linux/net/tls/Kconfig

41 lines
901 B
Plaintext
Raw Normal View History

# SPDX-License-Identifier: GPL-2.0-only
#
# TLS configuration
#
config TLS
tristate "Transport Layer Security support"
depends on INET
select CRYPTO
select CRYPTO_AES
select CRYPTO_GCM
select STREAM_PARSER
tls: convert to generic sk_msg interface Convert kTLS over to make use of sk_msg interface for plaintext and encrypted scattergather data, so it reuses all the sk_msg helpers and data structure which later on in a second step enables to glue this to BPF. This also allows to remove quite a bit of open coded helpers which are covered by the sk_msg API. Recent changes in kTLs 80ece6a03aaf ("tls: Remove redundant vars from tls record structure") and 4e6d47206c32 ("tls: Add support for inplace records encryption") changed the data path handling a bit; while we've kept the latter optimization intact, we had to undo the former change to better fit the sk_msg model, hence the sg_aead_in and sg_aead_out have been brought back and are linked into the sk_msg sgs. Now the kTLS record contains a msg_plaintext and msg_encrypted sk_msg each. In the original code, the zerocopy_from_iter() has been used out of TX but also RX path. For the strparser skb-based RX path, we've left the zerocopy_from_iter() in decrypt_internal() mostly untouched, meaning it has been moved into tls_setup_from_iter() with charging logic removed (as not used from RX). Given RX path is not based on sk_msg objects, we haven't pursued setting up a dummy sk_msg to call into sk_msg_zerocopy_from_iter(), but it could be an option to prusue in a later step. Joint work with John. Signed-off-by: Daniel Borkmann <daniel@iogearbox.net> Signed-off-by: John Fastabend <john.fastabend@gmail.com> Signed-off-by: Alexei Starovoitov <ast@kernel.org>
2018-10-13 02:45:59 +02:00
select NET_SOCK_MSG
default n
help
Enable kernel support for TLS protocol. This allows symmetric
encryption handling of the TLS protocol to be done in-kernel.
If unsure, say N.
net/tls: Add generic NIC offload infrastructure This patch adds a generic infrastructure to offload TLS crypto to a network device. It enables the kernel TLS socket to skip encryption and authentication operations on the transmit side of the data path. Leaving those computationally expensive operations to the NIC. The NIC offload infrastructure builds TLS records and pushes them to the TCP layer just like the SW KTLS implementation and using the same API. TCP segmentation is mostly unaffected. Currently the only exception is that we prevent mixed SKBs where only part of the payload requires offload. In the future we are likely to add a similar restriction following a change cipher spec record. The notable differences between SW KTLS and NIC offloaded TLS implementations are as follows: 1. The offloaded implementation builds "plaintext TLS record", those records contain plaintext instead of ciphertext and place holder bytes instead of authentication tags. 2. The offloaded implementation maintains a mapping from TCP sequence number to TLS records. Thus given a TCP SKB sent from a NIC offloaded TLS socket, we can use the tls NIC offload infrastructure to obtain enough context to encrypt the payload of the SKB. A TLS record is released when the last byte of the record is ack'ed, this is done through the new icsk_clean_acked callback. The infrastructure should be extendable to support various NIC offload implementations. However it is currently written with the implementation below in mind: The NIC assumes that packets from each offloaded stream are sent as plaintext and in-order. It keeps track of the TLS records in the TCP stream. When a packet marked for offload is transmitted, the NIC encrypts the payload in-place and puts authentication tags in the relevant place holders. The responsibility for handling out-of-order packets (i.e. TCP retransmission, qdisc drops) falls on the netdev driver. The netdev driver keeps track of the expected TCP SN from the NIC's perspective. If the next packet to transmit matches the expected TCP SN, the driver advances the expected TCP SN, and transmits the packet with TLS offload indication. If the next packet to transmit does not match the expected TCP SN. The driver calls the TLS layer to obtain the TLS record that includes the TCP of the packet for transmission. Using this TLS record, the driver posts a work entry on the transmit queue to reconstruct the NIC TLS state required for the offload of the out-of-order packet. It updates the expected TCP SN accordingly and transmits the now in-order packet. The same queue is used for packet transmission and TLS context reconstruction to avoid the need for flushing the transmit queue before issuing the context reconstruction request. Signed-off-by: Ilya Lesokhin <ilyal@mellanox.com> Signed-off-by: Boris Pismenny <borisp@mellanox.com> Signed-off-by: Aviad Yehezkel <aviadye@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-30 10:16:16 +03:00
config TLS_DEVICE
bool "Transport Layer Security HW offload"
depends on TLS
select SKB_DECRYPTED
net/tls: Add generic NIC offload infrastructure This patch adds a generic infrastructure to offload TLS crypto to a network device. It enables the kernel TLS socket to skip encryption and authentication operations on the transmit side of the data path. Leaving those computationally expensive operations to the NIC. The NIC offload infrastructure builds TLS records and pushes them to the TCP layer just like the SW KTLS implementation and using the same API. TCP segmentation is mostly unaffected. Currently the only exception is that we prevent mixed SKBs where only part of the payload requires offload. In the future we are likely to add a similar restriction following a change cipher spec record. The notable differences between SW KTLS and NIC offloaded TLS implementations are as follows: 1. The offloaded implementation builds "plaintext TLS record", those records contain plaintext instead of ciphertext and place holder bytes instead of authentication tags. 2. The offloaded implementation maintains a mapping from TCP sequence number to TLS records. Thus given a TCP SKB sent from a NIC offloaded TLS socket, we can use the tls NIC offload infrastructure to obtain enough context to encrypt the payload of the SKB. A TLS record is released when the last byte of the record is ack'ed, this is done through the new icsk_clean_acked callback. The infrastructure should be extendable to support various NIC offload implementations. However it is currently written with the implementation below in mind: The NIC assumes that packets from each offloaded stream are sent as plaintext and in-order. It keeps track of the TLS records in the TCP stream. When a packet marked for offload is transmitted, the NIC encrypts the payload in-place and puts authentication tags in the relevant place holders. The responsibility for handling out-of-order packets (i.e. TCP retransmission, qdisc drops) falls on the netdev driver. The netdev driver keeps track of the expected TCP SN from the NIC's perspective. If the next packet to transmit matches the expected TCP SN, the driver advances the expected TCP SN, and transmits the packet with TLS offload indication. If the next packet to transmit does not match the expected TCP SN. The driver calls the TLS layer to obtain the TLS record that includes the TCP of the packet for transmission. Using this TLS record, the driver posts a work entry on the transmit queue to reconstruct the NIC TLS state required for the offload of the out-of-order packet. It updates the expected TCP SN accordingly and transmits the now in-order packet. The same queue is used for packet transmission and TLS context reconstruction to avoid the need for flushing the transmit queue before issuing the context reconstruction request. Signed-off-by: Ilya Lesokhin <ilyal@mellanox.com> Signed-off-by: Boris Pismenny <borisp@mellanox.com> Signed-off-by: Aviad Yehezkel <aviadye@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-30 10:16:16 +03:00
select SOCK_VALIDATE_XMIT
select SOCK_RX_QUEUE_MAPPING
net/tls: Add generic NIC offload infrastructure This patch adds a generic infrastructure to offload TLS crypto to a network device. It enables the kernel TLS socket to skip encryption and authentication operations on the transmit side of the data path. Leaving those computationally expensive operations to the NIC. The NIC offload infrastructure builds TLS records and pushes them to the TCP layer just like the SW KTLS implementation and using the same API. TCP segmentation is mostly unaffected. Currently the only exception is that we prevent mixed SKBs where only part of the payload requires offload. In the future we are likely to add a similar restriction following a change cipher spec record. The notable differences between SW KTLS and NIC offloaded TLS implementations are as follows: 1. The offloaded implementation builds "plaintext TLS record", those records contain plaintext instead of ciphertext and place holder bytes instead of authentication tags. 2. The offloaded implementation maintains a mapping from TCP sequence number to TLS records. Thus given a TCP SKB sent from a NIC offloaded TLS socket, we can use the tls NIC offload infrastructure to obtain enough context to encrypt the payload of the SKB. A TLS record is released when the last byte of the record is ack'ed, this is done through the new icsk_clean_acked callback. The infrastructure should be extendable to support various NIC offload implementations. However it is currently written with the implementation below in mind: The NIC assumes that packets from each offloaded stream are sent as plaintext and in-order. It keeps track of the TLS records in the TCP stream. When a packet marked for offload is transmitted, the NIC encrypts the payload in-place and puts authentication tags in the relevant place holders. The responsibility for handling out-of-order packets (i.e. TCP retransmission, qdisc drops) falls on the netdev driver. The netdev driver keeps track of the expected TCP SN from the NIC's perspective. If the next packet to transmit matches the expected TCP SN, the driver advances the expected TCP SN, and transmits the packet with TLS offload indication. If the next packet to transmit does not match the expected TCP SN. The driver calls the TLS layer to obtain the TLS record that includes the TCP of the packet for transmission. Using this TLS record, the driver posts a work entry on the transmit queue to reconstruct the NIC TLS state required for the offload of the out-of-order packet. It updates the expected TCP SN accordingly and transmits the now in-order packet. The same queue is used for packet transmission and TLS context reconstruction to avoid the need for flushing the transmit queue before issuing the context reconstruction request. Signed-off-by: Ilya Lesokhin <ilyal@mellanox.com> Signed-off-by: Boris Pismenny <borisp@mellanox.com> Signed-off-by: Aviad Yehezkel <aviadye@mellanox.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2018-04-30 10:16:16 +03:00
default n
help
Enable kernel support for HW offload of the TLS protocol.
If unsure, say N.
config TLS_TOE
bool "Transport Layer Security TCP stack bypass"
depends on TLS
default n
help
Enable kernel support for legacy HW offload of the TLS protocol,
which is incompatible with the Linux networking stack semantics.
If unsure, say N.