,
vmi->mas.index, vmi->mas.last);
}
#endif
if (vmi->mas.status != ma_start &&
((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
vma_iter_invalidate(vmi);
__mas_set_range(&vmi->mas, vma->vm_start, vma->vm_end - 1);
mas_store_prealloc(&vmi->mas, vma);
}
static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
{
return vmi->mas.index;
}
static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
{
return vmi->mas.last + 1;
}
static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
unsigned long count)
{
return mas_expected_entries(&vmi->mas, count);
}
static inline
struct vm_area_struct *vma_iter_prev_range(struct vma_iterator *vmi)
{
return mas_prev_range(&vmi->mas, 0);
}
/*
* Retrieve the next VMA and rewind the iterator to end of the previous VMA, or
* if no previous VMA, to index 0.
*/
static inline
struct vm_area_struct *vma_iter_next_rewind(struct vma_iterator *vmi,
struct vm_area_struct **pprev)
{
struct vm_area_struct *next = vma_next(vmi);
struct vm_area_struct *prev = vma_prev(vmi);
/*
* Consider the case where no previous VMA exists. We advance to the
* next VMA, skipping any gap, then rewind to the start of the range.
*
* If we were to unconditionally advance to the next range we'd wind up
* at the next VMA again, so we check to ensure there is a previous VMA
* to skip over.
*/
if (prev)
vma_iter_next_range(vmi);
if (pprev)
*pprev = prev;
return next;
}
#ifdef CONFIG_64BIT
static inline bool vma_is_sealed(struct vm_area_struct *vma)
{
return (vma->vm_flags & VM_SEALED);
}
/*
* check if a vma is sealed for modification.
* return true, if modification is allowed.
*/
static inline bool can_modify_vma(struct vm_area_struct *vma)
{
if (unlikely(vma_is_sealed(vma)))
return false;
return true;
}
bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior);
#else
static inline bool can_modify_vma(struct vm_area_struct *vma)
{
return true;
}
static inline bool can_modify_vma_madv(struct vm_area_struct *vma, int behavior)
{
return true;
}
#endif
#endif /* __MM_VMA_H */