linux-stable/kernel/memremap.c
Christoph Hellwig f6a55e1a3f memremap: lift the devmap_enable manipulation into devm_memremap_pages
Just check if there is a ->page_free operation set and take care of the
static key enable, as well as the put using device managed resources.
Also check that a ->page_free is provided for the pgmaps types that
require it, and check for a valid type as well while we are at it.

Note that this also fixes the fact that hmm never called
dev_pagemap_put_ops and thus would leave the slow path enabled forever,
even after a device driver unload or disable.

Signed-off-by: Christoph Hellwig <hch@lst.de>
Reviewed-by: Ira Weiny <ira.weiny@intel.com>
Reviewed-by: Dan Williams <dan.j.williams@intel.com>
Tested-by: Dan Williams <dan.j.williams@intel.com>
Signed-off-by: Jason Gunthorpe <jgg@mellanox.com>
2019-07-02 14:32:44 -03:00

412 lines
11 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/* Copyright(c) 2015 Intel Corporation. All rights reserved. */
#include <linux/device.h>
#include <linux/io.h>
#include <linux/kasan.h>
#include <linux/memory_hotplug.h>
#include <linux/mm.h>
#include <linux/pfn_t.h>
#include <linux/swap.h>
#include <linux/swapops.h>
#include <linux/types.h>
#include <linux/wait_bit.h>
#include <linux/xarray.h>
#include <linux/hmm.h>
static DEFINE_XARRAY(pgmap_array);
#define SECTION_MASK ~((1UL << PA_SECTION_SHIFT) - 1)
#define SECTION_SIZE (1UL << PA_SECTION_SHIFT)
#ifdef CONFIG_DEV_PAGEMAP_OPS
DEFINE_STATIC_KEY_FALSE(devmap_managed_key);
EXPORT_SYMBOL(devmap_managed_key);
static atomic_t devmap_managed_enable;
static void devmap_managed_enable_put(void *data)
{
if (atomic_dec_and_test(&devmap_managed_enable))
static_branch_disable(&devmap_managed_key);
}
static int devmap_managed_enable_get(struct device *dev, struct dev_pagemap *pgmap)
{
if (!pgmap->ops->page_free) {
WARN(1, "Missing page_free method\n");
return -EINVAL;
}
if (atomic_inc_return(&devmap_managed_enable) == 1)
static_branch_enable(&devmap_managed_key);
return devm_add_action_or_reset(dev, devmap_managed_enable_put, NULL);
}
#else
static int devmap_managed_enable_get(struct device *dev, struct dev_pagemap *pgmap)
{
return -EINVAL;
}
#endif /* CONFIG_DEV_PAGEMAP_OPS */
#if IS_ENABLED(CONFIG_DEVICE_PRIVATE)
vm_fault_t device_private_entry_fault(struct vm_area_struct *vma,
unsigned long addr,
swp_entry_t entry,
unsigned int flags,
pmd_t *pmdp)
{
struct page *page = device_private_entry_to_page(entry);
struct hmm_devmem *devmem;
devmem = container_of(page->pgmap, typeof(*devmem), pagemap);
/*
* The page_fault() callback must migrate page back to system memory
* so that CPU can access it. This might fail for various reasons
* (device issue, device was unsafely unplugged, ...). When such
* error conditions happen, the callback must return VM_FAULT_SIGBUS.
*
* Note that because memory cgroup charges are accounted to the device
* memory, this should never fail because of memory restrictions (but
* allocation of regular system page might still fail because we are
* out of memory).
*
* There is a more in-depth description of what that callback can and
* cannot do, in include/linux/memremap.h
*/
return devmem->page_fault(vma, addr, page, flags, pmdp);
}
#endif /* CONFIG_DEVICE_PRIVATE */
static void pgmap_array_delete(struct resource *res)
{
xa_store_range(&pgmap_array, PHYS_PFN(res->start), PHYS_PFN(res->end),
NULL, GFP_KERNEL);
synchronize_rcu();
}
static unsigned long pfn_first(struct dev_pagemap *pgmap)
{
const struct resource *res = &pgmap->res;
struct vmem_altmap *altmap = &pgmap->altmap;
unsigned long pfn;
pfn = res->start >> PAGE_SHIFT;
if (pgmap->altmap_valid)
pfn += vmem_altmap_offset(altmap);
return pfn;
}
static unsigned long pfn_end(struct dev_pagemap *pgmap)
{
const struct resource *res = &pgmap->res;
return (res->start + resource_size(res)) >> PAGE_SHIFT;
}
static unsigned long pfn_next(unsigned long pfn)
{
if (pfn % 1024 == 0)
cond_resched();
return pfn + 1;
}
#define for_each_device_pfn(pfn, map) \
for (pfn = pfn_first(map); pfn < pfn_end(map); pfn = pfn_next(pfn))
static void devm_memremap_pages_release(void *data)
{
struct dev_pagemap *pgmap = data;
struct device *dev = pgmap->dev;
struct resource *res = &pgmap->res;
resource_size_t align_start, align_size;
unsigned long pfn;
int nid;
pgmap->ops->kill(pgmap);
for_each_device_pfn(pfn, pgmap)
put_page(pfn_to_page(pfn));
pgmap->ops->cleanup(pgmap);
/* pages are dead and unused, undo the arch mapping */
align_start = res->start & ~(SECTION_SIZE - 1);
align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE)
- align_start;
nid = page_to_nid(pfn_to_page(align_start >> PAGE_SHIFT));
mem_hotplug_begin();
if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
pfn = align_start >> PAGE_SHIFT;
__remove_pages(page_zone(pfn_to_page(pfn)), pfn,
align_size >> PAGE_SHIFT, NULL);
} else {
arch_remove_memory(nid, align_start, align_size,
pgmap->altmap_valid ? &pgmap->altmap : NULL);
kasan_remove_zero_shadow(__va(align_start), align_size);
}
mem_hotplug_done();
untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
pgmap_array_delete(res);
dev_WARN_ONCE(dev, pgmap->altmap.alloc,
"%s: failed to free all reserved pages\n", __func__);
}
/**
* devm_memremap_pages - remap and provide memmap backing for the given resource
* @dev: hosting device for @res
* @pgmap: pointer to a struct dev_pagemap
*
* Notes:
* 1/ At a minimum the res, ref and type and ops members of @pgmap must be
* initialized by the caller before passing it to this function
*
* 2/ The altmap field may optionally be initialized, in which case altmap_valid
* must be set to true
*
* 3/ pgmap->ref must be 'live' on entry and will be killed and reaped
* at devm_memremap_pages_release() time, or if this routine fails.
*
* 4/ res is expected to be a host memory range that could feasibly be
* treated as a "System RAM" range, i.e. not a device mmio range, but
* this is not enforced.
*/
void *devm_memremap_pages(struct device *dev, struct dev_pagemap *pgmap)
{
resource_size_t align_start, align_size, align_end;
struct vmem_altmap *altmap = pgmap->altmap_valid ?
&pgmap->altmap : NULL;
struct resource *res = &pgmap->res;
struct dev_pagemap *conflict_pgmap;
struct mhp_restrictions restrictions = {
/*
* We do not want any optional features only our own memmap
*/
.altmap = altmap,
};
pgprot_t pgprot = PAGE_KERNEL;
int error, nid, is_ram;
bool need_devmap_managed = true;
switch (pgmap->type) {
case MEMORY_DEVICE_PRIVATE:
if (!IS_ENABLED(CONFIG_DEVICE_PRIVATE)) {
WARN(1, "Device private memory not supported\n");
return ERR_PTR(-EINVAL);
}
break;
case MEMORY_DEVICE_FS_DAX:
if (!IS_ENABLED(CONFIG_ZONE_DEVICE) ||
IS_ENABLED(CONFIG_FS_DAX_LIMITED)) {
WARN(1, "File system DAX not supported\n");
return ERR_PTR(-EINVAL);
}
break;
case MEMORY_DEVICE_DEVDAX:
case MEMORY_DEVICE_PCI_P2PDMA:
need_devmap_managed = false;
break;
default:
WARN(1, "Invalid pgmap type %d\n", pgmap->type);
break;
}
if (!pgmap->ref || !pgmap->ops || !pgmap->ops->kill ||
!pgmap->ops->cleanup) {
WARN(1, "Missing reference count teardown definition\n");
return ERR_PTR(-EINVAL);
}
if (need_devmap_managed) {
error = devmap_managed_enable_get(dev, pgmap);
if (error)
return ERR_PTR(error);
}
align_start = res->start & ~(SECTION_SIZE - 1);
align_size = ALIGN(res->start + resource_size(res), SECTION_SIZE)
- align_start;
align_end = align_start + align_size - 1;
conflict_pgmap = get_dev_pagemap(PHYS_PFN(align_start), NULL);
if (conflict_pgmap) {
dev_WARN(dev, "Conflicting mapping in same section\n");
put_dev_pagemap(conflict_pgmap);
error = -ENOMEM;
goto err_array;
}
conflict_pgmap = get_dev_pagemap(PHYS_PFN(align_end), NULL);
if (conflict_pgmap) {
dev_WARN(dev, "Conflicting mapping in same section\n");
put_dev_pagemap(conflict_pgmap);
error = -ENOMEM;
goto err_array;
}
is_ram = region_intersects(align_start, align_size,
IORESOURCE_SYSTEM_RAM, IORES_DESC_NONE);
if (is_ram != REGION_DISJOINT) {
WARN_ONCE(1, "%s attempted on %s region %pr\n", __func__,
is_ram == REGION_MIXED ? "mixed" : "ram", res);
error = -ENXIO;
goto err_array;
}
pgmap->dev = dev;
error = xa_err(xa_store_range(&pgmap_array, PHYS_PFN(res->start),
PHYS_PFN(res->end), pgmap, GFP_KERNEL));
if (error)
goto err_array;
nid = dev_to_node(dev);
if (nid < 0)
nid = numa_mem_id();
error = track_pfn_remap(NULL, &pgprot, PHYS_PFN(align_start), 0,
align_size);
if (error)
goto err_pfn_remap;
mem_hotplug_begin();
/*
* For device private memory we call add_pages() as we only need to
* allocate and initialize struct page for the device memory. More-
* over the device memory is un-accessible thus we do not want to
* create a linear mapping for the memory like arch_add_memory()
* would do.
*
* For all other device memory types, which are accessible by
* the CPU, we do want the linear mapping and thus use
* arch_add_memory().
*/
if (pgmap->type == MEMORY_DEVICE_PRIVATE) {
error = add_pages(nid, align_start >> PAGE_SHIFT,
align_size >> PAGE_SHIFT, &restrictions);
} else {
error = kasan_add_zero_shadow(__va(align_start), align_size);
if (error) {
mem_hotplug_done();
goto err_kasan;
}
error = arch_add_memory(nid, align_start, align_size,
&restrictions);
}
if (!error) {
struct zone *zone;
zone = &NODE_DATA(nid)->node_zones[ZONE_DEVICE];
move_pfn_range_to_zone(zone, align_start >> PAGE_SHIFT,
align_size >> PAGE_SHIFT, altmap);
}
mem_hotplug_done();
if (error)
goto err_add_memory;
/*
* Initialization of the pages has been deferred until now in order
* to allow us to do the work while not holding the hotplug lock.
*/
memmap_init_zone_device(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
align_start >> PAGE_SHIFT,
align_size >> PAGE_SHIFT, pgmap);
percpu_ref_get_many(pgmap->ref, pfn_end(pgmap) - pfn_first(pgmap));
error = devm_add_action_or_reset(dev, devm_memremap_pages_release,
pgmap);
if (error)
return ERR_PTR(error);
return __va(res->start);
err_add_memory:
kasan_remove_zero_shadow(__va(align_start), align_size);
err_kasan:
untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
err_pfn_remap:
pgmap_array_delete(res);
err_array:
pgmap->ops->kill(pgmap);
pgmap->ops->cleanup(pgmap);
return ERR_PTR(error);
}
EXPORT_SYMBOL_GPL(devm_memremap_pages);
void devm_memunmap_pages(struct device *dev, struct dev_pagemap *pgmap)
{
devm_release_action(dev, devm_memremap_pages_release, pgmap);
}
EXPORT_SYMBOL_GPL(devm_memunmap_pages);
unsigned long vmem_altmap_offset(struct vmem_altmap *altmap)
{
/* number of pfns from base where pfn_to_page() is valid */
return altmap->reserve + altmap->free;
}
void vmem_altmap_free(struct vmem_altmap *altmap, unsigned long nr_pfns)
{
altmap->alloc -= nr_pfns;
}
/**
* get_dev_pagemap() - take a new live reference on the dev_pagemap for @pfn
* @pfn: page frame number to lookup page_map
* @pgmap: optional known pgmap that already has a reference
*
* If @pgmap is non-NULL and covers @pfn it will be returned as-is. If @pgmap
* is non-NULL but does not cover @pfn the reference to it will be released.
*/
struct dev_pagemap *get_dev_pagemap(unsigned long pfn,
struct dev_pagemap *pgmap)
{
resource_size_t phys = PFN_PHYS(pfn);
/*
* In the cached case we're already holding a live reference.
*/
if (pgmap) {
if (phys >= pgmap->res.start && phys <= pgmap->res.end)
return pgmap;
put_dev_pagemap(pgmap);
}
/* fall back to slow path lookup */
rcu_read_lock();
pgmap = xa_load(&pgmap_array, PHYS_PFN(phys));
if (pgmap && !percpu_ref_tryget_live(pgmap->ref))
pgmap = NULL;
rcu_read_unlock();
return pgmap;
}
EXPORT_SYMBOL_GPL(get_dev_pagemap);
#ifdef CONFIG_DEV_PAGEMAP_OPS
void __put_devmap_managed_page(struct page *page)
{
int count = page_ref_dec_return(page);
/*
* If refcount is 1 then page is freed and refcount is stable as nobody
* holds a reference on the page.
*/
if (count == 1) {
/* Clear Active bit in case of parallel mark_page_accessed */
__ClearPageActive(page);
__ClearPageWaiters(page);
mem_cgroup_uncharge(page);
page->pgmap->ops->page_free(page, page->pgmap->data);
} else if (!count)
__put_page(page);
}
EXPORT_SYMBOL(__put_devmap_managed_page);
#endif /* CONFIG_DEV_PAGEMAP_OPS */