linux-stable/net/sched/sch_pie.c
Eric Dumazet d636fc5dd6 net: sched: add rcu annotations around qdisc->qdisc_sleeping
syzbot reported a race around qdisc->qdisc_sleeping [1]

It is time we add proper annotations to reads and writes to/from
qdisc->qdisc_sleeping.

[1]
BUG: KCSAN: data-race in dev_graft_qdisc / qdisc_lookup_rcu

read to 0xffff8881286fc618 of 8 bytes by task 6928 on cpu 1:
qdisc_lookup_rcu+0x192/0x2c0 net/sched/sch_api.c:331
__tcf_qdisc_find+0x74/0x3c0 net/sched/cls_api.c:1174
tc_get_tfilter+0x18f/0x990 net/sched/cls_api.c:2547
rtnetlink_rcv_msg+0x7af/0x8c0 net/core/rtnetlink.c:6386
netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546
rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
____sys_sendmsg+0x375/0x4c0 net/socket.c:2503
___sys_sendmsg net/socket.c:2557 [inline]
__sys_sendmsg+0x1e3/0x270 net/socket.c:2586
__do_sys_sendmsg net/socket.c:2595 [inline]
__se_sys_sendmsg net/socket.c:2593 [inline]
__x64_sys_sendmsg+0x46/0x50 net/socket.c:2593
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd

write to 0xffff8881286fc618 of 8 bytes by task 6912 on cpu 0:
dev_graft_qdisc+0x4f/0x80 net/sched/sch_generic.c:1115
qdisc_graft+0x7d0/0xb60 net/sched/sch_api.c:1103
tc_modify_qdisc+0x712/0xf10 net/sched/sch_api.c:1693
rtnetlink_rcv_msg+0x807/0x8c0 net/core/rtnetlink.c:6395
netlink_rcv_skb+0x126/0x220 net/netlink/af_netlink.c:2546
rtnetlink_rcv+0x1c/0x20 net/core/rtnetlink.c:6413
netlink_unicast_kernel net/netlink/af_netlink.c:1339 [inline]
netlink_unicast+0x56f/0x640 net/netlink/af_netlink.c:1365
netlink_sendmsg+0x665/0x770 net/netlink/af_netlink.c:1913
sock_sendmsg_nosec net/socket.c:724 [inline]
sock_sendmsg net/socket.c:747 [inline]
____sys_sendmsg+0x375/0x4c0 net/socket.c:2503
___sys_sendmsg net/socket.c:2557 [inline]
__sys_sendmsg+0x1e3/0x270 net/socket.c:2586
__do_sys_sendmsg net/socket.c:2595 [inline]
__se_sys_sendmsg net/socket.c:2593 [inline]
__x64_sys_sendmsg+0x46/0x50 net/socket.c:2593
do_syscall_x64 arch/x86/entry/common.c:50 [inline]
do_syscall_64+0x41/0xc0 arch/x86/entry/common.c:80
entry_SYSCALL_64_after_hwframe+0x63/0xcd

Reported by Kernel Concurrency Sanitizer on:
CPU: 0 PID: 6912 Comm: syz-executor.5 Not tainted 6.4.0-rc3-syzkaller-00190-g0d85b27b0cc6 #0
Hardware name: Google Google Compute Engine/Google Compute Engine, BIOS Google 05/16/2023

Fixes: 3a7d0d07a386 ("net: sched: extend Qdisc with rcu")
Reported-by: syzbot <syzkaller@googlegroups.com>
Signed-off-by: Eric Dumazet <edumazet@google.com>
Cc: Vlad Buslov <vladbu@nvidia.com>
Acked-by: Jamal Hadi Salim<jhs@mojatatu.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2023-06-07 10:25:39 +01:00

577 lines
15 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/* Copyright (C) 2013 Cisco Systems, Inc, 2013.
*
* Author: Vijay Subramanian <vijaynsu@cisco.com>
* Author: Mythili Prabhu <mysuryan@cisco.com>
*
* ECN support is added by Naeem Khademi <naeemk@ifi.uio.no>
* University of Oslo, Norway.
*
* References:
* RFC 8033: https://tools.ietf.org/html/rfc8033
*/
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <net/pkt_sched.h>
#include <net/inet_ecn.h>
#include <net/pie.h>
/* private data for the Qdisc */
struct pie_sched_data {
struct pie_vars vars;
struct pie_params params;
struct pie_stats stats;
struct timer_list adapt_timer;
struct Qdisc *sch;
};
bool pie_drop_early(struct Qdisc *sch, struct pie_params *params,
struct pie_vars *vars, u32 backlog, u32 packet_size)
{
u64 rnd;
u64 local_prob = vars->prob;
u32 mtu = psched_mtu(qdisc_dev(sch));
/* If there is still burst allowance left skip random early drop */
if (vars->burst_time > 0)
return false;
/* If current delay is less than half of target, and
* if drop prob is low already, disable early_drop
*/
if ((vars->qdelay < params->target / 2) &&
(vars->prob < MAX_PROB / 5))
return false;
/* If we have fewer than 2 mtu-sized packets, disable pie_drop_early,
* similar to min_th in RED
*/
if (backlog < 2 * mtu)
return false;
/* If bytemode is turned on, use packet size to compute new
* probablity. Smaller packets will have lower drop prob in this case
*/
if (params->bytemode && packet_size <= mtu)
local_prob = (u64)packet_size * div_u64(local_prob, mtu);
else
local_prob = vars->prob;
if (local_prob == 0)
vars->accu_prob = 0;
else
vars->accu_prob += local_prob;
if (vars->accu_prob < (MAX_PROB / 100) * 85)
return false;
if (vars->accu_prob >= (MAX_PROB / 2) * 17)
return true;
get_random_bytes(&rnd, 8);
if ((rnd >> BITS_PER_BYTE) < local_prob) {
vars->accu_prob = 0;
return true;
}
return false;
}
EXPORT_SYMBOL_GPL(pie_drop_early);
static int pie_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *sch,
struct sk_buff **to_free)
{
struct pie_sched_data *q = qdisc_priv(sch);
bool enqueue = false;
if (unlikely(qdisc_qlen(sch) >= sch->limit)) {
q->stats.overlimit++;
goto out;
}
if (!pie_drop_early(sch, &q->params, &q->vars, sch->qstats.backlog,
skb->len)) {
enqueue = true;
} else if (q->params.ecn && (q->vars.prob <= MAX_PROB / 10) &&
INET_ECN_set_ce(skb)) {
/* If packet is ecn capable, mark it if drop probability
* is lower than 10%, else drop it.
*/
q->stats.ecn_mark++;
enqueue = true;
}
/* we can enqueue the packet */
if (enqueue) {
/* Set enqueue time only when dq_rate_estimator is disabled. */
if (!q->params.dq_rate_estimator)
pie_set_enqueue_time(skb);
q->stats.packets_in++;
if (qdisc_qlen(sch) > q->stats.maxq)
q->stats.maxq = qdisc_qlen(sch);
return qdisc_enqueue_tail(skb, sch);
}
out:
q->stats.dropped++;
q->vars.accu_prob = 0;
return qdisc_drop(skb, sch, to_free);
}
static const struct nla_policy pie_policy[TCA_PIE_MAX + 1] = {
[TCA_PIE_TARGET] = {.type = NLA_U32},
[TCA_PIE_LIMIT] = {.type = NLA_U32},
[TCA_PIE_TUPDATE] = {.type = NLA_U32},
[TCA_PIE_ALPHA] = {.type = NLA_U32},
[TCA_PIE_BETA] = {.type = NLA_U32},
[TCA_PIE_ECN] = {.type = NLA_U32},
[TCA_PIE_BYTEMODE] = {.type = NLA_U32},
[TCA_PIE_DQ_RATE_ESTIMATOR] = {.type = NLA_U32},
};
static int pie_change(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct pie_sched_data *q = qdisc_priv(sch);
struct nlattr *tb[TCA_PIE_MAX + 1];
unsigned int qlen, dropped = 0;
int err;
err = nla_parse_nested_deprecated(tb, TCA_PIE_MAX, opt, pie_policy,
NULL);
if (err < 0)
return err;
sch_tree_lock(sch);
/* convert from microseconds to pschedtime */
if (tb[TCA_PIE_TARGET]) {
/* target is in us */
u32 target = nla_get_u32(tb[TCA_PIE_TARGET]);
/* convert to pschedtime */
q->params.target = PSCHED_NS2TICKS((u64)target * NSEC_PER_USEC);
}
/* tupdate is in jiffies */
if (tb[TCA_PIE_TUPDATE])
q->params.tupdate =
usecs_to_jiffies(nla_get_u32(tb[TCA_PIE_TUPDATE]));
if (tb[TCA_PIE_LIMIT]) {
u32 limit = nla_get_u32(tb[TCA_PIE_LIMIT]);
q->params.limit = limit;
sch->limit = limit;
}
if (tb[TCA_PIE_ALPHA])
q->params.alpha = nla_get_u32(tb[TCA_PIE_ALPHA]);
if (tb[TCA_PIE_BETA])
q->params.beta = nla_get_u32(tb[TCA_PIE_BETA]);
if (tb[TCA_PIE_ECN])
q->params.ecn = nla_get_u32(tb[TCA_PIE_ECN]);
if (tb[TCA_PIE_BYTEMODE])
q->params.bytemode = nla_get_u32(tb[TCA_PIE_BYTEMODE]);
if (tb[TCA_PIE_DQ_RATE_ESTIMATOR])
q->params.dq_rate_estimator =
nla_get_u32(tb[TCA_PIE_DQ_RATE_ESTIMATOR]);
/* Drop excess packets if new limit is lower */
qlen = sch->q.qlen;
while (sch->q.qlen > sch->limit) {
struct sk_buff *skb = __qdisc_dequeue_head(&sch->q);
dropped += qdisc_pkt_len(skb);
qdisc_qstats_backlog_dec(sch, skb);
rtnl_qdisc_drop(skb, sch);
}
qdisc_tree_reduce_backlog(sch, qlen - sch->q.qlen, dropped);
sch_tree_unlock(sch);
return 0;
}
void pie_process_dequeue(struct sk_buff *skb, struct pie_params *params,
struct pie_vars *vars, u32 backlog)
{
psched_time_t now = psched_get_time();
u32 dtime = 0;
/* If dq_rate_estimator is disabled, calculate qdelay using the
* packet timestamp.
*/
if (!params->dq_rate_estimator) {
vars->qdelay = now - pie_get_enqueue_time(skb);
if (vars->dq_tstamp != DTIME_INVALID)
dtime = now - vars->dq_tstamp;
vars->dq_tstamp = now;
if (backlog == 0)
vars->qdelay = 0;
if (dtime == 0)
return;
goto burst_allowance_reduction;
}
/* If current queue is about 10 packets or more and dq_count is unset
* we have enough packets to calculate the drain rate. Save
* current time as dq_tstamp and start measurement cycle.
*/
if (backlog >= QUEUE_THRESHOLD && vars->dq_count == DQCOUNT_INVALID) {
vars->dq_tstamp = psched_get_time();
vars->dq_count = 0;
}
/* Calculate the average drain rate from this value. If queue length
* has receded to a small value viz., <= QUEUE_THRESHOLD bytes, reset
* the dq_count to -1 as we don't have enough packets to calculate the
* drain rate anymore. The following if block is entered only when we
* have a substantial queue built up (QUEUE_THRESHOLD bytes or more)
* and we calculate the drain rate for the threshold here. dq_count is
* in bytes, time difference in psched_time, hence rate is in
* bytes/psched_time.
*/
if (vars->dq_count != DQCOUNT_INVALID) {
vars->dq_count += skb->len;
if (vars->dq_count >= QUEUE_THRESHOLD) {
u32 count = vars->dq_count << PIE_SCALE;
dtime = now - vars->dq_tstamp;
if (dtime == 0)
return;
count = count / dtime;
if (vars->avg_dq_rate == 0)
vars->avg_dq_rate = count;
else
vars->avg_dq_rate =
(vars->avg_dq_rate -
(vars->avg_dq_rate >> 3)) + (count >> 3);
/* If the queue has receded below the threshold, we hold
* on to the last drain rate calculated, else we reset
* dq_count to 0 to re-enter the if block when the next
* packet is dequeued
*/
if (backlog < QUEUE_THRESHOLD) {
vars->dq_count = DQCOUNT_INVALID;
} else {
vars->dq_count = 0;
vars->dq_tstamp = psched_get_time();
}
goto burst_allowance_reduction;
}
}
return;
burst_allowance_reduction:
if (vars->burst_time > 0) {
if (vars->burst_time > dtime)
vars->burst_time -= dtime;
else
vars->burst_time = 0;
}
}
EXPORT_SYMBOL_GPL(pie_process_dequeue);
void pie_calculate_probability(struct pie_params *params, struct pie_vars *vars,
u32 backlog)
{
psched_time_t qdelay = 0; /* in pschedtime */
psched_time_t qdelay_old = 0; /* in pschedtime */
s64 delta = 0; /* determines the change in probability */
u64 oldprob;
u64 alpha, beta;
u32 power;
bool update_prob = true;
if (params->dq_rate_estimator) {
qdelay_old = vars->qdelay;
vars->qdelay_old = vars->qdelay;
if (vars->avg_dq_rate > 0)
qdelay = (backlog << PIE_SCALE) / vars->avg_dq_rate;
else
qdelay = 0;
} else {
qdelay = vars->qdelay;
qdelay_old = vars->qdelay_old;
}
/* If qdelay is zero and backlog is not, it means backlog is very small,
* so we do not update probability in this round.
*/
if (qdelay == 0 && backlog != 0)
update_prob = false;
/* In the algorithm, alpha and beta are between 0 and 2 with typical
* value for alpha as 0.125. In this implementation, we use values 0-32
* passed from user space to represent this. Also, alpha and beta have
* unit of HZ and need to be scaled before they can used to update
* probability. alpha/beta are updated locally below by scaling down
* by 16 to come to 0-2 range.
*/
alpha = ((u64)params->alpha * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
beta = ((u64)params->beta * (MAX_PROB / PSCHED_TICKS_PER_SEC)) >> 4;
/* We scale alpha and beta differently depending on how heavy the
* congestion is. Please see RFC 8033 for details.
*/
if (vars->prob < MAX_PROB / 10) {
alpha >>= 1;
beta >>= 1;
power = 100;
while (vars->prob < div_u64(MAX_PROB, power) &&
power <= 1000000) {
alpha >>= 2;
beta >>= 2;
power *= 10;
}
}
/* alpha and beta should be between 0 and 32, in multiples of 1/16 */
delta += alpha * (qdelay - params->target);
delta += beta * (qdelay - qdelay_old);
oldprob = vars->prob;
/* to ensure we increase probability in steps of no more than 2% */
if (delta > (s64)(MAX_PROB / (100 / 2)) &&
vars->prob >= MAX_PROB / 10)
delta = (MAX_PROB / 100) * 2;
/* Non-linear drop:
* Tune drop probability to increase quickly for high delays(>= 250ms)
* 250ms is derived through experiments and provides error protection
*/
if (qdelay > (PSCHED_NS2TICKS(250 * NSEC_PER_MSEC)))
delta += MAX_PROB / (100 / 2);
vars->prob += delta;
if (delta > 0) {
/* prevent overflow */
if (vars->prob < oldprob) {
vars->prob = MAX_PROB;
/* Prevent normalization error. If probability is at
* maximum value already, we normalize it here, and
* skip the check to do a non-linear drop in the next
* section.
*/
update_prob = false;
}
} else {
/* prevent underflow */
if (vars->prob > oldprob)
vars->prob = 0;
}
/* Non-linear drop in probability: Reduce drop probability quickly if
* delay is 0 for 2 consecutive Tupdate periods.
*/
if (qdelay == 0 && qdelay_old == 0 && update_prob)
/* Reduce drop probability to 98.4% */
vars->prob -= vars->prob / 64;
vars->qdelay = qdelay;
vars->backlog_old = backlog;
/* We restart the measurement cycle if the following conditions are met
* 1. If the delay has been low for 2 consecutive Tupdate periods
* 2. Calculated drop probability is zero
* 3. If average dq_rate_estimator is enabled, we have at least one
* estimate for the avg_dq_rate ie., is a non-zero value
*/
if ((vars->qdelay < params->target / 2) &&
(vars->qdelay_old < params->target / 2) &&
vars->prob == 0 &&
(!params->dq_rate_estimator || vars->avg_dq_rate > 0)) {
pie_vars_init(vars);
}
if (!params->dq_rate_estimator)
vars->qdelay_old = qdelay;
}
EXPORT_SYMBOL_GPL(pie_calculate_probability);
static void pie_timer(struct timer_list *t)
{
struct pie_sched_data *q = from_timer(q, t, adapt_timer);
struct Qdisc *sch = q->sch;
spinlock_t *root_lock;
rcu_read_lock();
root_lock = qdisc_lock(qdisc_root_sleeping(sch));
spin_lock(root_lock);
pie_calculate_probability(&q->params, &q->vars, sch->qstats.backlog);
/* reset the timer to fire after 'tupdate'. tupdate is in jiffies. */
if (q->params.tupdate)
mod_timer(&q->adapt_timer, jiffies + q->params.tupdate);
spin_unlock(root_lock);
rcu_read_unlock();
}
static int pie_init(struct Qdisc *sch, struct nlattr *opt,
struct netlink_ext_ack *extack)
{
struct pie_sched_data *q = qdisc_priv(sch);
pie_params_init(&q->params);
pie_vars_init(&q->vars);
sch->limit = q->params.limit;
q->sch = sch;
timer_setup(&q->adapt_timer, pie_timer, 0);
if (opt) {
int err = pie_change(sch, opt, extack);
if (err)
return err;
}
mod_timer(&q->adapt_timer, jiffies + HZ / 2);
return 0;
}
static int pie_dump(struct Qdisc *sch, struct sk_buff *skb)
{
struct pie_sched_data *q = qdisc_priv(sch);
struct nlattr *opts;
opts = nla_nest_start_noflag(skb, TCA_OPTIONS);
if (!opts)
goto nla_put_failure;
/* convert target from pschedtime to us */
if (nla_put_u32(skb, TCA_PIE_TARGET,
((u32)PSCHED_TICKS2NS(q->params.target)) /
NSEC_PER_USEC) ||
nla_put_u32(skb, TCA_PIE_LIMIT, sch->limit) ||
nla_put_u32(skb, TCA_PIE_TUPDATE,
jiffies_to_usecs(q->params.tupdate)) ||
nla_put_u32(skb, TCA_PIE_ALPHA, q->params.alpha) ||
nla_put_u32(skb, TCA_PIE_BETA, q->params.beta) ||
nla_put_u32(skb, TCA_PIE_ECN, q->params.ecn) ||
nla_put_u32(skb, TCA_PIE_BYTEMODE, q->params.bytemode) ||
nla_put_u32(skb, TCA_PIE_DQ_RATE_ESTIMATOR,
q->params.dq_rate_estimator))
goto nla_put_failure;
return nla_nest_end(skb, opts);
nla_put_failure:
nla_nest_cancel(skb, opts);
return -1;
}
static int pie_dump_stats(struct Qdisc *sch, struct gnet_dump *d)
{
struct pie_sched_data *q = qdisc_priv(sch);
struct tc_pie_xstats st = {
.prob = q->vars.prob << BITS_PER_BYTE,
.delay = ((u32)PSCHED_TICKS2NS(q->vars.qdelay)) /
NSEC_PER_USEC,
.packets_in = q->stats.packets_in,
.overlimit = q->stats.overlimit,
.maxq = q->stats.maxq,
.dropped = q->stats.dropped,
.ecn_mark = q->stats.ecn_mark,
};
/* avg_dq_rate is only valid if dq_rate_estimator is enabled */
st.dq_rate_estimating = q->params.dq_rate_estimator;
/* unscale and return dq_rate in bytes per sec */
if (q->params.dq_rate_estimator)
st.avg_dq_rate = q->vars.avg_dq_rate *
(PSCHED_TICKS_PER_SEC) >> PIE_SCALE;
return gnet_stats_copy_app(d, &st, sizeof(st));
}
static struct sk_buff *pie_qdisc_dequeue(struct Qdisc *sch)
{
struct pie_sched_data *q = qdisc_priv(sch);
struct sk_buff *skb = qdisc_dequeue_head(sch);
if (!skb)
return NULL;
pie_process_dequeue(skb, &q->params, &q->vars, sch->qstats.backlog);
return skb;
}
static void pie_reset(struct Qdisc *sch)
{
struct pie_sched_data *q = qdisc_priv(sch);
qdisc_reset_queue(sch);
pie_vars_init(&q->vars);
}
static void pie_destroy(struct Qdisc *sch)
{
struct pie_sched_data *q = qdisc_priv(sch);
q->params.tupdate = 0;
del_timer_sync(&q->adapt_timer);
}
static struct Qdisc_ops pie_qdisc_ops __read_mostly = {
.id = "pie",
.priv_size = sizeof(struct pie_sched_data),
.enqueue = pie_qdisc_enqueue,
.dequeue = pie_qdisc_dequeue,
.peek = qdisc_peek_dequeued,
.init = pie_init,
.destroy = pie_destroy,
.reset = pie_reset,
.change = pie_change,
.dump = pie_dump,
.dump_stats = pie_dump_stats,
.owner = THIS_MODULE,
};
static int __init pie_module_init(void)
{
return register_qdisc(&pie_qdisc_ops);
}
static void __exit pie_module_exit(void)
{
unregister_qdisc(&pie_qdisc_ops);
}
module_init(pie_module_init);
module_exit(pie_module_exit);
MODULE_DESCRIPTION("Proportional Integral controller Enhanced (PIE) scheduler");
MODULE_AUTHOR("Vijay Subramanian");
MODULE_AUTHOR("Mythili Prabhu");
MODULE_LICENSE("GPL");