linux-stable/drivers/spi/spi-sirf.c
Laxman Dewangan 766ed70447 spi: remove check for bits_per_word on transfer from low level driver
The spi core make sure that each transfer structure have the proper
setting for bits_per_word before calling low level transfer APIs.

Hence it is no more require to check again in low level driver for
this field whether this is set correct or not. Removing such code
from low level driver.

The txx9 change also removes a test for bits_per_word set to 0, and
forcing it to 8 in that case. This can also be removed now since
spi_setup() ensures spi->bits_per_word is not zero.

	if (!spi->bits_per_word)
		spi->bits_per_word = 8;

Signed-off-by: Laxman Dewangan <ldewangan@nvidia.com>
Signed-off-by: Grant Likely <grant.likely@secretlab.ca>
2013-02-05 12:26:59 +00:00

683 lines
18 KiB
C

/*
* SPI bus driver for CSR SiRFprimaII
*
* Copyright (c) 2011 Cambridge Silicon Radio Limited, a CSR plc group company.
*
* Licensed under GPLv2 or later.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/bitops.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/of_gpio.h>
#include <linux/spi/spi.h>
#include <linux/spi/spi_bitbang.h>
#include <linux/pinctrl/consumer.h>
#define DRIVER_NAME "sirfsoc_spi"
#define SIRFSOC_SPI_CTRL 0x0000
#define SIRFSOC_SPI_CMD 0x0004
#define SIRFSOC_SPI_TX_RX_EN 0x0008
#define SIRFSOC_SPI_INT_EN 0x000C
#define SIRFSOC_SPI_INT_STATUS 0x0010
#define SIRFSOC_SPI_TX_DMA_IO_CTRL 0x0100
#define SIRFSOC_SPI_TX_DMA_IO_LEN 0x0104
#define SIRFSOC_SPI_TXFIFO_CTRL 0x0108
#define SIRFSOC_SPI_TXFIFO_LEVEL_CHK 0x010C
#define SIRFSOC_SPI_TXFIFO_OP 0x0110
#define SIRFSOC_SPI_TXFIFO_STATUS 0x0114
#define SIRFSOC_SPI_TXFIFO_DATA 0x0118
#define SIRFSOC_SPI_RX_DMA_IO_CTRL 0x0120
#define SIRFSOC_SPI_RX_DMA_IO_LEN 0x0124
#define SIRFSOC_SPI_RXFIFO_CTRL 0x0128
#define SIRFSOC_SPI_RXFIFO_LEVEL_CHK 0x012C
#define SIRFSOC_SPI_RXFIFO_OP 0x0130
#define SIRFSOC_SPI_RXFIFO_STATUS 0x0134
#define SIRFSOC_SPI_RXFIFO_DATA 0x0138
#define SIRFSOC_SPI_DUMMY_DELAY_CTL 0x0144
/* SPI CTRL register defines */
#define SIRFSOC_SPI_SLV_MODE BIT(16)
#define SIRFSOC_SPI_CMD_MODE BIT(17)
#define SIRFSOC_SPI_CS_IO_OUT BIT(18)
#define SIRFSOC_SPI_CS_IO_MODE BIT(19)
#define SIRFSOC_SPI_CLK_IDLE_STAT BIT(20)
#define SIRFSOC_SPI_CS_IDLE_STAT BIT(21)
#define SIRFSOC_SPI_TRAN_MSB BIT(22)
#define SIRFSOC_SPI_DRV_POS_EDGE BIT(23)
#define SIRFSOC_SPI_CS_HOLD_TIME BIT(24)
#define SIRFSOC_SPI_CLK_SAMPLE_MODE BIT(25)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_8 (0 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_12 (1 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_16 (2 << 26)
#define SIRFSOC_SPI_TRAN_DAT_FORMAT_32 (3 << 26)
#define SIRFSOC_SPI_CMD_BYTE_NUM(x) ((x & 3) << 28)
#define SIRFSOC_SPI_ENA_AUTO_CLR BIT(30)
#define SIRFSOC_SPI_MUL_DAT_MODE BIT(31)
/* Interrupt Enable */
#define SIRFSOC_SPI_RX_DONE_INT_EN BIT(0)
#define SIRFSOC_SPI_TX_DONE_INT_EN BIT(1)
#define SIRFSOC_SPI_RX_OFLOW_INT_EN BIT(2)
#define SIRFSOC_SPI_TX_UFLOW_INT_EN BIT(3)
#define SIRFSOC_SPI_RX_IO_DMA_INT_EN BIT(4)
#define SIRFSOC_SPI_TX_IO_DMA_INT_EN BIT(5)
#define SIRFSOC_SPI_RXFIFO_FULL_INT_EN BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_INT_EN BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_INT_EN BIT(9)
#define SIRFSOC_SPI_FRM_END_INT_EN BIT(10)
#define SIRFSOC_SPI_INT_MASK_ALL 0x1FFF
/* Interrupt status */
#define SIRFSOC_SPI_RX_DONE BIT(0)
#define SIRFSOC_SPI_TX_DONE BIT(1)
#define SIRFSOC_SPI_RX_OFLOW BIT(2)
#define SIRFSOC_SPI_TX_UFLOW BIT(3)
#define SIRFSOC_SPI_RX_FIFO_FULL BIT(6)
#define SIRFSOC_SPI_TXFIFO_EMPTY BIT(7)
#define SIRFSOC_SPI_RXFIFO_THD_REACH BIT(8)
#define SIRFSOC_SPI_TXFIFO_THD_REACH BIT(9)
#define SIRFSOC_SPI_FRM_END BIT(10)
/* TX RX enable */
#define SIRFSOC_SPI_RX_EN BIT(0)
#define SIRFSOC_SPI_TX_EN BIT(1)
#define SIRFSOC_SPI_CMD_TX_EN BIT(2)
#define SIRFSOC_SPI_IO_MODE_SEL BIT(0)
#define SIRFSOC_SPI_RX_DMA_FLUSH BIT(2)
/* FIFO OPs */
#define SIRFSOC_SPI_FIFO_RESET BIT(0)
#define SIRFSOC_SPI_FIFO_START BIT(1)
/* FIFO CTRL */
#define SIRFSOC_SPI_FIFO_WIDTH_BYTE (0 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_WORD (1 << 0)
#define SIRFSOC_SPI_FIFO_WIDTH_DWORD (2 << 0)
/* FIFO Status */
#define SIRFSOC_SPI_FIFO_LEVEL_MASK 0xFF
#define SIRFSOC_SPI_FIFO_FULL BIT(8)
#define SIRFSOC_SPI_FIFO_EMPTY BIT(9)
/* 256 bytes rx/tx FIFO */
#define SIRFSOC_SPI_FIFO_SIZE 256
#define SIRFSOC_SPI_DAT_FRM_LEN_MAX (64 * 1024)
#define SIRFSOC_SPI_FIFO_SC(x) ((x) & 0x3F)
#define SIRFSOC_SPI_FIFO_LC(x) (((x) & 0x3F) << 10)
#define SIRFSOC_SPI_FIFO_HC(x) (((x) & 0x3F) << 20)
#define SIRFSOC_SPI_FIFO_THD(x) (((x) & 0xFF) << 2)
struct sirfsoc_spi {
struct spi_bitbang bitbang;
struct completion done;
void __iomem *base;
u32 ctrl_freq; /* SPI controller clock speed */
struct clk *clk;
struct pinctrl *p;
/* rx & tx bufs from the spi_transfer */
const void *tx;
void *rx;
/* place received word into rx buffer */
void (*rx_word) (struct sirfsoc_spi *);
/* get word from tx buffer for sending */
void (*tx_word) (struct sirfsoc_spi *);
/* number of words left to be tranmitted/received */
unsigned int left_tx_cnt;
unsigned int left_rx_cnt;
/* tasklet to push tx msg into FIFO */
struct tasklet_struct tasklet_tx;
int chipselect[0];
};
static void spi_sirfsoc_rx_word_u8(struct sirfsoc_spi *sspi)
{
u32 data;
u8 *rx = sspi->rx;
data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
if (rx) {
*rx++ = (u8) data;
sspi->rx = rx;
}
sspi->left_rx_cnt--;
}
static void spi_sirfsoc_tx_word_u8(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u8 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
sspi->left_tx_cnt--;
}
static void spi_sirfsoc_rx_word_u16(struct sirfsoc_spi *sspi)
{
u32 data;
u16 *rx = sspi->rx;
data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
if (rx) {
*rx++ = (u16) data;
sspi->rx = rx;
}
sspi->left_rx_cnt--;
}
static void spi_sirfsoc_tx_word_u16(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u16 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
sspi->left_tx_cnt--;
}
static void spi_sirfsoc_rx_word_u32(struct sirfsoc_spi *sspi)
{
u32 data;
u32 *rx = sspi->rx;
data = readl(sspi->base + SIRFSOC_SPI_RXFIFO_DATA);
if (rx) {
*rx++ = (u32) data;
sspi->rx = rx;
}
sspi->left_rx_cnt--;
}
static void spi_sirfsoc_tx_word_u32(struct sirfsoc_spi *sspi)
{
u32 data = 0;
const u32 *tx = sspi->tx;
if (tx) {
data = *tx++;
sspi->tx = tx;
}
writel(data, sspi->base + SIRFSOC_SPI_TXFIFO_DATA);
sspi->left_tx_cnt--;
}
static void spi_sirfsoc_tasklet_tx(unsigned long arg)
{
struct sirfsoc_spi *sspi = (struct sirfsoc_spi *)arg;
/* Fill Tx FIFO while there are left words to be transmitted */
while (!((readl(sspi->base + SIRFSOC_SPI_TXFIFO_STATUS) &
SIRFSOC_SPI_FIFO_FULL)) &&
sspi->left_tx_cnt)
sspi->tx_word(sspi);
}
static irqreturn_t spi_sirfsoc_irq(int irq, void *dev_id)
{
struct sirfsoc_spi *sspi = dev_id;
u32 spi_stat = readl(sspi->base + SIRFSOC_SPI_INT_STATUS);
writel(spi_stat, sspi->base + SIRFSOC_SPI_INT_STATUS);
/* Error Conditions */
if (spi_stat & SIRFSOC_SPI_RX_OFLOW ||
spi_stat & SIRFSOC_SPI_TX_UFLOW) {
complete(&sspi->done);
writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
}
if (spi_stat & SIRFSOC_SPI_FRM_END) {
while (!((readl(sspi->base + SIRFSOC_SPI_RXFIFO_STATUS)
& SIRFSOC_SPI_FIFO_EMPTY)) &&
sspi->left_rx_cnt)
sspi->rx_word(sspi);
/* Received all words */
if ((sspi->left_rx_cnt == 0) && (sspi->left_tx_cnt == 0)) {
complete(&sspi->done);
writel(0x0, sspi->base + SIRFSOC_SPI_INT_EN);
}
}
if (spi_stat & SIRFSOC_SPI_RXFIFO_THD_REACH ||
spi_stat & SIRFSOC_SPI_TXFIFO_THD_REACH ||
spi_stat & SIRFSOC_SPI_RX_FIFO_FULL ||
spi_stat & SIRFSOC_SPI_TXFIFO_EMPTY)
tasklet_schedule(&sspi->tasklet_tx);
return IRQ_HANDLED;
}
static int spi_sirfsoc_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
int timeout = t->len * 10;
sspi = spi_master_get_devdata(spi->master);
sspi->tx = t->tx_buf;
sspi->rx = t->rx_buf;
sspi->left_tx_cnt = sspi->left_rx_cnt = t->len;
INIT_COMPLETION(sspi->done);
writel(SIRFSOC_SPI_INT_MASK_ALL, sspi->base + SIRFSOC_SPI_INT_STATUS);
if (t->len == 1) {
writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
SIRFSOC_SPI_ENA_AUTO_CLR,
sspi->base + SIRFSOC_SPI_CTRL);
writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
} else if ((t->len > 1) && (t->len < SIRFSOC_SPI_DAT_FRM_LEN_MAX)) {
writel(readl(sspi->base + SIRFSOC_SPI_CTRL) |
SIRFSOC_SPI_MUL_DAT_MODE |
SIRFSOC_SPI_ENA_AUTO_CLR,
sspi->base + SIRFSOC_SPI_CTRL);
writel(t->len - 1, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
writel(t->len - 1, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
} else {
writel(readl(sspi->base + SIRFSOC_SPI_CTRL),
sspi->base + SIRFSOC_SPI_CTRL);
writel(0, sspi->base + SIRFSOC_SPI_TX_DMA_IO_LEN);
writel(0, sspi->base + SIRFSOC_SPI_RX_DMA_IO_LEN);
}
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
/* Send the first word to trigger the whole tx/rx process */
sspi->tx_word(sspi);
writel(SIRFSOC_SPI_RX_OFLOW_INT_EN | SIRFSOC_SPI_TX_UFLOW_INT_EN |
SIRFSOC_SPI_RXFIFO_THD_INT_EN | SIRFSOC_SPI_TXFIFO_THD_INT_EN |
SIRFSOC_SPI_FRM_END_INT_EN | SIRFSOC_SPI_RXFIFO_FULL_INT_EN |
SIRFSOC_SPI_TXFIFO_EMPTY_INT_EN, sspi->base + SIRFSOC_SPI_INT_EN);
writel(SIRFSOC_SPI_RX_EN | SIRFSOC_SPI_TX_EN, sspi->base + SIRFSOC_SPI_TX_RX_EN);
if (wait_for_completion_timeout(&sspi->done, timeout) == 0)
dev_err(&spi->dev, "transfer timeout\n");
/* TX, RX FIFO stop */
writel(0, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(0, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(0, sspi->base + SIRFSOC_SPI_TX_RX_EN);
writel(0, sspi->base + SIRFSOC_SPI_INT_EN);
return t->len - sspi->left_rx_cnt;
}
static void spi_sirfsoc_chipselect(struct spi_device *spi, int value)
{
struct sirfsoc_spi *sspi = spi_master_get_devdata(spi->master);
if (sspi->chipselect[spi->chip_select] == 0) {
u32 regval = readl(sspi->base + SIRFSOC_SPI_CTRL);
regval |= SIRFSOC_SPI_CS_IO_OUT;
switch (value) {
case BITBANG_CS_ACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval |= SIRFSOC_SPI_CS_IO_OUT;
else
regval &= ~SIRFSOC_SPI_CS_IO_OUT;
break;
case BITBANG_CS_INACTIVE:
if (spi->mode & SPI_CS_HIGH)
regval &= ~SIRFSOC_SPI_CS_IO_OUT;
else
regval |= SIRFSOC_SPI_CS_IO_OUT;
break;
}
writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
} else {
int gpio = sspi->chipselect[spi->chip_select];
gpio_direction_output(gpio, spi->mode & SPI_CS_HIGH ? 0 : 1);
}
}
static int
spi_sirfsoc_setup_transfer(struct spi_device *spi, struct spi_transfer *t)
{
struct sirfsoc_spi *sspi;
u8 bits_per_word = 0;
int hz = 0;
u32 regval;
u32 txfifo_ctrl, rxfifo_ctrl;
u32 fifo_size = SIRFSOC_SPI_FIFO_SIZE / 4;
sspi = spi_master_get_devdata(spi->master);
bits_per_word = (t) ? t->bits_per_word : spi->bits_per_word;
hz = t && t->speed_hz ? t->speed_hz : spi->max_speed_hz;
/* Enable IO mode for RX, TX */
writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_TX_DMA_IO_CTRL);
writel(SIRFSOC_SPI_IO_MODE_SEL, sspi->base + SIRFSOC_SPI_RX_DMA_IO_CTRL);
regval = (sspi->ctrl_freq / (2 * hz)) - 1;
if (regval > 0xFFFF || regval < 0) {
dev_err(&spi->dev, "Speed %d not supported\n", hz);
return -EINVAL;
}
switch (bits_per_word) {
case 8:
regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_8;
sspi->rx_word = spi_sirfsoc_rx_word_u8;
sspi->tx_word = spi_sirfsoc_tx_word_u8;
txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_BYTE;
rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_BYTE;
break;
case 12:
case 16:
regval |= (bits_per_word == 12) ? SIRFSOC_SPI_TRAN_DAT_FORMAT_12 :
SIRFSOC_SPI_TRAN_DAT_FORMAT_16;
sspi->rx_word = spi_sirfsoc_rx_word_u16;
sspi->tx_word = spi_sirfsoc_tx_word_u16;
txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_WORD;
rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_WORD;
break;
case 32:
regval |= SIRFSOC_SPI_TRAN_DAT_FORMAT_32;
sspi->rx_word = spi_sirfsoc_rx_word_u32;
sspi->tx_word = spi_sirfsoc_tx_word_u32;
txfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_DWORD;
rxfifo_ctrl = SIRFSOC_SPI_FIFO_THD(SIRFSOC_SPI_FIFO_SIZE / 2) |
SIRFSOC_SPI_FIFO_WIDTH_DWORD;
break;
default:
dev_err(&spi->dev, "Bits per word %d not supported\n",
bits_per_word);
return -EINVAL;
}
if (!(spi->mode & SPI_CS_HIGH))
regval |= SIRFSOC_SPI_CS_IDLE_STAT;
if (!(spi->mode & SPI_LSB_FIRST))
regval |= SIRFSOC_SPI_TRAN_MSB;
if (spi->mode & SPI_CPOL)
regval |= SIRFSOC_SPI_CLK_IDLE_STAT;
/*
* Data should be driven at least 1/2 cycle before the fetch edge to make
* sure that data gets stable at the fetch edge.
*/
if (((spi->mode & SPI_CPOL) && (spi->mode & SPI_CPHA)) ||
(!(spi->mode & SPI_CPOL) && !(spi->mode & SPI_CPHA)))
regval &= ~SIRFSOC_SPI_DRV_POS_EDGE;
else
regval |= SIRFSOC_SPI_DRV_POS_EDGE;
writel(SIRFSOC_SPI_FIFO_SC(fifo_size - 2) |
SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
SIRFSOC_SPI_FIFO_HC(2),
sspi->base + SIRFSOC_SPI_TXFIFO_LEVEL_CHK);
writel(SIRFSOC_SPI_FIFO_SC(2) |
SIRFSOC_SPI_FIFO_LC(fifo_size / 2) |
SIRFSOC_SPI_FIFO_HC(fifo_size - 2),
sspi->base + SIRFSOC_SPI_RXFIFO_LEVEL_CHK);
writel(txfifo_ctrl, sspi->base + SIRFSOC_SPI_TXFIFO_CTRL);
writel(rxfifo_ctrl, sspi->base + SIRFSOC_SPI_RXFIFO_CTRL);
writel(regval, sspi->base + SIRFSOC_SPI_CTRL);
return 0;
}
static int spi_sirfsoc_setup(struct spi_device *spi)
{
struct sirfsoc_spi *sspi;
if (!spi->max_speed_hz)
return -EINVAL;
sspi = spi_master_get_devdata(spi->master);
if (!spi->bits_per_word)
spi->bits_per_word = 8;
return spi_sirfsoc_setup_transfer(spi, NULL);
}
static int spi_sirfsoc_probe(struct platform_device *pdev)
{
struct sirfsoc_spi *sspi;
struct spi_master *master;
struct resource *mem_res;
int num_cs, cs_gpio, irq;
int i;
int ret;
ret = of_property_read_u32(pdev->dev.of_node,
"sirf,spi-num-chipselects", &num_cs);
if (ret < 0) {
dev_err(&pdev->dev, "Unable to get chip select number\n");
goto err_cs;
}
master = spi_alloc_master(&pdev->dev, sizeof(*sspi) + sizeof(int) * num_cs);
if (!master) {
dev_err(&pdev->dev, "Unable to allocate SPI master\n");
return -ENOMEM;
}
platform_set_drvdata(pdev, master);
sspi = spi_master_get_devdata(master);
mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!mem_res) {
dev_err(&pdev->dev, "Unable to get IO resource\n");
ret = -ENODEV;
goto free_master;
}
master->num_chipselect = num_cs;
for (i = 0; i < master->num_chipselect; i++) {
cs_gpio = of_get_named_gpio(pdev->dev.of_node, "cs-gpios", i);
if (cs_gpio < 0) {
dev_err(&pdev->dev, "can't get cs gpio from DT\n");
ret = -ENODEV;
goto free_master;
}
sspi->chipselect[i] = cs_gpio;
if (cs_gpio == 0)
continue; /* use cs from spi controller */
ret = gpio_request(cs_gpio, DRIVER_NAME);
if (ret) {
while (i > 0) {
i--;
if (sspi->chipselect[i] > 0)
gpio_free(sspi->chipselect[i]);
}
dev_err(&pdev->dev, "fail to request cs gpios\n");
goto free_master;
}
}
sspi->base = devm_request_and_ioremap(&pdev->dev, mem_res);
if (!sspi->base) {
dev_err(&pdev->dev, "IO remap failed!\n");
ret = -ENOMEM;
goto free_master;
}
irq = platform_get_irq(pdev, 0);
if (irq < 0) {
ret = -ENXIO;
goto free_master;
}
ret = devm_request_irq(&pdev->dev, irq, spi_sirfsoc_irq, 0,
DRIVER_NAME, sspi);
if (ret)
goto free_master;
sspi->bitbang.master = spi_master_get(master);
sspi->bitbang.chipselect = spi_sirfsoc_chipselect;
sspi->bitbang.setup_transfer = spi_sirfsoc_setup_transfer;
sspi->bitbang.txrx_bufs = spi_sirfsoc_transfer;
sspi->bitbang.master->setup = spi_sirfsoc_setup;
master->bus_num = pdev->id;
sspi->bitbang.master->dev.of_node = pdev->dev.of_node;
sspi->p = pinctrl_get_select_default(&pdev->dev);
ret = IS_ERR(sspi->p);
if (ret)
goto free_master;
sspi->clk = clk_get(&pdev->dev, NULL);
if (IS_ERR(sspi->clk)) {
ret = -EINVAL;
goto free_pin;
}
clk_enable(sspi->clk);
sspi->ctrl_freq = clk_get_rate(sspi->clk);
init_completion(&sspi->done);
tasklet_init(&sspi->tasklet_tx, spi_sirfsoc_tasklet_tx,
(unsigned long)sspi);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
/* We are not using dummy delay between command and data */
writel(0, sspi->base + SIRFSOC_SPI_DUMMY_DELAY_CTL);
ret = spi_bitbang_start(&sspi->bitbang);
if (ret)
goto free_clk;
dev_info(&pdev->dev, "registerred, bus number = %d\n", master->bus_num);
return 0;
free_clk:
clk_disable(sspi->clk);
clk_put(sspi->clk);
free_pin:
pinctrl_put(sspi->p);
free_master:
spi_master_put(master);
err_cs:
return ret;
}
static int spi_sirfsoc_remove(struct platform_device *pdev)
{
struct spi_master *master;
struct sirfsoc_spi *sspi;
int i;
master = platform_get_drvdata(pdev);
sspi = spi_master_get_devdata(master);
spi_bitbang_stop(&sspi->bitbang);
for (i = 0; i < master->num_chipselect; i++) {
if (sspi->chipselect[i] > 0)
gpio_free(sspi->chipselect[i]);
}
clk_disable(sspi->clk);
clk_put(sspi->clk);
pinctrl_put(sspi->p);
spi_master_put(master);
return 0;
}
#ifdef CONFIG_PM
static int spi_sirfsoc_suspend(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
clk_disable(sspi->clk);
return 0;
}
static int spi_sirfsoc_resume(struct device *dev)
{
struct platform_device *pdev = to_platform_device(dev);
struct spi_master *master = platform_get_drvdata(pdev);
struct sirfsoc_spi *sspi = spi_master_get_devdata(master);
clk_enable(sspi->clk);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_RESET, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_RXFIFO_OP);
writel(SIRFSOC_SPI_FIFO_START, sspi->base + SIRFSOC_SPI_TXFIFO_OP);
return 0;
}
static const struct dev_pm_ops spi_sirfsoc_pm_ops = {
.suspend = spi_sirfsoc_suspend,
.resume = spi_sirfsoc_resume,
};
#endif
static const struct of_device_id spi_sirfsoc_of_match[] = {
{ .compatible = "sirf,prima2-spi", },
{}
};
MODULE_DEVICE_TABLE(of, sirfsoc_spi_of_match);
static struct platform_driver spi_sirfsoc_driver = {
.driver = {
.name = DRIVER_NAME,
.owner = THIS_MODULE,
#ifdef CONFIG_PM
.pm = &spi_sirfsoc_pm_ops,
#endif
.of_match_table = spi_sirfsoc_of_match,
},
.probe = spi_sirfsoc_probe,
.remove = spi_sirfsoc_remove,
};
module_platform_driver(spi_sirfsoc_driver);
MODULE_DESCRIPTION("SiRF SoC SPI master driver");
MODULE_AUTHOR("Zhiwu Song <Zhiwu.Song@csr.com>, "
"Barry Song <Baohua.Song@csr.com>");
MODULE_LICENSE("GPL v2");