linux/mm/cma.h

59 lines
1.6 KiB
C
Raw Normal View History

License cleanup: add SPDX GPL-2.0 license identifier to files with no license Many source files in the tree are missing licensing information, which makes it harder for compliance tools to determine the correct license. By default all files without license information are under the default license of the kernel, which is GPL version 2. Update the files which contain no license information with the 'GPL-2.0' SPDX license identifier. The SPDX identifier is a legally binding shorthand, which can be used instead of the full boiler plate text. This patch is based on work done by Thomas Gleixner and Kate Stewart and Philippe Ombredanne. How this work was done: Patches were generated and checked against linux-4.14-rc6 for a subset of the use cases: - file had no licensing information it it. - file was a */uapi/* one with no licensing information in it, - file was a */uapi/* one with existing licensing information, Further patches will be generated in subsequent months to fix up cases where non-standard license headers were used, and references to license had to be inferred by heuristics based on keywords. The analysis to determine which SPDX License Identifier to be applied to a file was done in a spreadsheet of side by side results from of the output of two independent scanners (ScanCode & Windriver) producing SPDX tag:value files created by Philippe Ombredanne. Philippe prepared the base worksheet, and did an initial spot review of a few 1000 files. The 4.13 kernel was the starting point of the analysis with 60,537 files assessed. Kate Stewart did a file by file comparison of the scanner results in the spreadsheet to determine which SPDX license identifier(s) to be applied to the file. She confirmed any determination that was not immediately clear with lawyers working with the Linux Foundation. Criteria used to select files for SPDX license identifier tagging was: - Files considered eligible had to be source code files. - Make and config files were included as candidates if they contained >5 lines of source - File already had some variant of a license header in it (even if <5 lines). All documentation files were explicitly excluded. The following heuristics were used to determine which SPDX license identifiers to apply. - when both scanners couldn't find any license traces, file was considered to have no license information in it, and the top level COPYING file license applied. For non */uapi/* files that summary was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 11139 and resulted in the first patch in this series. If that file was a */uapi/* path one, it was "GPL-2.0 WITH Linux-syscall-note" otherwise it was "GPL-2.0". Results of that was: SPDX license identifier # files ---------------------------------------------------|------- GPL-2.0 WITH Linux-syscall-note 930 and resulted in the second patch in this series. - if a file had some form of licensing information in it, and was one of the */uapi/* ones, it was denoted with the Linux-syscall-note if any GPL family license was found in the file or had no licensing in it (per prior point). Results summary: SPDX license identifier # files ---------------------------------------------------|------ GPL-2.0 WITH Linux-syscall-note 270 GPL-2.0+ WITH Linux-syscall-note 169 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-2-Clause) 21 ((GPL-2.0 WITH Linux-syscall-note) OR BSD-3-Clause) 17 LGPL-2.1+ WITH Linux-syscall-note 15 GPL-1.0+ WITH Linux-syscall-note 14 ((GPL-2.0+ WITH Linux-syscall-note) OR BSD-3-Clause) 5 LGPL-2.0+ WITH Linux-syscall-note 4 LGPL-2.1 WITH Linux-syscall-note 3 ((GPL-2.0 WITH Linux-syscall-note) OR MIT) 3 ((GPL-2.0 WITH Linux-syscall-note) AND MIT) 1 and that resulted in the third patch in this series. - when the two scanners agreed on the detected license(s), that became the concluded license(s). - when there was disagreement between the two scanners (one detected a license but the other didn't, or they both detected different licenses) a manual inspection of the file occurred. - In most cases a manual inspection of the information in the file resulted in a clear resolution of the license that should apply (and which scanner probably needed to revisit its heuristics). - When it was not immediately clear, the license identifier was confirmed with lawyers working with the Linux Foundation. - If there was any question as to the appropriate license identifier, the file was flagged for further research and to be revisited later in time. In total, over 70 hours of logged manual review was done on the spreadsheet to determine the SPDX license identifiers to apply to the source files by Kate, Philippe, Thomas and, in some cases, confirmation by lawyers working with the Linux Foundation. Kate also obtained a third independent scan of the 4.13 code base from FOSSology, and compared selected files where the other two scanners disagreed against that SPDX file, to see if there was new insights. The Windriver scanner is based on an older version of FOSSology in part, so they are related. Thomas did random spot checks in about 500 files from the spreadsheets for the uapi headers and agreed with SPDX license identifier in the files he inspected. For the non-uapi files Thomas did random spot checks in about 15000 files. In initial set of patches against 4.14-rc6, 3 files were found to have copy/paste license identifier errors, and have been fixed to reflect the correct identifier. Additionally Philippe spent 10 hours this week doing a detailed manual inspection and review of the 12,461 patched files from the initial patch version early this week with: - a full scancode scan run, collecting the matched texts, detected license ids and scores - reviewing anything where there was a license detected (about 500+ files) to ensure that the applied SPDX license was correct - reviewing anything where there was no detection but the patch license was not GPL-2.0 WITH Linux-syscall-note to ensure that the applied SPDX license was correct This produced a worksheet with 20 files needing minor correction. This worksheet was then exported into 3 different .csv files for the different types of files to be modified. These .csv files were then reviewed by Greg. Thomas wrote a script to parse the csv files and add the proper SPDX tag to the file, in the format that the file expected. This script was further refined by Greg based on the output to detect more types of files automatically and to distinguish between header and source .c files (which need different comment types.) Finally Greg ran the script using the .csv files to generate the patches. Reviewed-by: Kate Stewart <kstewart@linuxfoundation.org> Reviewed-by: Philippe Ombredanne <pombredanne@nexb.com> Reviewed-by: Thomas Gleixner <tglx@linutronix.de> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2017-11-01 15:07:57 +01:00
/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __MM_CMA_H__
#define __MM_CMA_H__
#include <linux/debugfs.h>
mm: cma: support sysfs Since CMA is getting used more widely, it's more important to keep monitoring CMA statistics for system health since it's directly related to user experience. This patch introduces sysfs statistics for CMA, in order to provide some basic monitoring of the CMA allocator. * the number of CMA page successful allocations * the number of CMA page allocation failures These two values allow the user to calcuate the allocation failure rate for each CMA area. e.g.) /sys/kernel/mm/cma/WIFI/alloc_pages_[success|fail] /sys/kernel/mm/cma/SENSOR/alloc_pages_[success|fail] /sys/kernel/mm/cma/BLUETOOTH/alloc_pages_[success|fail] The cma_stat was intentionally allocated by dynamic allocation to harmonize with kobject lifetime management. https://lore.kernel.org/linux-mm/YCOAmXqt6dZkCQYs@kroah.com/ Link: https://lkml.kernel.org/r/20210324230759.2213957-1-minchan@kernel.org Link: https://lore.kernel.org/linux-mm/20210316100433.17665-1-colin.king@canonical.com/ Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Colin Ian King <colin.king@canonical.com> Tested-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Tested-by: Anders Roxell <anders.roxell@linaro.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: John Dias <joaodias@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Colin Ian King <colin.king@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-04 18:37:28 -07:00
#include <linux/kobject.h>
struct cma_kobject {
struct kobject kobj;
struct cma *cma;
};
struct cma {
unsigned long base_pfn;
unsigned long count;
unsigned long *bitmap;
unsigned int order_per_bit; /* Order of pages represented by one bit */
mm/cma: change cma mutex to irq safe spinlock Patch series "make hugetlb put_page safe for all calling contexts", v5. This effort is the result a recent bug report [1]. Syzbot found a potential deadlock in the hugetlb put_page/free_huge_page_path. WARNING: SOFTIRQ-safe -> SOFTIRQ-unsafe lock order detected Since the free_huge_page_path already has code to 'hand off' page free requests to a workqueue, a suggestion was proposed to make the in_irq() detection accurate by always enabling PREEMPT_COUNT [2]. The outcome of that discussion was that the hugetlb put_page path (free_huge_page) path should be properly fixed and safe for all calling contexts. [1] https://lore.kernel.org/linux-mm/000000000000f1c03b05bc43aadc@google.com/ [2] http://lkml.kernel.org/r/20210311021321.127500-1-mike.kravetz@oracle.com This patch (of 8): cma_release is currently a sleepable operatation because the bitmap manipulation is protected by cma->lock mutex. Hugetlb code which relies on cma_release for CMA backed (giga) hugetlb pages, however, needs to be irq safe. The lock doesn't protect any sleepable operation so it can be changed to a (irq aware) spin lock. The bitmap processing should be quite fast in typical case but if cma sizes grow to TB then we will likely need to replace the lock by a more optimized bitmap implementation. Link: https://lkml.kernel.org/r/20210409205254.242291-1-mike.kravetz@oracle.com Link: https://lkml.kernel.org/r/20210409205254.242291-2-mike.kravetz@oracle.com Signed-off-by: Mike Kravetz <mike.kravetz@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Reviewed-by: David Hildenbrand <david@redhat.com> Acked-by: Roman Gushchin <guro@fb.com> Cc: Shakeel Butt <shakeelb@google.com> Cc: Oscar Salvador <osalvador@suse.de> Cc: Muchun Song <songmuchun@bytedance.com> Cc: David Rientjes <rientjes@google.com> Cc: Miaohe Lin <linmiaohe@huawei.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Matthew Wilcox <willy@infradead.org> Cc: HORIGUCHI NAOYA <naoya.horiguchi@nec.com> Cc: "Aneesh Kumar K . V" <aneesh.kumar@linux.ibm.com> Cc: Waiman Long <longman@redhat.com> Cc: Peter Xu <peterx@redhat.com> Cc: Mina Almasry <almasrymina@google.com> Cc: Hillf Danton <hdanton@sina.com> Cc: Joonsoo Kim <iamjoonsoo.kim@lge.com> Cc: Barry Song <song.bao.hua@hisilicon.com> Cc: Will Deacon <will@kernel.org> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-04 18:34:44 -07:00
spinlock_t lock;
#ifdef CONFIG_CMA_DEBUGFS
struct hlist_head mem_head;
spinlock_t mem_head_lock;
struct debugfs_u32_array dfs_bitmap;
#endif
char name[CMA_MAX_NAME];
mm: cma: support sysfs Since CMA is getting used more widely, it's more important to keep monitoring CMA statistics for system health since it's directly related to user experience. This patch introduces sysfs statistics for CMA, in order to provide some basic monitoring of the CMA allocator. * the number of CMA page successful allocations * the number of CMA page allocation failures These two values allow the user to calcuate the allocation failure rate for each CMA area. e.g.) /sys/kernel/mm/cma/WIFI/alloc_pages_[success|fail] /sys/kernel/mm/cma/SENSOR/alloc_pages_[success|fail] /sys/kernel/mm/cma/BLUETOOTH/alloc_pages_[success|fail] The cma_stat was intentionally allocated by dynamic allocation to harmonize with kobject lifetime management. https://lore.kernel.org/linux-mm/YCOAmXqt6dZkCQYs@kroah.com/ Link: https://lkml.kernel.org/r/20210324230759.2213957-1-minchan@kernel.org Link: https://lore.kernel.org/linux-mm/20210316100433.17665-1-colin.king@canonical.com/ Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Colin Ian King <colin.king@canonical.com> Tested-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Tested-by: Anders Roxell <anders.roxell@linaro.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: John Dias <joaodias@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Colin Ian King <colin.king@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-04 18:37:28 -07:00
#ifdef CONFIG_CMA_SYSFS
/* the number of CMA page successful allocations */
atomic64_t nr_pages_succeeded;
/* the number of CMA page allocation failures */
atomic64_t nr_pages_failed;
/* the number of CMA page released */
atomic64_t nr_pages_released;
mm: cma: support sysfs Since CMA is getting used more widely, it's more important to keep monitoring CMA statistics for system health since it's directly related to user experience. This patch introduces sysfs statistics for CMA, in order to provide some basic monitoring of the CMA allocator. * the number of CMA page successful allocations * the number of CMA page allocation failures These two values allow the user to calcuate the allocation failure rate for each CMA area. e.g.) /sys/kernel/mm/cma/WIFI/alloc_pages_[success|fail] /sys/kernel/mm/cma/SENSOR/alloc_pages_[success|fail] /sys/kernel/mm/cma/BLUETOOTH/alloc_pages_[success|fail] The cma_stat was intentionally allocated by dynamic allocation to harmonize with kobject lifetime management. https://lore.kernel.org/linux-mm/YCOAmXqt6dZkCQYs@kroah.com/ Link: https://lkml.kernel.org/r/20210324230759.2213957-1-minchan@kernel.org Link: https://lore.kernel.org/linux-mm/20210316100433.17665-1-colin.king@canonical.com/ Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Colin Ian King <colin.king@canonical.com> Tested-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Tested-by: Anders Roxell <anders.roxell@linaro.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: John Dias <joaodias@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Colin Ian King <colin.king@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-04 18:37:28 -07:00
/* kobject requires dynamic object */
struct cma_kobject *cma_kobj;
#endif
bool reserve_pages_on_error;
};
extern struct cma cma_areas[MAX_CMA_AREAS];
extern unsigned cma_area_count;
static inline unsigned long cma_bitmap_maxno(struct cma *cma)
{
return cma->count >> cma->order_per_bit;
}
mm: cma: support sysfs Since CMA is getting used more widely, it's more important to keep monitoring CMA statistics for system health since it's directly related to user experience. This patch introduces sysfs statistics for CMA, in order to provide some basic monitoring of the CMA allocator. * the number of CMA page successful allocations * the number of CMA page allocation failures These two values allow the user to calcuate the allocation failure rate for each CMA area. e.g.) /sys/kernel/mm/cma/WIFI/alloc_pages_[success|fail] /sys/kernel/mm/cma/SENSOR/alloc_pages_[success|fail] /sys/kernel/mm/cma/BLUETOOTH/alloc_pages_[success|fail] The cma_stat was intentionally allocated by dynamic allocation to harmonize with kobject lifetime management. https://lore.kernel.org/linux-mm/YCOAmXqt6dZkCQYs@kroah.com/ Link: https://lkml.kernel.org/r/20210324230759.2213957-1-minchan@kernel.org Link: https://lore.kernel.org/linux-mm/20210316100433.17665-1-colin.king@canonical.com/ Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Colin Ian King <colin.king@canonical.com> Tested-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Tested-by: Anders Roxell <anders.roxell@linaro.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: John Dias <joaodias@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Colin Ian King <colin.king@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-04 18:37:28 -07:00
#ifdef CONFIG_CMA_SYSFS
void cma_sysfs_account_success_pages(struct cma *cma, unsigned long nr_pages);
void cma_sysfs_account_fail_pages(struct cma *cma, unsigned long nr_pages);
void cma_sysfs_account_release_pages(struct cma *cma, unsigned long nr_pages);
mm: cma: support sysfs Since CMA is getting used more widely, it's more important to keep monitoring CMA statistics for system health since it's directly related to user experience. This patch introduces sysfs statistics for CMA, in order to provide some basic monitoring of the CMA allocator. * the number of CMA page successful allocations * the number of CMA page allocation failures These two values allow the user to calcuate the allocation failure rate for each CMA area. e.g.) /sys/kernel/mm/cma/WIFI/alloc_pages_[success|fail] /sys/kernel/mm/cma/SENSOR/alloc_pages_[success|fail] /sys/kernel/mm/cma/BLUETOOTH/alloc_pages_[success|fail] The cma_stat was intentionally allocated by dynamic allocation to harmonize with kobject lifetime management. https://lore.kernel.org/linux-mm/YCOAmXqt6dZkCQYs@kroah.com/ Link: https://lkml.kernel.org/r/20210324230759.2213957-1-minchan@kernel.org Link: https://lore.kernel.org/linux-mm/20210316100433.17665-1-colin.king@canonical.com/ Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Colin Ian King <colin.king@canonical.com> Tested-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Tested-by: Anders Roxell <anders.roxell@linaro.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: John Dias <joaodias@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Colin Ian King <colin.king@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-04 18:37:28 -07:00
#else
static inline void cma_sysfs_account_success_pages(struct cma *cma,
unsigned long nr_pages) {};
static inline void cma_sysfs_account_fail_pages(struct cma *cma,
unsigned long nr_pages) {};
static inline void cma_sysfs_account_release_pages(struct cma *cma,
unsigned long nr_pages) {};
mm: cma: support sysfs Since CMA is getting used more widely, it's more important to keep monitoring CMA statistics for system health since it's directly related to user experience. This patch introduces sysfs statistics for CMA, in order to provide some basic monitoring of the CMA allocator. * the number of CMA page successful allocations * the number of CMA page allocation failures These two values allow the user to calcuate the allocation failure rate for each CMA area. e.g.) /sys/kernel/mm/cma/WIFI/alloc_pages_[success|fail] /sys/kernel/mm/cma/SENSOR/alloc_pages_[success|fail] /sys/kernel/mm/cma/BLUETOOTH/alloc_pages_[success|fail] The cma_stat was intentionally allocated by dynamic allocation to harmonize with kobject lifetime management. https://lore.kernel.org/linux-mm/YCOAmXqt6dZkCQYs@kroah.com/ Link: https://lkml.kernel.org/r/20210324230759.2213957-1-minchan@kernel.org Link: https://lore.kernel.org/linux-mm/20210316100433.17665-1-colin.king@canonical.com/ Signed-off-by: Minchan Kim <minchan@kernel.org> Signed-off-by: Colin Ian King <colin.king@canonical.com> Tested-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Dmitry Osipenko <digetx@gmail.com> Reviewed-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Reviewed-by: John Hubbard <jhubbard@nvidia.com> Tested-by: Anders Roxell <anders.roxell@linaro.org> Cc: Suren Baghdasaryan <surenb@google.com> Cc: John Dias <joaodias@google.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: Colin Ian King <colin.king@canonical.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2021-05-04 18:37:28 -07:00
#endif
#endif