Mahesh Bandewar 4fbae7d83c ipvlan: Introduce l3s mode
In a typical IPvlan L3 setup where master is in default-ns and
each slave is into different (slave) ns. In this setup egress
packet processing for traffic originating from slave-ns will
hit all NF_HOOKs in slave-ns as well as default-ns. However same
is not true for ingress processing. All these NF_HOOKs are
hit only in the slave-ns skipping them in the default-ns.
IPvlan in L3 mode is restrictive and if admins want to deploy
iptables rules in default-ns, this asymmetric data path makes it
impossible to do so.

This patch makes use of the l3_rcv() (added as part of l3mdev
enhancements) to perform input route lookup on RX packets without
changing the skb->dev and then uses nf_hook at NF_INET_LOCAL_IN
to change the skb->dev just before handing over skb to L4.

Signed-off-by: Mahesh Bandewar <maheshb@google.com>
CC: David Ahern <dsa@cumulusnetworks.com>
Reviewed-by: David Ahern <dsa@cumulusnetworks.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-09-19 01:25:22 -04:00

113 lines
4.6 KiB
Plaintext

IPVLAN Driver HOWTO
Initial Release:
Mahesh Bandewar <maheshb AT google.com>
1. Introduction:
This is conceptually very similar to the macvlan driver with one major
exception of using L3 for mux-ing /demux-ing among slaves. This property makes
the master device share the L2 with it's slave devices. I have developed this
driver in conjunction with network namespaces and not sure if there is use case
outside of it.
2. Building and Installation:
In order to build the driver, please select the config item CONFIG_IPVLAN.
The driver can be built into the kernel (CONFIG_IPVLAN=y) or as a module
(CONFIG_IPVLAN=m).
3. Configuration:
There are no module parameters for this driver and it can be configured
using IProute2/ip utility.
ip link add link <master-dev> <slave-dev> type ipvlan mode { l2 | l3 | l3s }
e.g. ip link add link ipvl0 eth0 type ipvlan mode l2
4. Operating modes:
IPvlan has two modes of operation - L2 and L3. For a given master device,
you can select one of these two modes and all slaves on that master will
operate in the same (selected) mode. The RX mode is almost identical except
that in L3 mode the slaves wont receive any multicast / broadcast traffic.
L3 mode is more restrictive since routing is controlled from the other (mostly)
default namespace.
4.1 L2 mode:
In this mode TX processing happens on the stack instance attached to the
slave device and packets are switched and queued to the master device to send
out. In this mode the slaves will RX/TX multicast and broadcast (if applicable)
as well.
4.2 L3 mode:
In this mode TX processing up to L3 happens on the stack instance attached
to the slave device and packets are switched to the stack instance of the
master device for the L2 processing and routing from that instance will be
used before packets are queued on the outbound device. In this mode the slaves
will not receive nor can send multicast / broadcast traffic.
4.3 L3S mode:
This is very similar to the L3 mode except that iptables (conn-tracking)
works in this mode and hence it is L3-symmetric (L3s). This will have slightly less
performance but that shouldn't matter since you are choosing this mode over plain-L3
mode to make conn-tracking work.
5. What to choose (macvlan vs. ipvlan)?
These two devices are very similar in many regards and the specific use
case could very well define which device to choose. if one of the following
situations defines your use case then you can choose to use ipvlan -
(a) The Linux host that is connected to the external switch / router has
policy configured that allows only one mac per port.
(b) No of virtual devices created on a master exceed the mac capacity and
puts the NIC in promiscuous mode and degraded performance is a concern.
(c) If the slave device is to be put into the hostile / untrusted network
namespace where L2 on the slave could be changed / misused.
6. Example configuration:
+=============================================================+
| Host: host1 |
| |
| +----------------------+ +----------------------+ |
| | NS:ns0 | | NS:ns1 | |
| | | | | |
| | | | | |
| | ipvl0 | | ipvl1 | |
| +----------#-----------+ +-----------#----------+ |
| # # |
| ################################ |
| # eth0 |
+==============================#==============================+
(a) Create two network namespaces - ns0, ns1
ip netns add ns0
ip netns add ns1
(b) Create two ipvlan slaves on eth0 (master device)
ip link add link eth0 ipvl0 type ipvlan mode l2
ip link add link eth0 ipvl1 type ipvlan mode l2
(c) Assign slaves to the respective network namespaces
ip link set dev ipvl0 netns ns0
ip link set dev ipvl1 netns ns1
(d) Now switch to the namespace (ns0 or ns1) to configure the slave devices
- For ns0
(1) ip netns exec ns0 bash
(2) ip link set dev ipvl0 up
(3) ip link set dev lo up
(4) ip -4 addr add 127.0.0.1 dev lo
(5) ip -4 addr add $IPADDR dev ipvl0
(6) ip -4 route add default via $ROUTER dev ipvl0
- For ns1
(1) ip netns exec ns1 bash
(2) ip link set dev ipvl1 up
(3) ip link set dev lo up
(4) ip -4 addr add 127.0.0.1 dev lo
(5) ip -4 addr add $IPADDR dev ipvl1
(6) ip -4 route add default via $ROUTER dev ipvl1