liujing f32c3f01c2
ASoC: apple: Fix the wrong format specifier
In the mca_fe_hw_params(), the variable tdm_slot_width is of
type unsigned int, so the output should be %u

Signed-off-by: liujing <liujing@cmss.chinamobile.com>

Link: https://patch.msgid.link/20241113015758.5441-1-liujing@cmss.chinamobile.com
Signed-off-by: Mark Brown <broonie@kernel.org>
2024-11-21 14:03:18 +00:00

1189 lines
30 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
//
// Apple SoCs MCA driver
//
// Copyright (C) The Asahi Linux Contributors
//
// The MCA peripheral is made up of a number of identical units called clusters.
// Each cluster has its separate clock parent, SYNC signal generator, carries
// four SERDES units and has a dedicated I2S port on the SoC's periphery.
//
// The clusters can operate independently, or can be combined together in a
// configurable manner. We mostly treat them as self-contained independent
// units and don't configure any cross-cluster connections except for the I2S
// ports. The I2S ports can be routed to any of the clusters (irrespective
// of their native cluster). We map this onto ASoC's (DPCM) notion of backend
// and frontend DAIs. The 'cluster guts' are frontends which are dynamically
// routed to backend I2S ports.
//
// DAI references in devicetree are resolved to backends. The routing between
// frontends and backends is determined by the machine driver in the DAPM paths
// it supplies.
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_clk.h>
#include <linux/of_dma.h>
#include <linux/platform_device.h>
#include <linux/pm_domain.h>
#include <linux/regmap.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <sound/pcm.h>
#include <sound/pcm_params.h>
#include <sound/soc.h>
#include <sound/dmaengine_pcm.h>
#define USE_RXB_FOR_CAPTURE
/* Relative to cluster base */
#define REG_STATUS 0x0
#define STATUS_MCLK_EN BIT(0)
#define REG_MCLK_CONF 0x4
#define MCLK_CONF_DIV GENMASK(11, 8)
#define REG_SYNCGEN_STATUS 0x100
#define SYNCGEN_STATUS_EN BIT(0)
#define REG_SYNCGEN_MCLK_SEL 0x104
#define SYNCGEN_MCLK_SEL GENMASK(3, 0)
#define REG_SYNCGEN_HI_PERIOD 0x108
#define REG_SYNCGEN_LO_PERIOD 0x10c
#define REG_PORT_ENABLES 0x600
#define PORT_ENABLES_CLOCKS GENMASK(2, 1)
#define PORT_ENABLES_TX_DATA BIT(3)
#define REG_PORT_CLOCK_SEL 0x604
#define PORT_CLOCK_SEL GENMASK(11, 8)
#define REG_PORT_DATA_SEL 0x608
#define PORT_DATA_SEL_TXA(cl) (1 << ((cl)*2))
#define PORT_DATA_SEL_TXB(cl) (2 << ((cl)*2))
#define REG_INTSTATE 0x700
#define REG_INTMASK 0x704
/* Bases of serdes units (relative to cluster) */
#define CLUSTER_RXA_OFF 0x200
#define CLUSTER_TXA_OFF 0x300
#define CLUSTER_RXB_OFF 0x400
#define CLUSTER_TXB_OFF 0x500
#define CLUSTER_TX_OFF CLUSTER_TXA_OFF
#ifndef USE_RXB_FOR_CAPTURE
#define CLUSTER_RX_OFF CLUSTER_RXA_OFF
#else
#define CLUSTER_RX_OFF CLUSTER_RXB_OFF
#endif
/* Relative to serdes unit base */
#define REG_SERDES_STATUS 0x00
#define SERDES_STATUS_EN BIT(0)
#define SERDES_STATUS_RST BIT(1)
#define REG_TX_SERDES_CONF 0x04
#define REG_RX_SERDES_CONF 0x08
#define SERDES_CONF_NCHANS GENMASK(3, 0)
#define SERDES_CONF_WIDTH_MASK GENMASK(8, 4)
#define SERDES_CONF_WIDTH_16BIT 0x40
#define SERDES_CONF_WIDTH_20BIT 0x80
#define SERDES_CONF_WIDTH_24BIT 0xc0
#define SERDES_CONF_WIDTH_32BIT 0x100
#define SERDES_CONF_BCLK_POL 0x400
#define SERDES_CONF_LSB_FIRST 0x800
#define SERDES_CONF_UNK1 BIT(12)
#define SERDES_CONF_UNK2 BIT(13)
#define SERDES_CONF_UNK3 BIT(14)
#define SERDES_CONF_NO_DATA_FEEDBACK BIT(15)
#define SERDES_CONF_SYNC_SEL GENMASK(18, 16)
#define REG_TX_SERDES_BITSTART 0x08
#define REG_RX_SERDES_BITSTART 0x0c
#define REG_TX_SERDES_SLOTMASK 0x0c
#define REG_RX_SERDES_SLOTMASK 0x10
#define REG_RX_SERDES_PORT 0x04
/* Relative to switch base */
#define REG_DMA_ADAPTER_A(cl) (0x8000 * (cl))
#define REG_DMA_ADAPTER_B(cl) (0x8000 * (cl) + 0x4000)
#define DMA_ADAPTER_TX_LSB_PAD GENMASK(4, 0)
#define DMA_ADAPTER_TX_NCHANS GENMASK(6, 5)
#define DMA_ADAPTER_RX_MSB_PAD GENMASK(12, 8)
#define DMA_ADAPTER_RX_NCHANS GENMASK(14, 13)
#define DMA_ADAPTER_NCHANS GENMASK(22, 20)
#define SWITCH_STRIDE 0x8000
#define CLUSTER_STRIDE 0x4000
#define MAX_NCLUSTERS 6
#define APPLE_MCA_FMTBITS (SNDRV_PCM_FMTBIT_S16_LE | \
SNDRV_PCM_FMTBIT_S24_LE | \
SNDRV_PCM_FMTBIT_S32_LE)
struct mca_cluster {
int no;
__iomem void *base;
struct mca_data *host;
struct device *pd_dev;
struct clk *clk_parent;
struct dma_chan *dma_chans[SNDRV_PCM_STREAM_LAST + 1];
bool port_started[SNDRV_PCM_STREAM_LAST + 1];
int port_driver; /* The cluster driving this cluster's port */
bool clocks_in_use[SNDRV_PCM_STREAM_LAST + 1];
struct device_link *pd_link;
unsigned int bclk_ratio;
/* Masks etc. picked up via the set_tdm_slot method */
int tdm_slots;
int tdm_slot_width;
unsigned int tdm_tx_mask;
unsigned int tdm_rx_mask;
};
struct mca_data {
struct device *dev;
__iomem void *switch_base;
struct device *pd_dev;
struct reset_control *rstc;
struct device_link *pd_link;
/* Mutex for accessing port_driver of foreign clusters */
struct mutex port_mutex;
int nclusters;
struct mca_cluster clusters[] __counted_by(nclusters);
};
static void mca_modify(struct mca_cluster *cl, int regoffset, u32 mask, u32 val)
{
__iomem void *ptr = cl->base + regoffset;
u32 newval;
newval = (val & mask) | (readl_relaxed(ptr) & ~mask);
writel_relaxed(newval, ptr);
}
/*
* Get the cluster of FE or BE DAI
*/
static struct mca_cluster *mca_dai_to_cluster(struct snd_soc_dai *dai)
{
struct mca_data *mca = snd_soc_dai_get_drvdata(dai);
/*
* FE DAIs are 0 ... nclusters - 1
* BE DAIs are nclusters ... 2*nclusters - 1
*/
int cluster_no = dai->id % mca->nclusters;
return &mca->clusters[cluster_no];
}
/* called before PCM trigger */
static void mca_fe_early_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct mca_cluster *cl = mca_dai_to_cluster(dai);
bool is_tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
int serdes_unit = is_tx ? CLUSTER_TX_OFF : CLUSTER_RX_OFF;
int serdes_conf =
serdes_unit + (is_tx ? REG_TX_SERDES_CONF : REG_RX_SERDES_CONF);
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
mca_modify(cl, serdes_conf, SERDES_CONF_SYNC_SEL,
FIELD_PREP(SERDES_CONF_SYNC_SEL, 0));
mca_modify(cl, serdes_conf, SERDES_CONF_SYNC_SEL,
FIELD_PREP(SERDES_CONF_SYNC_SEL, 7));
mca_modify(cl, serdes_unit + REG_SERDES_STATUS,
SERDES_STATUS_EN | SERDES_STATUS_RST,
SERDES_STATUS_RST);
/*
* Experiments suggest that it takes at most ~1 us
* for the bit to clear, so wait 2 us for good measure.
*/
udelay(2);
WARN_ON(readl_relaxed(cl->base + serdes_unit + REG_SERDES_STATUS) &
SERDES_STATUS_RST);
mca_modify(cl, serdes_conf, SERDES_CONF_SYNC_SEL,
FIELD_PREP(SERDES_CONF_SYNC_SEL, 0));
mca_modify(cl, serdes_conf, SERDES_CONF_SYNC_SEL,
FIELD_PREP(SERDES_CONF_SYNC_SEL, cl->no + 1));
break;
default:
break;
}
}
static int mca_fe_trigger(struct snd_pcm_substream *substream, int cmd,
struct snd_soc_dai *dai)
{
struct mca_cluster *cl = mca_dai_to_cluster(dai);
bool is_tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
int serdes_unit = is_tx ? CLUSTER_TX_OFF : CLUSTER_RX_OFF;
switch (cmd) {
case SNDRV_PCM_TRIGGER_START:
case SNDRV_PCM_TRIGGER_RESUME:
case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
mca_modify(cl, serdes_unit + REG_SERDES_STATUS,
SERDES_STATUS_EN | SERDES_STATUS_RST,
SERDES_STATUS_EN);
break;
case SNDRV_PCM_TRIGGER_STOP:
case SNDRV_PCM_TRIGGER_SUSPEND:
case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
mca_modify(cl, serdes_unit + REG_SERDES_STATUS,
SERDES_STATUS_EN, 0);
break;
default:
return -EINVAL;
}
return 0;
}
static int mca_fe_enable_clocks(struct mca_cluster *cl)
{
struct mca_data *mca = cl->host;
int ret;
ret = clk_prepare_enable(cl->clk_parent);
if (ret) {
dev_err(mca->dev,
"cluster %d: unable to enable clock parent: %d\n",
cl->no, ret);
return ret;
}
/*
* We can't power up the device earlier than this because
* the power state driver would error out on seeing the device
* as clock-gated.
*/
cl->pd_link = device_link_add(mca->dev, cl->pd_dev,
DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
DL_FLAG_RPM_ACTIVE);
if (!cl->pd_link) {
dev_err(mca->dev,
"cluster %d: unable to prop-up power domain\n", cl->no);
clk_disable_unprepare(cl->clk_parent);
return -EINVAL;
}
writel_relaxed(cl->no + 1, cl->base + REG_SYNCGEN_MCLK_SEL);
mca_modify(cl, REG_SYNCGEN_STATUS, SYNCGEN_STATUS_EN,
SYNCGEN_STATUS_EN);
mca_modify(cl, REG_STATUS, STATUS_MCLK_EN, STATUS_MCLK_EN);
return 0;
}
static void mca_fe_disable_clocks(struct mca_cluster *cl)
{
mca_modify(cl, REG_SYNCGEN_STATUS, SYNCGEN_STATUS_EN, 0);
mca_modify(cl, REG_STATUS, STATUS_MCLK_EN, 0);
device_link_del(cl->pd_link);
clk_disable_unprepare(cl->clk_parent);
}
static bool mca_fe_clocks_in_use(struct mca_cluster *cl)
{
struct mca_data *mca = cl->host;
struct mca_cluster *be_cl;
int stream, i;
mutex_lock(&mca->port_mutex);
for (i = 0; i < mca->nclusters; i++) {
be_cl = &mca->clusters[i];
if (be_cl->port_driver != cl->no)
continue;
for_each_pcm_streams(stream) {
if (be_cl->clocks_in_use[stream]) {
mutex_unlock(&mca->port_mutex);
return true;
}
}
}
mutex_unlock(&mca->port_mutex);
return false;
}
static int mca_be_prepare(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mca_cluster *cl = mca_dai_to_cluster(dai);
struct mca_data *mca = cl->host;
struct mca_cluster *fe_cl;
int ret;
if (cl->port_driver < 0)
return -EINVAL;
fe_cl = &mca->clusters[cl->port_driver];
/*
* Typically the CODECs we are paired with will require clocks
* to be present at time of unmute with the 'mute_stream' op
* or at time of DAPM widget power-up. We need to enable clocks
* here at the latest (frontend prepare would be too late).
*/
if (!mca_fe_clocks_in_use(fe_cl)) {
ret = mca_fe_enable_clocks(fe_cl);
if (ret < 0)
return ret;
}
cl->clocks_in_use[substream->stream] = true;
return 0;
}
static int mca_be_hw_free(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mca_cluster *cl = mca_dai_to_cluster(dai);
struct mca_data *mca = cl->host;
struct mca_cluster *fe_cl;
if (cl->port_driver < 0)
return -EINVAL;
/*
* We are operating on a foreign cluster here, but since we
* belong to the same PCM, accesses should have been
* synchronized at ASoC level.
*/
fe_cl = &mca->clusters[cl->port_driver];
if (!mca_fe_clocks_in_use(fe_cl))
return 0; /* Nothing to do */
cl->clocks_in_use[substream->stream] = false;
if (!mca_fe_clocks_in_use(fe_cl))
mca_fe_disable_clocks(fe_cl);
return 0;
}
static unsigned int mca_crop_mask(unsigned int mask, int nchans)
{
while (hweight32(mask) > nchans)
mask &= ~(1 << __fls(mask));
return mask;
}
static int mca_configure_serdes(struct mca_cluster *cl, int serdes_unit,
unsigned int mask, int slots, int nchans,
int slot_width, bool is_tx, int port)
{
__iomem void *serdes_base = cl->base + serdes_unit;
u32 serdes_conf, serdes_conf_mask;
serdes_conf_mask = SERDES_CONF_WIDTH_MASK | SERDES_CONF_NCHANS;
serdes_conf = FIELD_PREP(SERDES_CONF_NCHANS, max(slots, 1) - 1);
switch (slot_width) {
case 16:
serdes_conf |= SERDES_CONF_WIDTH_16BIT;
break;
case 20:
serdes_conf |= SERDES_CONF_WIDTH_20BIT;
break;
case 24:
serdes_conf |= SERDES_CONF_WIDTH_24BIT;
break;
case 32:
serdes_conf |= SERDES_CONF_WIDTH_32BIT;
break;
default:
goto err;
}
serdes_conf_mask |= SERDES_CONF_SYNC_SEL;
serdes_conf |= FIELD_PREP(SERDES_CONF_SYNC_SEL, cl->no + 1);
if (is_tx) {
serdes_conf_mask |= SERDES_CONF_UNK1 | SERDES_CONF_UNK2 |
SERDES_CONF_UNK3;
serdes_conf |= SERDES_CONF_UNK1 | SERDES_CONF_UNK2 |
SERDES_CONF_UNK3;
} else {
serdes_conf_mask |= SERDES_CONF_UNK1 | SERDES_CONF_UNK2 |
SERDES_CONF_UNK3 |
SERDES_CONF_NO_DATA_FEEDBACK;
serdes_conf |= SERDES_CONF_UNK1 | SERDES_CONF_UNK2 |
SERDES_CONF_NO_DATA_FEEDBACK;
}
mca_modify(cl,
serdes_unit +
(is_tx ? REG_TX_SERDES_CONF : REG_RX_SERDES_CONF),
serdes_conf_mask, serdes_conf);
if (is_tx) {
writel_relaxed(0xffffffff,
serdes_base + REG_TX_SERDES_SLOTMASK);
writel_relaxed(~((u32)mca_crop_mask(mask, nchans)),
serdes_base + REG_TX_SERDES_SLOTMASK + 0x4);
writel_relaxed(0xffffffff,
serdes_base + REG_TX_SERDES_SLOTMASK + 0x8);
writel_relaxed(~((u32)mask),
serdes_base + REG_TX_SERDES_SLOTMASK + 0xc);
} else {
writel_relaxed(0xffffffff,
serdes_base + REG_RX_SERDES_SLOTMASK);
writel_relaxed(~((u32)mca_crop_mask(mask, nchans)),
serdes_base + REG_RX_SERDES_SLOTMASK + 0x4);
writel_relaxed(1 << port,
serdes_base + REG_RX_SERDES_PORT);
}
return 0;
err:
dev_err(cl->host->dev,
"unsupported SERDES configuration requested (mask=0x%x slots=%d slot_width=%d)\n",
mask, slots, slot_width);
return -EINVAL;
}
static int mca_fe_set_tdm_slot(struct snd_soc_dai *dai, unsigned int tx_mask,
unsigned int rx_mask, int slots, int slot_width)
{
struct mca_cluster *cl = mca_dai_to_cluster(dai);
cl->tdm_slots = slots;
cl->tdm_slot_width = slot_width;
cl->tdm_tx_mask = tx_mask;
cl->tdm_rx_mask = rx_mask;
return 0;
}
static int mca_fe_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
{
struct mca_cluster *cl = mca_dai_to_cluster(dai);
struct mca_data *mca = cl->host;
bool fpol_inv = false;
u32 serdes_conf = 0;
u32 bitstart;
if ((fmt & SND_SOC_DAIFMT_CLOCK_PROVIDER_MASK) !=
SND_SOC_DAIFMT_BP_FP)
goto err;
switch (fmt & SND_SOC_DAIFMT_FORMAT_MASK) {
case SND_SOC_DAIFMT_I2S:
fpol_inv = 0;
bitstart = 1;
break;
case SND_SOC_DAIFMT_LEFT_J:
fpol_inv = 1;
bitstart = 0;
break;
default:
goto err;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_IF:
case SND_SOC_DAIFMT_IB_IF:
fpol_inv ^= 1;
break;
}
switch (fmt & SND_SOC_DAIFMT_INV_MASK) {
case SND_SOC_DAIFMT_NB_NF:
case SND_SOC_DAIFMT_NB_IF:
serdes_conf |= SERDES_CONF_BCLK_POL;
break;
}
if (!fpol_inv)
goto err;
mca_modify(cl, CLUSTER_TX_OFF + REG_TX_SERDES_CONF,
SERDES_CONF_BCLK_POL, serdes_conf);
mca_modify(cl, CLUSTER_RX_OFF + REG_RX_SERDES_CONF,
SERDES_CONF_BCLK_POL, serdes_conf);
writel_relaxed(bitstart,
cl->base + CLUSTER_TX_OFF + REG_TX_SERDES_BITSTART);
writel_relaxed(bitstart,
cl->base + CLUSTER_RX_OFF + REG_RX_SERDES_BITSTART);
return 0;
err:
dev_err(mca->dev, "unsupported DAI format (0x%x) requested\n", fmt);
return -EINVAL;
}
static int mca_set_bclk_ratio(struct snd_soc_dai *dai, unsigned int ratio)
{
struct mca_cluster *cl = mca_dai_to_cluster(dai);
cl->bclk_ratio = ratio;
return 0;
}
static int mca_fe_get_port(struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *fe = snd_soc_substream_to_rtd(substream);
struct snd_soc_pcm_runtime *be;
struct snd_soc_dpcm *dpcm;
be = NULL;
for_each_dpcm_be(fe, substream->stream, dpcm) {
be = dpcm->be;
break;
}
if (!be)
return -EINVAL;
return mca_dai_to_cluster(snd_soc_rtd_to_cpu(be, 0))->no;
}
static int mca_fe_hw_params(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params,
struct snd_soc_dai *dai)
{
struct mca_cluster *cl = mca_dai_to_cluster(dai);
struct mca_data *mca = cl->host;
struct device *dev = mca->dev;
unsigned int samp_rate = params_rate(params);
bool is_tx = substream->stream == SNDRV_PCM_STREAM_PLAYBACK;
bool refine_tdm = false;
unsigned long bclk_ratio;
unsigned int tdm_slots, tdm_slot_width, tdm_mask;
u32 regval, pad;
int ret, port, nchans_ceiled;
if (!cl->tdm_slot_width) {
/*
* We were not given TDM settings from above, set initial
* guesses which will later be refined.
*/
tdm_slot_width = params_width(params);
tdm_slots = params_channels(params);
refine_tdm = true;
} else {
tdm_slot_width = cl->tdm_slot_width;
tdm_slots = cl->tdm_slots;
tdm_mask = is_tx ? cl->tdm_tx_mask : cl->tdm_rx_mask;
}
if (cl->bclk_ratio)
bclk_ratio = cl->bclk_ratio;
else
bclk_ratio = tdm_slot_width * tdm_slots;
if (refine_tdm) {
int nchannels = params_channels(params);
if (nchannels > 2) {
dev_err(dev, "missing TDM for stream with two or more channels\n");
return -EINVAL;
}
if ((bclk_ratio % nchannels) != 0) {
dev_err(dev, "BCLK ratio (%ld) not divisible by no. of channels (%d)\n",
bclk_ratio, nchannels);
return -EINVAL;
}
tdm_slot_width = bclk_ratio / nchannels;
if (tdm_slot_width > 32 && nchannels == 1)
tdm_slot_width = 32;
if (tdm_slot_width < params_width(params)) {
dev_err(dev, "TDM slots too narrow (tdm=%u params=%d)\n",
tdm_slot_width, params_width(params));
return -EINVAL;
}
tdm_mask = (1 << tdm_slots) - 1;
}
port = mca_fe_get_port(substream);
if (port < 0)
return port;
ret = mca_configure_serdes(cl, is_tx ? CLUSTER_TX_OFF : CLUSTER_RX_OFF,
tdm_mask, tdm_slots, params_channels(params),
tdm_slot_width, is_tx, port);
if (ret)
return ret;
pad = 32 - params_width(params);
/*
* TODO: Here the register semantics aren't clear.
*/
nchans_ceiled = min_t(int, params_channels(params), 4);
regval = FIELD_PREP(DMA_ADAPTER_NCHANS, nchans_ceiled) |
FIELD_PREP(DMA_ADAPTER_TX_NCHANS, 0x2) |
FIELD_PREP(DMA_ADAPTER_RX_NCHANS, 0x2) |
FIELD_PREP(DMA_ADAPTER_TX_LSB_PAD, pad) |
FIELD_PREP(DMA_ADAPTER_RX_MSB_PAD, pad);
#ifndef USE_RXB_FOR_CAPTURE
writel_relaxed(regval, mca->switch_base + REG_DMA_ADAPTER_A(cl->no));
#else
if (is_tx)
writel_relaxed(regval,
mca->switch_base + REG_DMA_ADAPTER_A(cl->no));
else
writel_relaxed(regval,
mca->switch_base + REG_DMA_ADAPTER_B(cl->no));
#endif
if (!mca_fe_clocks_in_use(cl)) {
/*
* Set up FSYNC duty cycle as even as possible.
*/
writel_relaxed((bclk_ratio / 2) - 1,
cl->base + REG_SYNCGEN_HI_PERIOD);
writel_relaxed(((bclk_ratio + 1) / 2) - 1,
cl->base + REG_SYNCGEN_LO_PERIOD);
writel_relaxed(FIELD_PREP(MCLK_CONF_DIV, 0x1),
cl->base + REG_MCLK_CONF);
ret = clk_set_rate(cl->clk_parent, bclk_ratio * samp_rate);
if (ret) {
dev_err(mca->dev, "cluster %d: unable to set clock parent: %d\n",
cl->no, ret);
return ret;
}
}
return 0;
}
static const struct snd_soc_dai_ops mca_fe_ops = {
.set_fmt = mca_fe_set_fmt,
.set_bclk_ratio = mca_set_bclk_ratio,
.set_tdm_slot = mca_fe_set_tdm_slot,
.hw_params = mca_fe_hw_params,
.trigger = mca_fe_trigger,
};
static bool mca_be_started(struct mca_cluster *cl)
{
int stream;
for_each_pcm_streams(stream)
if (cl->port_started[stream])
return true;
return false;
}
static int mca_be_startup(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct snd_soc_pcm_runtime *be = snd_soc_substream_to_rtd(substream);
struct snd_soc_pcm_runtime *fe;
struct mca_cluster *cl = mca_dai_to_cluster(dai);
struct mca_cluster *fe_cl;
struct mca_data *mca = cl->host;
struct snd_soc_dpcm *dpcm;
fe = NULL;
for_each_dpcm_fe(be, substream->stream, dpcm) {
if (fe && dpcm->fe != fe) {
dev_err(mca->dev, "many FE per one BE unsupported\n");
return -EINVAL;
}
fe = dpcm->fe;
}
if (!fe)
return -EINVAL;
fe_cl = mca_dai_to_cluster(snd_soc_rtd_to_cpu(fe, 0));
if (mca_be_started(cl)) {
/*
* Port is already started in the other direction.
* Make sure there isn't a conflict with another cluster
* driving the port.
*/
if (cl->port_driver != fe_cl->no)
return -EINVAL;
cl->port_started[substream->stream] = true;
return 0;
}
writel_relaxed(PORT_ENABLES_CLOCKS | PORT_ENABLES_TX_DATA,
cl->base + REG_PORT_ENABLES);
writel_relaxed(FIELD_PREP(PORT_CLOCK_SEL, fe_cl->no + 1),
cl->base + REG_PORT_CLOCK_SEL);
writel_relaxed(PORT_DATA_SEL_TXA(fe_cl->no),
cl->base + REG_PORT_DATA_SEL);
mutex_lock(&mca->port_mutex);
cl->port_driver = fe_cl->no;
mutex_unlock(&mca->port_mutex);
cl->port_started[substream->stream] = true;
return 0;
}
static void mca_be_shutdown(struct snd_pcm_substream *substream,
struct snd_soc_dai *dai)
{
struct mca_cluster *cl = mca_dai_to_cluster(dai);
struct mca_data *mca = cl->host;
cl->port_started[substream->stream] = false;
if (!mca_be_started(cl)) {
/*
* Were we the last direction to shutdown?
* Turn off the lights.
*/
writel_relaxed(0, cl->base + REG_PORT_ENABLES);
writel_relaxed(0, cl->base + REG_PORT_DATA_SEL);
mutex_lock(&mca->port_mutex);
cl->port_driver = -1;
mutex_unlock(&mca->port_mutex);
}
}
static const struct snd_soc_dai_ops mca_be_ops = {
.prepare = mca_be_prepare,
.hw_free = mca_be_hw_free,
.startup = mca_be_startup,
.shutdown = mca_be_shutdown,
};
static int mca_set_runtime_hwparams(struct snd_soc_component *component,
struct snd_pcm_substream *substream,
struct dma_chan *chan)
{
struct device *dma_dev = chan->device->dev;
struct snd_dmaengine_dai_dma_data dma_data = {};
int ret;
struct snd_pcm_hardware hw;
memset(&hw, 0, sizeof(hw));
hw.info = SNDRV_PCM_INFO_MMAP | SNDRV_PCM_INFO_MMAP_VALID |
SNDRV_PCM_INFO_INTERLEAVED;
hw.periods_min = 2;
hw.periods_max = UINT_MAX;
hw.period_bytes_min = 256;
hw.period_bytes_max = dma_get_max_seg_size(dma_dev);
hw.buffer_bytes_max = SIZE_MAX;
hw.fifo_size = 16;
ret = snd_dmaengine_pcm_refine_runtime_hwparams(substream, &dma_data,
&hw, chan);
if (ret)
return ret;
return snd_soc_set_runtime_hwparams(substream, &hw);
}
static int mca_pcm_open(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
struct mca_cluster *cl = mca_dai_to_cluster(snd_soc_rtd_to_cpu(rtd, 0));
struct dma_chan *chan = cl->dma_chans[substream->stream];
int ret;
if (rtd->dai_link->no_pcm)
return 0;
ret = mca_set_runtime_hwparams(component, substream, chan);
if (ret)
return ret;
return snd_dmaengine_pcm_open(substream, chan);
}
static int mca_hw_params(struct snd_soc_component *component,
struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params)
{
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
struct dma_chan *chan = snd_dmaengine_pcm_get_chan(substream);
struct dma_slave_config slave_config;
int ret;
if (rtd->dai_link->no_pcm)
return 0;
memset(&slave_config, 0, sizeof(slave_config));
ret = snd_hwparams_to_dma_slave_config(substream, params,
&slave_config);
if (ret < 0)
return ret;
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
slave_config.dst_port_window_size =
min_t(u32, params_channels(params), 4);
else
slave_config.src_port_window_size =
min_t(u32, params_channels(params), 4);
return dmaengine_slave_config(chan, &slave_config);
}
static int mca_close(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
if (rtd->dai_link->no_pcm)
return 0;
return snd_dmaengine_pcm_close(substream);
}
static int mca_trigger(struct snd_soc_component *component,
struct snd_pcm_substream *substream, int cmd)
{
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
if (rtd->dai_link->no_pcm)
return 0;
/*
* Before we do the PCM trigger proper, insert an opportunity
* to reset the frontend's SERDES.
*/
mca_fe_early_trigger(substream, cmd, snd_soc_rtd_to_cpu(rtd, 0));
return snd_dmaengine_pcm_trigger(substream, cmd);
}
static snd_pcm_uframes_t mca_pointer(struct snd_soc_component *component,
struct snd_pcm_substream *substream)
{
struct snd_soc_pcm_runtime *rtd = snd_soc_substream_to_rtd(substream);
if (rtd->dai_link->no_pcm)
return -ENOTSUPP;
return snd_dmaengine_pcm_pointer(substream);
}
static struct dma_chan *mca_request_dma_channel(struct mca_cluster *cl, unsigned int stream)
{
bool is_tx = (stream == SNDRV_PCM_STREAM_PLAYBACK);
#ifndef USE_RXB_FOR_CAPTURE
char *name = devm_kasprintf(cl->host->dev, GFP_KERNEL,
is_tx ? "tx%da" : "rx%da", cl->no);
#else
char *name = devm_kasprintf(cl->host->dev, GFP_KERNEL,
is_tx ? "tx%da" : "rx%db", cl->no);
#endif
return of_dma_request_slave_channel(cl->host->dev->of_node, name);
}
static void mca_pcm_free(struct snd_soc_component *component,
struct snd_pcm *pcm)
{
struct snd_soc_pcm_runtime *rtd = snd_pcm_chip(pcm);
struct mca_cluster *cl = mca_dai_to_cluster(snd_soc_rtd_to_cpu(rtd, 0));
unsigned int i;
if (rtd->dai_link->no_pcm)
return;
for_each_pcm_streams(i) {
struct snd_pcm_substream *substream =
rtd->pcm->streams[i].substream;
if (!substream || !cl->dma_chans[i])
continue;
dma_release_channel(cl->dma_chans[i]);
cl->dma_chans[i] = NULL;
}
}
static int mca_pcm_new(struct snd_soc_component *component,
struct snd_soc_pcm_runtime *rtd)
{
struct mca_cluster *cl = mca_dai_to_cluster(snd_soc_rtd_to_cpu(rtd, 0));
unsigned int i;
if (rtd->dai_link->no_pcm)
return 0;
for_each_pcm_streams(i) {
struct snd_pcm_substream *substream =
rtd->pcm->streams[i].substream;
struct dma_chan *chan;
if (!substream)
continue;
chan = mca_request_dma_channel(cl, i);
if (IS_ERR_OR_NULL(chan)) {
mca_pcm_free(component, rtd->pcm);
if (chan && PTR_ERR(chan) == -EPROBE_DEFER)
return PTR_ERR(chan);
dev_err(component->dev, "unable to obtain DMA channel (stream %d cluster %d): %pe\n",
i, cl->no, chan);
if (!chan)
return -EINVAL;
return PTR_ERR(chan);
}
cl->dma_chans[i] = chan;
snd_pcm_set_managed_buffer(substream, SNDRV_DMA_TYPE_DEV_IRAM,
chan->device->dev, 512 * 1024 * 6,
SIZE_MAX);
}
return 0;
}
static const struct snd_soc_component_driver mca_component = {
.name = "apple-mca",
.open = mca_pcm_open,
.close = mca_close,
.hw_params = mca_hw_params,
.trigger = mca_trigger,
.pointer = mca_pointer,
.pcm_construct = mca_pcm_new,
.pcm_destruct = mca_pcm_free,
};
static void apple_mca_release(struct mca_data *mca)
{
int i;
for (i = 0; i < mca->nclusters; i++) {
struct mca_cluster *cl = &mca->clusters[i];
if (!IS_ERR_OR_NULL(cl->clk_parent))
clk_put(cl->clk_parent);
if (!IS_ERR_OR_NULL(cl->pd_dev))
dev_pm_domain_detach(cl->pd_dev, true);
}
if (mca->pd_link)
device_link_del(mca->pd_link);
if (!IS_ERR_OR_NULL(mca->pd_dev))
dev_pm_domain_detach(mca->pd_dev, true);
reset_control_rearm(mca->rstc);
}
static int apple_mca_probe(struct platform_device *pdev)
{
struct mca_data *mca;
struct mca_cluster *clusters;
struct snd_soc_dai_driver *dai_drivers;
struct resource *res;
void __iomem *base;
int nclusters;
int ret, i;
base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(base))
return PTR_ERR(base);
if (resource_size(res) < CLUSTER_STRIDE)
return -EINVAL;
nclusters = (resource_size(res) - CLUSTER_STRIDE) / CLUSTER_STRIDE + 1;
mca = devm_kzalloc(&pdev->dev, struct_size(mca, clusters, nclusters),
GFP_KERNEL);
if (!mca)
return -ENOMEM;
mca->dev = &pdev->dev;
mca->nclusters = nclusters;
mutex_init(&mca->port_mutex);
platform_set_drvdata(pdev, mca);
clusters = mca->clusters;
mca->switch_base =
devm_platform_ioremap_resource(pdev, 1);
if (IS_ERR(mca->switch_base))
return PTR_ERR(mca->switch_base);
mca->rstc = devm_reset_control_get_optional_shared(&pdev->dev, NULL);
if (IS_ERR(mca->rstc))
return PTR_ERR(mca->rstc);
dai_drivers = devm_kzalloc(
&pdev->dev, sizeof(*dai_drivers) * 2 * nclusters, GFP_KERNEL);
if (!dai_drivers)
return -ENOMEM;
mca->pd_dev = dev_pm_domain_attach_by_id(&pdev->dev, 0);
if (IS_ERR(mca->pd_dev))
return -EINVAL;
mca->pd_link = device_link_add(&pdev->dev, mca->pd_dev,
DL_FLAG_STATELESS | DL_FLAG_PM_RUNTIME |
DL_FLAG_RPM_ACTIVE);
if (!mca->pd_link) {
ret = -EINVAL;
/* Prevent an unbalanced reset rearm */
mca->rstc = NULL;
goto err_release;
}
reset_control_reset(mca->rstc);
for (i = 0; i < nclusters; i++) {
struct mca_cluster *cl = &clusters[i];
struct snd_soc_dai_driver *fe =
&dai_drivers[mca->nclusters + i];
struct snd_soc_dai_driver *be = &dai_drivers[i];
cl->host = mca;
cl->no = i;
cl->base = base + CLUSTER_STRIDE * i;
cl->port_driver = -1;
cl->clk_parent = of_clk_get(pdev->dev.of_node, i);
if (IS_ERR(cl->clk_parent)) {
dev_err(&pdev->dev, "unable to obtain clock %d: %ld\n",
i, PTR_ERR(cl->clk_parent));
ret = PTR_ERR(cl->clk_parent);
goto err_release;
}
cl->pd_dev = dev_pm_domain_attach_by_id(&pdev->dev, i + 1);
if (IS_ERR(cl->pd_dev)) {
dev_err(&pdev->dev,
"unable to obtain cluster %d PD: %ld\n", i,
PTR_ERR(cl->pd_dev));
ret = PTR_ERR(cl->pd_dev);
goto err_release;
}
fe->id = i;
fe->name =
devm_kasprintf(&pdev->dev, GFP_KERNEL, "mca-pcm-%d", i);
if (!fe->name) {
ret = -ENOMEM;
goto err_release;
}
fe->ops = &mca_fe_ops;
fe->playback.channels_min = 1;
fe->playback.channels_max = 32;
fe->playback.rates = SNDRV_PCM_RATE_8000_192000;
fe->playback.formats = APPLE_MCA_FMTBITS;
fe->capture.channels_min = 1;
fe->capture.channels_max = 32;
fe->capture.rates = SNDRV_PCM_RATE_8000_192000;
fe->capture.formats = APPLE_MCA_FMTBITS;
fe->symmetric_rate = 1;
fe->playback.stream_name =
devm_kasprintf(&pdev->dev, GFP_KERNEL, "PCM%d TX", i);
fe->capture.stream_name =
devm_kasprintf(&pdev->dev, GFP_KERNEL, "PCM%d RX", i);
if (!fe->playback.stream_name || !fe->capture.stream_name) {
ret = -ENOMEM;
goto err_release;
}
be->id = i + nclusters;
be->name = devm_kasprintf(&pdev->dev, GFP_KERNEL, "mca-i2s-%d", i);
if (!be->name) {
ret = -ENOMEM;
goto err_release;
}
be->ops = &mca_be_ops;
be->playback.channels_min = 1;
be->playback.channels_max = 32;
be->playback.rates = SNDRV_PCM_RATE_8000_192000;
be->playback.formats = APPLE_MCA_FMTBITS;
be->capture.channels_min = 1;
be->capture.channels_max = 32;
be->capture.rates = SNDRV_PCM_RATE_8000_192000;
be->capture.formats = APPLE_MCA_FMTBITS;
be->playback.stream_name =
devm_kasprintf(&pdev->dev, GFP_KERNEL, "I2S%d TX", i);
be->capture.stream_name =
devm_kasprintf(&pdev->dev, GFP_KERNEL, "I2S%d RX", i);
if (!be->playback.stream_name || !be->capture.stream_name) {
ret = -ENOMEM;
goto err_release;
}
}
ret = snd_soc_register_component(&pdev->dev, &mca_component,
dai_drivers, nclusters * 2);
if (ret) {
dev_err(&pdev->dev, "unable to register ASoC component: %d\n",
ret);
goto err_release;
}
return 0;
err_release:
apple_mca_release(mca);
return ret;
}
static void apple_mca_remove(struct platform_device *pdev)
{
struct mca_data *mca = platform_get_drvdata(pdev);
snd_soc_unregister_component(&pdev->dev);
apple_mca_release(mca);
}
static const struct of_device_id apple_mca_of_match[] = {
{ .compatible = "apple,mca", },
{}
};
MODULE_DEVICE_TABLE(of, apple_mca_of_match);
static struct platform_driver apple_mca_driver = {
.driver = {
.name = "apple-mca",
.of_match_table = apple_mca_of_match,
},
.probe = apple_mca_probe,
.remove = apple_mca_remove,
};
module_platform_driver(apple_mca_driver);
MODULE_AUTHOR("Martin Povišer <povik+lin@cutebit.org>");
MODULE_DESCRIPTION("ASoC Apple MCA driver");
MODULE_LICENSE("GPL");