linux-stable/crypto/lrw.c
Ondrej Mosnacek fbe1a850b3 crypto: lrw - Fix out-of bounds access on counter overflow
When the LRW block counter overflows, the current implementation returns
128 as the index to the precomputed multiplication table, which has 128
entries. This patch fixes it to return the correct value (127).

Fixes: 64470f1b85 ("[CRYPTO] lrw: Liskov Rivest Wagner, a tweakable narrow block cipher mode")
Cc: <stable@vger.kernel.org> # 2.6.20+
Reported-by: Eric Biggers <ebiggers@kernel.org>
Signed-off-by: Ondrej Mosnacek <omosnace@redhat.com>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
2018-09-21 13:24:51 +08:00

606 lines
13 KiB
C

/* LRW: as defined by Cyril Guyot in
* http://grouper.ieee.org/groups/1619/email/pdf00017.pdf
*
* Copyright (c) 2006 Rik Snel <rsnel@cube.dyndns.org>
*
* Based on ecb.c
* Copyright (c) 2006 Herbert Xu <herbert@gondor.apana.org.au>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*/
/* This implementation is checked against the test vectors in the above
* document and by a test vector provided by Ken Buchanan at
* http://www.mail-archive.com/stds-p1619@listserv.ieee.org/msg00173.html
*
* The test vectors are included in the testing module tcrypt.[ch] */
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>
#define LRW_BUFFER_SIZE 128u
#define LRW_BLOCK_SIZE 16
struct priv {
struct crypto_skcipher *child;
/*
* optimizes multiplying a random (non incrementing, as at the
* start of a new sector) value with key2, we could also have
* used 4k optimization tables or no optimization at all. In the
* latter case we would have to store key2 here
*/
struct gf128mul_64k *table;
/*
* stores:
* key2*{ 0,0,...0,0,0,0,1 }, key2*{ 0,0,...0,0,0,1,1 },
* key2*{ 0,0,...0,0,1,1,1 }, key2*{ 0,0,...0,1,1,1,1 }
* key2*{ 0,0,...1,1,1,1,1 }, etc
* needed for optimized multiplication of incrementing values
* with key2
*/
be128 mulinc[128];
};
struct rctx {
be128 buf[LRW_BUFFER_SIZE / sizeof(be128)];
be128 t;
be128 *ext;
struct scatterlist srcbuf[2];
struct scatterlist dstbuf[2];
struct scatterlist *src;
struct scatterlist *dst;
unsigned int left;
struct skcipher_request subreq;
};
static inline void setbit128_bbe(void *b, int bit)
{
__set_bit(bit ^ (0x80 -
#ifdef __BIG_ENDIAN
BITS_PER_LONG
#else
BITS_PER_BYTE
#endif
), b);
}
static int setkey(struct crypto_skcipher *parent, const u8 *key,
unsigned int keylen)
{
struct priv *ctx = crypto_skcipher_ctx(parent);
struct crypto_skcipher *child = ctx->child;
int err, bsize = LRW_BLOCK_SIZE;
const u8 *tweak = key + keylen - bsize;
be128 tmp = { 0 };
int i;
crypto_skcipher_clear_flags(child, CRYPTO_TFM_REQ_MASK);
crypto_skcipher_set_flags(child, crypto_skcipher_get_flags(parent) &
CRYPTO_TFM_REQ_MASK);
err = crypto_skcipher_setkey(child, key, keylen - bsize);
crypto_skcipher_set_flags(parent, crypto_skcipher_get_flags(child) &
CRYPTO_TFM_RES_MASK);
if (err)
return err;
if (ctx->table)
gf128mul_free_64k(ctx->table);
/* initialize multiplication table for Key2 */
ctx->table = gf128mul_init_64k_bbe((be128 *)tweak);
if (!ctx->table)
return -ENOMEM;
/* initialize optimization table */
for (i = 0; i < 128; i++) {
setbit128_bbe(&tmp, i);
ctx->mulinc[i] = tmp;
gf128mul_64k_bbe(&ctx->mulinc[i], ctx->table);
}
return 0;
}
static inline void inc(be128 *iv)
{
be64_add_cpu(&iv->b, 1);
if (!iv->b)
be64_add_cpu(&iv->a, 1);
}
/* this returns the number of consequative 1 bits starting
* from the right, get_index128(00 00 00 00 00 00 ... 00 00 10 FB) = 2 */
static inline int get_index128(be128 *block)
{
int x;
__be32 *p = (__be32 *) block;
for (p += 3, x = 0; x < 128; p--, x += 32) {
u32 val = be32_to_cpup(p);
if (!~val)
continue;
return x + ffz(val);
}
/*
* If we get here, then x == 128 and we are incrementing the counter
* from all ones to all zeros. This means we must return index 127, i.e.
* the one corresponding to key2*{ 1,...,1 }.
*/
return 127;
}
static int post_crypt(struct skcipher_request *req)
{
struct rctx *rctx = skcipher_request_ctx(req);
be128 *buf = rctx->ext ?: rctx->buf;
struct skcipher_request *subreq;
const int bs = LRW_BLOCK_SIZE;
struct skcipher_walk w;
struct scatterlist *sg;
unsigned offset;
int err;
subreq = &rctx->subreq;
err = skcipher_walk_virt(&w, subreq, false);
while (w.nbytes) {
unsigned int avail = w.nbytes;
be128 *wdst;
wdst = w.dst.virt.addr;
do {
be128_xor(wdst, buf++, wdst);
wdst++;
} while ((avail -= bs) >= bs);
err = skcipher_walk_done(&w, avail);
}
rctx->left -= subreq->cryptlen;
if (err || !rctx->left)
goto out;
rctx->dst = rctx->dstbuf;
scatterwalk_done(&w.out, 0, 1);
sg = w.out.sg;
offset = w.out.offset;
if (rctx->dst != sg) {
rctx->dst[0] = *sg;
sg_unmark_end(rctx->dst);
scatterwalk_crypto_chain(rctx->dst, sg_next(sg), 2);
}
rctx->dst[0].length -= offset - sg->offset;
rctx->dst[0].offset = offset;
out:
return err;
}
static int pre_crypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct rctx *rctx = skcipher_request_ctx(req);
struct priv *ctx = crypto_skcipher_ctx(tfm);
be128 *buf = rctx->ext ?: rctx->buf;
struct skcipher_request *subreq;
const int bs = LRW_BLOCK_SIZE;
struct skcipher_walk w;
struct scatterlist *sg;
unsigned cryptlen;
unsigned offset;
be128 *iv;
bool more;
int err;
subreq = &rctx->subreq;
skcipher_request_set_tfm(subreq, tfm);
cryptlen = subreq->cryptlen;
more = rctx->left > cryptlen;
if (!more)
cryptlen = rctx->left;
skcipher_request_set_crypt(subreq, rctx->src, rctx->dst,
cryptlen, req->iv);
err = skcipher_walk_virt(&w, subreq, false);
iv = w.iv;
while (w.nbytes) {
unsigned int avail = w.nbytes;
be128 *wsrc;
be128 *wdst;
wsrc = w.src.virt.addr;
wdst = w.dst.virt.addr;
do {
*buf++ = rctx->t;
be128_xor(wdst++, &rctx->t, wsrc++);
/* T <- I*Key2, using the optimization
* discussed in the specification */
be128_xor(&rctx->t, &rctx->t,
&ctx->mulinc[get_index128(iv)]);
inc(iv);
} while ((avail -= bs) >= bs);
err = skcipher_walk_done(&w, avail);
}
skcipher_request_set_tfm(subreq, ctx->child);
skcipher_request_set_crypt(subreq, rctx->dst, rctx->dst,
cryptlen, NULL);
if (err || !more)
goto out;
rctx->src = rctx->srcbuf;
scatterwalk_done(&w.in, 0, 1);
sg = w.in.sg;
offset = w.in.offset;
if (rctx->src != sg) {
rctx->src[0] = *sg;
sg_unmark_end(rctx->src);
scatterwalk_crypto_chain(rctx->src, sg_next(sg), 2);
}
rctx->src[0].length -= offset - sg->offset;
rctx->src[0].offset = offset;
out:
return err;
}
static int init_crypt(struct skcipher_request *req, crypto_completion_t done)
{
struct priv *ctx = crypto_skcipher_ctx(crypto_skcipher_reqtfm(req));
struct rctx *rctx = skcipher_request_ctx(req);
struct skcipher_request *subreq;
gfp_t gfp;
subreq = &rctx->subreq;
skcipher_request_set_callback(subreq, req->base.flags, done, req);
gfp = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? GFP_KERNEL :
GFP_ATOMIC;
rctx->ext = NULL;
subreq->cryptlen = LRW_BUFFER_SIZE;
if (req->cryptlen > LRW_BUFFER_SIZE) {
unsigned int n = min(req->cryptlen, (unsigned int)PAGE_SIZE);
rctx->ext = kmalloc(n, gfp);
if (rctx->ext)
subreq->cryptlen = n;
}
rctx->src = req->src;
rctx->dst = req->dst;
rctx->left = req->cryptlen;
/* calculate first value of T */
memcpy(&rctx->t, req->iv, sizeof(rctx->t));
/* T <- I*Key2 */
gf128mul_64k_bbe(&rctx->t, ctx->table);
return 0;
}
static void exit_crypt(struct skcipher_request *req)
{
struct rctx *rctx = skcipher_request_ctx(req);
rctx->left = 0;
if (rctx->ext)
kzfree(rctx->ext);
}
static int do_encrypt(struct skcipher_request *req, int err)
{
struct rctx *rctx = skcipher_request_ctx(req);
struct skcipher_request *subreq;
subreq = &rctx->subreq;
while (!err && rctx->left) {
err = pre_crypt(req) ?:
crypto_skcipher_encrypt(subreq) ?:
post_crypt(req);
if (err == -EINPROGRESS || err == -EBUSY)
return err;
}
exit_crypt(req);
return err;
}
static void encrypt_done(struct crypto_async_request *areq, int err)
{
struct skcipher_request *req = areq->data;
struct skcipher_request *subreq;
struct rctx *rctx;
rctx = skcipher_request_ctx(req);
if (err == -EINPROGRESS) {
if (rctx->left != req->cryptlen)
return;
goto out;
}
subreq = &rctx->subreq;
subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
err = do_encrypt(req, err ?: post_crypt(req));
if (rctx->left)
return;
out:
skcipher_request_complete(req, err);
}
static int encrypt(struct skcipher_request *req)
{
return do_encrypt(req, init_crypt(req, encrypt_done));
}
static int do_decrypt(struct skcipher_request *req, int err)
{
struct rctx *rctx = skcipher_request_ctx(req);
struct skcipher_request *subreq;
subreq = &rctx->subreq;
while (!err && rctx->left) {
err = pre_crypt(req) ?:
crypto_skcipher_decrypt(subreq) ?:
post_crypt(req);
if (err == -EINPROGRESS || err == -EBUSY)
return err;
}
exit_crypt(req);
return err;
}
static void decrypt_done(struct crypto_async_request *areq, int err)
{
struct skcipher_request *req = areq->data;
struct skcipher_request *subreq;
struct rctx *rctx;
rctx = skcipher_request_ctx(req);
if (err == -EINPROGRESS) {
if (rctx->left != req->cryptlen)
return;
goto out;
}
subreq = &rctx->subreq;
subreq->base.flags &= CRYPTO_TFM_REQ_MAY_BACKLOG;
err = do_decrypt(req, err ?: post_crypt(req));
if (rctx->left)
return;
out:
skcipher_request_complete(req, err);
}
static int decrypt(struct skcipher_request *req)
{
return do_decrypt(req, init_crypt(req, decrypt_done));
}
static int init_tfm(struct crypto_skcipher *tfm)
{
struct skcipher_instance *inst = skcipher_alg_instance(tfm);
struct crypto_skcipher_spawn *spawn = skcipher_instance_ctx(inst);
struct priv *ctx = crypto_skcipher_ctx(tfm);
struct crypto_skcipher *cipher;
cipher = crypto_spawn_skcipher(spawn);
if (IS_ERR(cipher))
return PTR_ERR(cipher);
ctx->child = cipher;
crypto_skcipher_set_reqsize(tfm, crypto_skcipher_reqsize(cipher) +
sizeof(struct rctx));
return 0;
}
static void exit_tfm(struct crypto_skcipher *tfm)
{
struct priv *ctx = crypto_skcipher_ctx(tfm);
if (ctx->table)
gf128mul_free_64k(ctx->table);
crypto_free_skcipher(ctx->child);
}
static void free(struct skcipher_instance *inst)
{
crypto_drop_skcipher(skcipher_instance_ctx(inst));
kfree(inst);
}
static int create(struct crypto_template *tmpl, struct rtattr **tb)
{
struct crypto_skcipher_spawn *spawn;
struct skcipher_instance *inst;
struct crypto_attr_type *algt;
struct skcipher_alg *alg;
const char *cipher_name;
char ecb_name[CRYPTO_MAX_ALG_NAME];
int err;
algt = crypto_get_attr_type(tb);
if (IS_ERR(algt))
return PTR_ERR(algt);
if ((algt->type ^ CRYPTO_ALG_TYPE_SKCIPHER) & algt->mask)
return -EINVAL;
cipher_name = crypto_attr_alg_name(tb[1]);
if (IS_ERR(cipher_name))
return PTR_ERR(cipher_name);
inst = kzalloc(sizeof(*inst) + sizeof(*spawn), GFP_KERNEL);
if (!inst)
return -ENOMEM;
spawn = skcipher_instance_ctx(inst);
crypto_set_skcipher_spawn(spawn, skcipher_crypto_instance(inst));
err = crypto_grab_skcipher(spawn, cipher_name, 0,
crypto_requires_sync(algt->type,
algt->mask));
if (err == -ENOENT) {
err = -ENAMETOOLONG;
if (snprintf(ecb_name, CRYPTO_MAX_ALG_NAME, "ecb(%s)",
cipher_name) >= CRYPTO_MAX_ALG_NAME)
goto err_free_inst;
err = crypto_grab_skcipher(spawn, ecb_name, 0,
crypto_requires_sync(algt->type,
algt->mask));
}
if (err)
goto err_free_inst;
alg = crypto_skcipher_spawn_alg(spawn);
err = -EINVAL;
if (alg->base.cra_blocksize != LRW_BLOCK_SIZE)
goto err_drop_spawn;
if (crypto_skcipher_alg_ivsize(alg))
goto err_drop_spawn;
err = crypto_inst_setname(skcipher_crypto_instance(inst), "lrw",
&alg->base);
if (err)
goto err_drop_spawn;
err = -EINVAL;
cipher_name = alg->base.cra_name;
/* Alas we screwed up the naming so we have to mangle the
* cipher name.
*/
if (!strncmp(cipher_name, "ecb(", 4)) {
unsigned len;
len = strlcpy(ecb_name, cipher_name + 4, sizeof(ecb_name));
if (len < 2 || len >= sizeof(ecb_name))
goto err_drop_spawn;
if (ecb_name[len - 1] != ')')
goto err_drop_spawn;
ecb_name[len - 1] = 0;
if (snprintf(inst->alg.base.cra_name, CRYPTO_MAX_ALG_NAME,
"lrw(%s)", ecb_name) >= CRYPTO_MAX_ALG_NAME) {
err = -ENAMETOOLONG;
goto err_drop_spawn;
}
} else
goto err_drop_spawn;
inst->alg.base.cra_flags = alg->base.cra_flags & CRYPTO_ALG_ASYNC;
inst->alg.base.cra_priority = alg->base.cra_priority;
inst->alg.base.cra_blocksize = LRW_BLOCK_SIZE;
inst->alg.base.cra_alignmask = alg->base.cra_alignmask |
(__alignof__(u64) - 1);
inst->alg.ivsize = LRW_BLOCK_SIZE;
inst->alg.min_keysize = crypto_skcipher_alg_min_keysize(alg) +
LRW_BLOCK_SIZE;
inst->alg.max_keysize = crypto_skcipher_alg_max_keysize(alg) +
LRW_BLOCK_SIZE;
inst->alg.base.cra_ctxsize = sizeof(struct priv);
inst->alg.init = init_tfm;
inst->alg.exit = exit_tfm;
inst->alg.setkey = setkey;
inst->alg.encrypt = encrypt;
inst->alg.decrypt = decrypt;
inst->free = free;
err = skcipher_register_instance(tmpl, inst);
if (err)
goto err_drop_spawn;
out:
return err;
err_drop_spawn:
crypto_drop_skcipher(spawn);
err_free_inst:
kfree(inst);
goto out;
}
static struct crypto_template crypto_tmpl = {
.name = "lrw",
.create = create,
.module = THIS_MODULE,
};
static int __init crypto_module_init(void)
{
return crypto_register_template(&crypto_tmpl);
}
static void __exit crypto_module_exit(void)
{
crypto_unregister_template(&crypto_tmpl);
}
module_init(crypto_module_init);
module_exit(crypto_module_exit);
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("LRW block cipher mode");
MODULE_ALIAS_CRYPTO("lrw");