mirror of
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
synced 2025-01-15 09:34:17 +00:00
1120 lines
30 KiB
C
1120 lines
30 KiB
C
|
/*
|
||
|
* Driver for Alauda-based card readers
|
||
|
*
|
||
|
* Current development and maintenance by:
|
||
|
* (c) 2005 Daniel Drake <dsd@gentoo.org>
|
||
|
*
|
||
|
* The 'Alauda' is a chip manufacturered by RATOC for OEM use.
|
||
|
*
|
||
|
* Alauda implements a vendor-specific command set to access two media reader
|
||
|
* ports (XD, SmartMedia). This driver converts SCSI commands to the commands
|
||
|
* which are accepted by these devices.
|
||
|
*
|
||
|
* The driver was developed through reverse-engineering, with the help of the
|
||
|
* sddr09 driver which has many similarities, and with some help from the
|
||
|
* (very old) vendor-supplied GPL sma03 driver.
|
||
|
*
|
||
|
* For protocol info, see http://alauda.sourceforge.net
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify it
|
||
|
* under the terms of the GNU General Public License as published by the
|
||
|
* Free Software Foundation; either version 2, or (at your option) any
|
||
|
* later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful, but
|
||
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
* General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License along
|
||
|
* with this program; if not, write to the Free Software Foundation, Inc.,
|
||
|
* 675 Mass Ave, Cambridge, MA 02139, USA.
|
||
|
*/
|
||
|
|
||
|
#include <scsi/scsi.h>
|
||
|
#include <scsi/scsi_cmnd.h>
|
||
|
#include <scsi/scsi_device.h>
|
||
|
|
||
|
#include "usb.h"
|
||
|
#include "transport.h"
|
||
|
#include "protocol.h"
|
||
|
#include "debug.h"
|
||
|
#include "alauda.h"
|
||
|
|
||
|
#define short_pack(lsb,msb) ( ((u16)(lsb)) | ( ((u16)(msb))<<8 ) )
|
||
|
#define LSB_of(s) ((s)&0xFF)
|
||
|
#define MSB_of(s) ((s)>>8)
|
||
|
|
||
|
#define MEDIA_PORT(us) us->srb->device->lun
|
||
|
#define MEDIA_INFO(us) ((struct alauda_info *)us->extra)->port[MEDIA_PORT(us)]
|
||
|
|
||
|
#define PBA_LO(pba) ((pba & 0xF) << 5)
|
||
|
#define PBA_HI(pba) (pba >> 3)
|
||
|
#define PBA_ZONE(pba) (pba >> 11)
|
||
|
|
||
|
/*
|
||
|
* Media handling
|
||
|
*/
|
||
|
|
||
|
struct alauda_card_info {
|
||
|
unsigned char id; /* id byte */
|
||
|
unsigned char chipshift; /* 1<<cs bytes total capacity */
|
||
|
unsigned char pageshift; /* 1<<ps bytes in a page */
|
||
|
unsigned char blockshift; /* 1<<bs pages per block */
|
||
|
unsigned char zoneshift; /* 1<<zs blocks per zone */
|
||
|
};
|
||
|
|
||
|
static struct alauda_card_info alauda_card_ids[] = {
|
||
|
/* NAND flash */
|
||
|
{ 0x6e, 20, 8, 4, 8}, /* 1 MB */
|
||
|
{ 0xe8, 20, 8, 4, 8}, /* 1 MB */
|
||
|
{ 0xec, 20, 8, 4, 8}, /* 1 MB */
|
||
|
{ 0x64, 21, 8, 4, 9}, /* 2 MB */
|
||
|
{ 0xea, 21, 8, 4, 9}, /* 2 MB */
|
||
|
{ 0x6b, 22, 9, 4, 9}, /* 4 MB */
|
||
|
{ 0xe3, 22, 9, 4, 9}, /* 4 MB */
|
||
|
{ 0xe5, 22, 9, 4, 9}, /* 4 MB */
|
||
|
{ 0xe6, 23, 9, 4, 10}, /* 8 MB */
|
||
|
{ 0x73, 24, 9, 5, 10}, /* 16 MB */
|
||
|
{ 0x75, 25, 9, 5, 10}, /* 32 MB */
|
||
|
{ 0x76, 26, 9, 5, 10}, /* 64 MB */
|
||
|
{ 0x79, 27, 9, 5, 10}, /* 128 MB */
|
||
|
{ 0x71, 28, 9, 5, 10}, /* 256 MB */
|
||
|
|
||
|
/* MASK ROM */
|
||
|
{ 0x5d, 21, 9, 4, 8}, /* 2 MB */
|
||
|
{ 0xd5, 22, 9, 4, 9}, /* 4 MB */
|
||
|
{ 0xd6, 23, 9, 4, 10}, /* 8 MB */
|
||
|
{ 0x57, 24, 9, 4, 11}, /* 16 MB */
|
||
|
{ 0x58, 25, 9, 4, 12}, /* 32 MB */
|
||
|
{ 0,}
|
||
|
};
|
||
|
|
||
|
static struct alauda_card_info *alauda_card_find_id(unsigned char id) {
|
||
|
int i;
|
||
|
|
||
|
for (i = 0; alauda_card_ids[i].id != 0; i++)
|
||
|
if (alauda_card_ids[i].id == id)
|
||
|
return &(alauda_card_ids[i]);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* ECC computation.
|
||
|
*/
|
||
|
|
||
|
static unsigned char parity[256];
|
||
|
static unsigned char ecc2[256];
|
||
|
|
||
|
static void nand_init_ecc(void) {
|
||
|
int i, j, a;
|
||
|
|
||
|
parity[0] = 0;
|
||
|
for (i = 1; i < 256; i++)
|
||
|
parity[i] = (parity[i&(i-1)] ^ 1);
|
||
|
|
||
|
for (i = 0; i < 256; i++) {
|
||
|
a = 0;
|
||
|
for (j = 0; j < 8; j++) {
|
||
|
if (i & (1<<j)) {
|
||
|
if ((j & 1) == 0)
|
||
|
a ^= 0x04;
|
||
|
if ((j & 2) == 0)
|
||
|
a ^= 0x10;
|
||
|
if ((j & 4) == 0)
|
||
|
a ^= 0x40;
|
||
|
}
|
||
|
}
|
||
|
ecc2[i] = ~(a ^ (a<<1) ^ (parity[i] ? 0xa8 : 0));
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/* compute 3-byte ecc on 256 bytes */
|
||
|
static void nand_compute_ecc(unsigned char *data, unsigned char *ecc) {
|
||
|
int i, j, a;
|
||
|
unsigned char par, bit, bits[8];
|
||
|
|
||
|
par = 0;
|
||
|
for (j = 0; j < 8; j++)
|
||
|
bits[j] = 0;
|
||
|
|
||
|
/* collect 16 checksum bits */
|
||
|
for (i = 0; i < 256; i++) {
|
||
|
par ^= data[i];
|
||
|
bit = parity[data[i]];
|
||
|
for (j = 0; j < 8; j++)
|
||
|
if ((i & (1<<j)) == 0)
|
||
|
bits[j] ^= bit;
|
||
|
}
|
||
|
|
||
|
/* put 4+4+4 = 12 bits in the ecc */
|
||
|
a = (bits[3] << 6) + (bits[2] << 4) + (bits[1] << 2) + bits[0];
|
||
|
ecc[0] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
|
||
|
|
||
|
a = (bits[7] << 6) + (bits[6] << 4) + (bits[5] << 2) + bits[4];
|
||
|
ecc[1] = ~(a ^ (a<<1) ^ (parity[par] ? 0xaa : 0));
|
||
|
|
||
|
ecc[2] = ecc2[par];
|
||
|
}
|
||
|
|
||
|
static int nand_compare_ecc(unsigned char *data, unsigned char *ecc) {
|
||
|
return (data[0] == ecc[0] && data[1] == ecc[1] && data[2] == ecc[2]);
|
||
|
}
|
||
|
|
||
|
static void nand_store_ecc(unsigned char *data, unsigned char *ecc) {
|
||
|
memcpy(data, ecc, 3);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Alauda driver
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Forget our PBA <---> LBA mappings for a particular port
|
||
|
*/
|
||
|
static void alauda_free_maps (struct alauda_media_info *media_info)
|
||
|
{
|
||
|
unsigned int shift = media_info->zoneshift
|
||
|
+ media_info->blockshift + media_info->pageshift;
|
||
|
unsigned int num_zones = media_info->capacity >> shift;
|
||
|
unsigned int i;
|
||
|
|
||
|
if (media_info->lba_to_pba != NULL)
|
||
|
for (i = 0; i < num_zones; i++) {
|
||
|
kfree(media_info->lba_to_pba[i]);
|
||
|
media_info->lba_to_pba[i] = NULL;
|
||
|
}
|
||
|
|
||
|
if (media_info->pba_to_lba != NULL)
|
||
|
for (i = 0; i < num_zones; i++) {
|
||
|
kfree(media_info->pba_to_lba[i]);
|
||
|
media_info->pba_to_lba[i] = NULL;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Returns 2 bytes of status data
|
||
|
* The first byte describes media status, and second byte describes door status
|
||
|
*/
|
||
|
static int alauda_get_media_status(struct us_data *us, unsigned char *data)
|
||
|
{
|
||
|
int rc;
|
||
|
unsigned char command;
|
||
|
|
||
|
if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
|
||
|
command = ALAUDA_GET_XD_MEDIA_STATUS;
|
||
|
else
|
||
|
command = ALAUDA_GET_SM_MEDIA_STATUS;
|
||
|
|
||
|
rc = usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
|
||
|
command, 0xc0, 0, 1, data, 2);
|
||
|
|
||
|
US_DEBUGP("alauda_get_media_status: Media status %02X %02X\n",
|
||
|
data[0], data[1]);
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Clears the "media was changed" bit so that we know when it changes again
|
||
|
* in the future.
|
||
|
*/
|
||
|
static int alauda_ack_media(struct us_data *us)
|
||
|
{
|
||
|
unsigned char command;
|
||
|
|
||
|
if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
|
||
|
command = ALAUDA_ACK_XD_MEDIA_CHANGE;
|
||
|
else
|
||
|
command = ALAUDA_ACK_SM_MEDIA_CHANGE;
|
||
|
|
||
|
return usb_stor_ctrl_transfer(us, us->send_ctrl_pipe,
|
||
|
command, 0x40, 0, 1, NULL, 0);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Retrieves a 4-byte media signature, which indicates manufacturer, capacity,
|
||
|
* and some other details.
|
||
|
*/
|
||
|
static int alauda_get_media_signature(struct us_data *us, unsigned char *data)
|
||
|
{
|
||
|
unsigned char command;
|
||
|
|
||
|
if (MEDIA_PORT(us) == ALAUDA_PORT_XD)
|
||
|
command = ALAUDA_GET_XD_MEDIA_SIG;
|
||
|
else
|
||
|
command = ALAUDA_GET_SM_MEDIA_SIG;
|
||
|
|
||
|
return usb_stor_ctrl_transfer(us, us->recv_ctrl_pipe,
|
||
|
command, 0xc0, 0, 0, data, 4);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Resets the media status (but not the whole device?)
|
||
|
*/
|
||
|
static int alauda_reset_media(struct us_data *us)
|
||
|
{
|
||
|
unsigned char *command = us->iobuf;
|
||
|
|
||
|
memset(command, 0, 9);
|
||
|
command[0] = ALAUDA_BULK_CMD;
|
||
|
command[1] = ALAUDA_BULK_RESET_MEDIA;
|
||
|
command[8] = MEDIA_PORT(us);
|
||
|
|
||
|
return usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
|
||
|
command, 9, NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Examines the media and deduces capacity, etc.
|
||
|
*/
|
||
|
static int alauda_init_media(struct us_data *us)
|
||
|
{
|
||
|
unsigned char *data = us->iobuf;
|
||
|
int ready = 0;
|
||
|
struct alauda_card_info *media_info;
|
||
|
unsigned int num_zones;
|
||
|
|
||
|
while (ready == 0) {
|
||
|
msleep(20);
|
||
|
|
||
|
if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
|
||
|
if (data[0] & 0x10)
|
||
|
ready = 1;
|
||
|
}
|
||
|
|
||
|
US_DEBUGP("alauda_init_media: We are ready for action!\n");
|
||
|
|
||
|
if (alauda_ack_media(us) != USB_STOR_XFER_GOOD)
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
|
||
|
msleep(10);
|
||
|
|
||
|
if (alauda_get_media_status(us, data) != USB_STOR_XFER_GOOD)
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
|
||
|
if (data[0] != 0x14) {
|
||
|
US_DEBUGP("alauda_init_media: Media not ready after ack\n");
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
}
|
||
|
|
||
|
if (alauda_get_media_signature(us, data) != USB_STOR_XFER_GOOD)
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
|
||
|
US_DEBUGP("alauda_init_media: Media signature: %02X %02X %02X %02X\n",
|
||
|
data[0], data[1], data[2], data[3]);
|
||
|
media_info = alauda_card_find_id(data[1]);
|
||
|
if (media_info == NULL) {
|
||
|
printk("alauda_init_media: Unrecognised media signature: "
|
||
|
"%02X %02X %02X %02X\n",
|
||
|
data[0], data[1], data[2], data[3]);
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
}
|
||
|
|
||
|
MEDIA_INFO(us).capacity = 1 << media_info->chipshift;
|
||
|
US_DEBUGP("Found media with capacity: %ldMB\n",
|
||
|
MEDIA_INFO(us).capacity >> 20);
|
||
|
|
||
|
MEDIA_INFO(us).pageshift = media_info->pageshift;
|
||
|
MEDIA_INFO(us).blockshift = media_info->blockshift;
|
||
|
MEDIA_INFO(us).zoneshift = media_info->zoneshift;
|
||
|
|
||
|
MEDIA_INFO(us).pagesize = 1 << media_info->pageshift;
|
||
|
MEDIA_INFO(us).blocksize = 1 << media_info->blockshift;
|
||
|
MEDIA_INFO(us).zonesize = 1 << media_info->zoneshift;
|
||
|
|
||
|
MEDIA_INFO(us).uzonesize = ((1 << media_info->zoneshift) / 128) * 125;
|
||
|
MEDIA_INFO(us).blockmask = MEDIA_INFO(us).blocksize - 1;
|
||
|
|
||
|
num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
|
||
|
+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
|
||
|
MEDIA_INFO(us).pba_to_lba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
|
||
|
MEDIA_INFO(us).lba_to_pba = kcalloc(num_zones, sizeof(u16*), GFP_NOIO);
|
||
|
|
||
|
if (alauda_reset_media(us) != USB_STOR_XFER_GOOD)
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
|
||
|
return USB_STOR_TRANSPORT_GOOD;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Examines the media status and does the right thing when the media has gone,
|
||
|
* appeared, or changed.
|
||
|
*/
|
||
|
static int alauda_check_media(struct us_data *us)
|
||
|
{
|
||
|
struct alauda_info *info = (struct alauda_info *) us->extra;
|
||
|
unsigned char status[2];
|
||
|
int rc;
|
||
|
|
||
|
rc = alauda_get_media_status(us, status);
|
||
|
|
||
|
/* Check for no media or door open */
|
||
|
if ((status[0] & 0x80) || ((status[0] & 0x1F) == 0x10)
|
||
|
|| ((status[1] & 0x01) == 0)) {
|
||
|
US_DEBUGP("alauda_check_media: No media, or door open\n");
|
||
|
alauda_free_maps(&MEDIA_INFO(us));
|
||
|
info->sense_key = 0x02;
|
||
|
info->sense_asc = 0x3A;
|
||
|
info->sense_ascq = 0x00;
|
||
|
return USB_STOR_TRANSPORT_FAILED;
|
||
|
}
|
||
|
|
||
|
/* Check for media change */
|
||
|
if (status[0] & 0x08) {
|
||
|
US_DEBUGP("alauda_check_media: Media change detected\n");
|
||
|
alauda_free_maps(&MEDIA_INFO(us));
|
||
|
alauda_init_media(us);
|
||
|
|
||
|
info->sense_key = UNIT_ATTENTION;
|
||
|
info->sense_asc = 0x28;
|
||
|
info->sense_ascq = 0x00;
|
||
|
return USB_STOR_TRANSPORT_FAILED;
|
||
|
}
|
||
|
|
||
|
return USB_STOR_TRANSPORT_GOOD;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Checks the status from the 2nd status register
|
||
|
* Returns 3 bytes of status data, only the first is known
|
||
|
*/
|
||
|
static int alauda_check_status2(struct us_data *us)
|
||
|
{
|
||
|
int rc;
|
||
|
unsigned char command[] = {
|
||
|
ALAUDA_BULK_CMD, ALAUDA_BULK_GET_STATUS2,
|
||
|
0, 0, 0, 0, 3, 0, MEDIA_PORT(us)
|
||
|
};
|
||
|
unsigned char data[3];
|
||
|
|
||
|
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
|
||
|
command, 9, NULL);
|
||
|
if (rc != USB_STOR_XFER_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
||
|
data, 3, NULL);
|
||
|
if (rc != USB_STOR_XFER_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
US_DEBUGP("alauda_check_status2: %02X %02X %02X\n", data[0], data[1], data[2]);
|
||
|
if (data[0] & ALAUDA_STATUS_ERROR)
|
||
|
return USB_STOR_XFER_ERROR;
|
||
|
|
||
|
return USB_STOR_XFER_GOOD;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Gets the redundancy data for the first page of a PBA
|
||
|
* Returns 16 bytes.
|
||
|
*/
|
||
|
static int alauda_get_redu_data(struct us_data *us, u16 pba, unsigned char *data)
|
||
|
{
|
||
|
int rc;
|
||
|
unsigned char command[] = {
|
||
|
ALAUDA_BULK_CMD, ALAUDA_BULK_GET_REDU_DATA,
|
||
|
PBA_HI(pba), PBA_ZONE(pba), 0, PBA_LO(pba), 0, 0, MEDIA_PORT(us)
|
||
|
};
|
||
|
|
||
|
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
|
||
|
command, 9, NULL);
|
||
|
if (rc != USB_STOR_XFER_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
||
|
data, 16, NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Finds the first unused PBA in a zone
|
||
|
* Returns the absolute PBA of an unused PBA, or 0 if none found.
|
||
|
*/
|
||
|
static u16 alauda_find_unused_pba(struct alauda_media_info *info,
|
||
|
unsigned int zone)
|
||
|
{
|
||
|
u16 *pba_to_lba = info->pba_to_lba[zone];
|
||
|
unsigned int i;
|
||
|
|
||
|
for (i = 0; i < info->zonesize; i++)
|
||
|
if (pba_to_lba[i] == UNDEF)
|
||
|
return (zone << info->zoneshift) + i;
|
||
|
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reads the redundancy data for all PBA's in a zone
|
||
|
* Produces lba <--> pba mappings
|
||
|
*/
|
||
|
static int alauda_read_map(struct us_data *us, unsigned int zone)
|
||
|
{
|
||
|
unsigned char *data = us->iobuf;
|
||
|
int result;
|
||
|
int i, j;
|
||
|
unsigned int zonesize = MEDIA_INFO(us).zonesize;
|
||
|
unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
|
||
|
unsigned int lba_offset, lba_real, blocknum;
|
||
|
unsigned int zone_base_lba = zone * uzonesize;
|
||
|
unsigned int zone_base_pba = zone * zonesize;
|
||
|
u16 *lba_to_pba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
|
||
|
u16 *pba_to_lba = kcalloc(zonesize, sizeof(u16), GFP_NOIO);
|
||
|
if (lba_to_pba == NULL || pba_to_lba == NULL) {
|
||
|
result = USB_STOR_TRANSPORT_ERROR;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
US_DEBUGP("alauda_read_map: Mapping blocks for zone %d\n", zone);
|
||
|
|
||
|
/* 1024 PBA's per zone */
|
||
|
for (i = 0; i < zonesize; i++)
|
||
|
lba_to_pba[i] = pba_to_lba[i] = UNDEF;
|
||
|
|
||
|
for (i = 0; i < zonesize; i++) {
|
||
|
blocknum = zone_base_pba + i;
|
||
|
|
||
|
result = alauda_get_redu_data(us, blocknum, data);
|
||
|
if (result != USB_STOR_XFER_GOOD) {
|
||
|
result = USB_STOR_TRANSPORT_ERROR;
|
||
|
goto error;
|
||
|
}
|
||
|
|
||
|
/* special PBAs have control field 0^16 */
|
||
|
for (j = 0; j < 16; j++)
|
||
|
if (data[j] != 0)
|
||
|
goto nonz;
|
||
|
pba_to_lba[i] = UNUSABLE;
|
||
|
US_DEBUGP("alauda_read_map: PBA %d has no logical mapping\n", blocknum);
|
||
|
continue;
|
||
|
|
||
|
nonz:
|
||
|
/* unwritten PBAs have control field FF^16 */
|
||
|
for (j = 0; j < 16; j++)
|
||
|
if (data[j] != 0xff)
|
||
|
goto nonff;
|
||
|
continue;
|
||
|
|
||
|
nonff:
|
||
|
/* normal PBAs start with six FFs */
|
||
|
if (j < 6) {
|
||
|
US_DEBUGP("alauda_read_map: PBA %d has no logical mapping: "
|
||
|
"reserved area = %02X%02X%02X%02X "
|
||
|
"data status %02X block status %02X\n",
|
||
|
blocknum, data[0], data[1], data[2], data[3],
|
||
|
data[4], data[5]);
|
||
|
pba_to_lba[i] = UNUSABLE;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if ((data[6] >> 4) != 0x01) {
|
||
|
US_DEBUGP("alauda_read_map: PBA %d has invalid address "
|
||
|
"field %02X%02X/%02X%02X\n",
|
||
|
blocknum, data[6], data[7], data[11], data[12]);
|
||
|
pba_to_lba[i] = UNUSABLE;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
/* check even parity */
|
||
|
if (parity[data[6] ^ data[7]]) {
|
||
|
printk("alauda_read_map: Bad parity in LBA for block %d"
|
||
|
" (%02X %02X)\n", i, data[6], data[7]);
|
||
|
pba_to_lba[i] = UNUSABLE;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
lba_offset = short_pack(data[7], data[6]);
|
||
|
lba_offset = (lba_offset & 0x07FF) >> 1;
|
||
|
lba_real = lba_offset + zone_base_lba;
|
||
|
|
||
|
/*
|
||
|
* Every 1024 physical blocks ("zone"), the LBA numbers
|
||
|
* go back to zero, but are within a higher block of LBA's.
|
||
|
* Also, there is a maximum of 1000 LBA's per zone.
|
||
|
* In other words, in PBA 1024-2047 you will find LBA 0-999
|
||
|
* which are really LBA 1000-1999. This allows for 24 bad
|
||
|
* or special physical blocks per zone.
|
||
|
*/
|
||
|
|
||
|
if (lba_offset >= uzonesize) {
|
||
|
printk("alauda_read_map: Bad low LBA %d for block %d\n",
|
||
|
lba_real, blocknum);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
if (lba_to_pba[lba_offset] != UNDEF) {
|
||
|
printk("alauda_read_map: LBA %d seen for PBA %d and %d\n",
|
||
|
lba_real, lba_to_pba[lba_offset], blocknum);
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
pba_to_lba[i] = lba_real;
|
||
|
lba_to_pba[lba_offset] = blocknum;
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
MEDIA_INFO(us).lba_to_pba[zone] = lba_to_pba;
|
||
|
MEDIA_INFO(us).pba_to_lba[zone] = pba_to_lba;
|
||
|
result = 0;
|
||
|
goto out;
|
||
|
|
||
|
error:
|
||
|
kfree(lba_to_pba);
|
||
|
kfree(pba_to_lba);
|
||
|
out:
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Checks to see whether we have already mapped a certain zone
|
||
|
* If we haven't, the map is generated
|
||
|
*/
|
||
|
static void alauda_ensure_map_for_zone(struct us_data *us, unsigned int zone)
|
||
|
{
|
||
|
if (MEDIA_INFO(us).lba_to_pba[zone] == NULL
|
||
|
|| MEDIA_INFO(us).pba_to_lba[zone] == NULL)
|
||
|
alauda_read_map(us, zone);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Erases an entire block
|
||
|
*/
|
||
|
static int alauda_erase_block(struct us_data *us, u16 pba)
|
||
|
{
|
||
|
int rc;
|
||
|
unsigned char command[] = {
|
||
|
ALAUDA_BULK_CMD, ALAUDA_BULK_ERASE_BLOCK, PBA_HI(pba),
|
||
|
PBA_ZONE(pba), 0, PBA_LO(pba), 0x02, 0, MEDIA_PORT(us)
|
||
|
};
|
||
|
unsigned char buf[2];
|
||
|
|
||
|
US_DEBUGP("alauda_erase_block: Erasing PBA %d\n", pba);
|
||
|
|
||
|
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
|
||
|
command, 9, NULL);
|
||
|
if (rc != USB_STOR_XFER_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
rc = usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
||
|
buf, 2, NULL);
|
||
|
if (rc != USB_STOR_XFER_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
US_DEBUGP("alauda_erase_block: Erase result: %02X %02X\n",
|
||
|
buf[0], buf[1]);
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reads data from a certain offset page inside a PBA, including interleaved
|
||
|
* redundancy data. Returns (pagesize+64)*pages bytes in data.
|
||
|
*/
|
||
|
static int alauda_read_block_raw(struct us_data *us, u16 pba,
|
||
|
unsigned int page, unsigned int pages, unsigned char *data)
|
||
|
{
|
||
|
int rc;
|
||
|
unsigned char command[] = {
|
||
|
ALAUDA_BULK_CMD, ALAUDA_BULK_READ_BLOCK, PBA_HI(pba),
|
||
|
PBA_ZONE(pba), 0, PBA_LO(pba) + page, pages, 0, MEDIA_PORT(us)
|
||
|
};
|
||
|
|
||
|
US_DEBUGP("alauda_read_block: pba %d page %d count %d\n",
|
||
|
pba, page, pages);
|
||
|
|
||
|
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
|
||
|
command, 9, NULL);
|
||
|
if (rc != USB_STOR_XFER_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
return usb_stor_bulk_transfer_buf(us, us->recv_bulk_pipe,
|
||
|
data, (MEDIA_INFO(us).pagesize + 64) * pages, NULL);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Reads data from a certain offset page inside a PBA, excluding redundancy
|
||
|
* data. Returns pagesize*pages bytes in data. Note that data must be big enough
|
||
|
* to hold (pagesize+64)*pages bytes of data, but you can ignore those 'extra'
|
||
|
* trailing bytes outside this function.
|
||
|
*/
|
||
|
static int alauda_read_block(struct us_data *us, u16 pba,
|
||
|
unsigned int page, unsigned int pages, unsigned char *data)
|
||
|
{
|
||
|
int i, rc;
|
||
|
unsigned int pagesize = MEDIA_INFO(us).pagesize;
|
||
|
|
||
|
rc = alauda_read_block_raw(us, pba, page, pages, data);
|
||
|
if (rc != USB_STOR_XFER_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
/* Cut out the redundancy data */
|
||
|
for (i = 0; i < pages; i++) {
|
||
|
int dest_offset = i * pagesize;
|
||
|
int src_offset = i * (pagesize + 64);
|
||
|
memmove(data + dest_offset, data + src_offset, pagesize);
|
||
|
}
|
||
|
|
||
|
return rc;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Writes an entire block of data and checks status after write.
|
||
|
* Redundancy data must be already included in data. Data should be
|
||
|
* (pagesize+64)*blocksize bytes in length.
|
||
|
*/
|
||
|
static int alauda_write_block(struct us_data *us, u16 pba, unsigned char *data)
|
||
|
{
|
||
|
int rc;
|
||
|
struct alauda_info *info = (struct alauda_info *) us->extra;
|
||
|
unsigned char command[] = {
|
||
|
ALAUDA_BULK_CMD, ALAUDA_BULK_WRITE_BLOCK, PBA_HI(pba),
|
||
|
PBA_ZONE(pba), 0, PBA_LO(pba), 32, 0, MEDIA_PORT(us)
|
||
|
};
|
||
|
|
||
|
US_DEBUGP("alauda_write_block: pba %d\n", pba);
|
||
|
|
||
|
rc = usb_stor_bulk_transfer_buf(us, us->send_bulk_pipe,
|
||
|
command, 9, NULL);
|
||
|
if (rc != USB_STOR_XFER_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
rc = usb_stor_bulk_transfer_buf(us, info->wr_ep, data,
|
||
|
(MEDIA_INFO(us).pagesize + 64) * MEDIA_INFO(us).blocksize,
|
||
|
NULL);
|
||
|
if (rc != USB_STOR_XFER_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
return alauda_check_status2(us);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write some data to a specific LBA.
|
||
|
*/
|
||
|
static int alauda_write_lba(struct us_data *us, u16 lba,
|
||
|
unsigned int page, unsigned int pages,
|
||
|
unsigned char *ptr, unsigned char *blockbuffer)
|
||
|
{
|
||
|
u16 pba, lbap, new_pba;
|
||
|
unsigned char *bptr, *cptr, *xptr;
|
||
|
unsigned char ecc[3];
|
||
|
int i, result;
|
||
|
unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
|
||
|
unsigned int zonesize = MEDIA_INFO(us).zonesize;
|
||
|
unsigned int pagesize = MEDIA_INFO(us).pagesize;
|
||
|
unsigned int blocksize = MEDIA_INFO(us).blocksize;
|
||
|
unsigned int lba_offset = lba % uzonesize;
|
||
|
unsigned int new_pba_offset;
|
||
|
unsigned int zone = lba / uzonesize;
|
||
|
|
||
|
alauda_ensure_map_for_zone(us, zone);
|
||
|
|
||
|
pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
|
||
|
if (pba == 1) {
|
||
|
/* Maybe it is impossible to write to PBA 1.
|
||
|
Fake success, but don't do anything. */
|
||
|
printk("alauda_write_lba: avoid writing to pba 1\n");
|
||
|
return USB_STOR_TRANSPORT_GOOD;
|
||
|
}
|
||
|
|
||
|
new_pba = alauda_find_unused_pba(&MEDIA_INFO(us), zone);
|
||
|
if (!new_pba) {
|
||
|
printk("alauda_write_lba: Out of unused blocks\n");
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
}
|
||
|
|
||
|
/* read old contents */
|
||
|
if (pba != UNDEF) {
|
||
|
result = alauda_read_block_raw(us, pba, 0,
|
||
|
blocksize, blockbuffer);
|
||
|
if (result != USB_STOR_XFER_GOOD)
|
||
|
return result;
|
||
|
} else {
|
||
|
memset(blockbuffer, 0, blocksize * (pagesize + 64));
|
||
|
}
|
||
|
|
||
|
lbap = (lba_offset << 1) | 0x1000;
|
||
|
if (parity[MSB_of(lbap) ^ LSB_of(lbap)])
|
||
|
lbap ^= 1;
|
||
|
|
||
|
/* check old contents and fill lba */
|
||
|
for (i = 0; i < blocksize; i++) {
|
||
|
bptr = blockbuffer + (i * (pagesize + 64));
|
||
|
cptr = bptr + pagesize;
|
||
|
nand_compute_ecc(bptr, ecc);
|
||
|
if (!nand_compare_ecc(cptr+13, ecc)) {
|
||
|
US_DEBUGP("Warning: bad ecc in page %d- of pba %d\n",
|
||
|
i, pba);
|
||
|
nand_store_ecc(cptr+13, ecc);
|
||
|
}
|
||
|
nand_compute_ecc(bptr + (pagesize / 2), ecc);
|
||
|
if (!nand_compare_ecc(cptr+8, ecc)) {
|
||
|
US_DEBUGP("Warning: bad ecc in page %d+ of pba %d\n",
|
||
|
i, pba);
|
||
|
nand_store_ecc(cptr+8, ecc);
|
||
|
}
|
||
|
cptr[6] = cptr[11] = MSB_of(lbap);
|
||
|
cptr[7] = cptr[12] = LSB_of(lbap);
|
||
|
}
|
||
|
|
||
|
/* copy in new stuff and compute ECC */
|
||
|
xptr = ptr;
|
||
|
for (i = page; i < page+pages; i++) {
|
||
|
bptr = blockbuffer + (i * (pagesize + 64));
|
||
|
cptr = bptr + pagesize;
|
||
|
memcpy(bptr, xptr, pagesize);
|
||
|
xptr += pagesize;
|
||
|
nand_compute_ecc(bptr, ecc);
|
||
|
nand_store_ecc(cptr+13, ecc);
|
||
|
nand_compute_ecc(bptr + (pagesize / 2), ecc);
|
||
|
nand_store_ecc(cptr+8, ecc);
|
||
|
}
|
||
|
|
||
|
result = alauda_write_block(us, new_pba, blockbuffer);
|
||
|
if (result != USB_STOR_XFER_GOOD)
|
||
|
return result;
|
||
|
|
||
|
new_pba_offset = new_pba - (zone * zonesize);
|
||
|
MEDIA_INFO(us).pba_to_lba[zone][new_pba_offset] = lba;
|
||
|
MEDIA_INFO(us).lba_to_pba[zone][lba_offset] = new_pba;
|
||
|
US_DEBUGP("alauda_write_lba: Remapped LBA %d to PBA %d\n",
|
||
|
lba, new_pba);
|
||
|
|
||
|
if (pba != UNDEF) {
|
||
|
unsigned int pba_offset = pba - (zone * zonesize);
|
||
|
result = alauda_erase_block(us, pba);
|
||
|
if (result != USB_STOR_XFER_GOOD)
|
||
|
return result;
|
||
|
MEDIA_INFO(us).pba_to_lba[zone][pba_offset] = UNDEF;
|
||
|
}
|
||
|
|
||
|
return USB_STOR_TRANSPORT_GOOD;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Read data from a specific sector address
|
||
|
*/
|
||
|
static int alauda_read_data(struct us_data *us, unsigned long address,
|
||
|
unsigned int sectors)
|
||
|
{
|
||
|
unsigned char *buffer;
|
||
|
u16 lba, max_lba;
|
||
|
unsigned int page, len, index, offset;
|
||
|
unsigned int blockshift = MEDIA_INFO(us).blockshift;
|
||
|
unsigned int pageshift = MEDIA_INFO(us).pageshift;
|
||
|
unsigned int blocksize = MEDIA_INFO(us).blocksize;
|
||
|
unsigned int pagesize = MEDIA_INFO(us).pagesize;
|
||
|
unsigned int uzonesize = MEDIA_INFO(us).uzonesize;
|
||
|
int result;
|
||
|
|
||
|
/*
|
||
|
* Since we only read in one block at a time, we have to create
|
||
|
* a bounce buffer and move the data a piece at a time between the
|
||
|
* bounce buffer and the actual transfer buffer.
|
||
|
* We make this buffer big enough to hold temporary redundancy data,
|
||
|
* which we use when reading the data blocks.
|
||
|
*/
|
||
|
|
||
|
len = min(sectors, blocksize) * (pagesize + 64);
|
||
|
buffer = kmalloc(len, GFP_NOIO);
|
||
|
if (buffer == NULL) {
|
||
|
printk("alauda_read_data: Out of memory\n");
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Figure out the initial LBA and page */
|
||
|
lba = address >> blockshift;
|
||
|
page = (address & MEDIA_INFO(us).blockmask);
|
||
|
max_lba = MEDIA_INFO(us).capacity >> (blockshift + pageshift);
|
||
|
|
||
|
result = USB_STOR_TRANSPORT_GOOD;
|
||
|
index = offset = 0;
|
||
|
|
||
|
while (sectors > 0) {
|
||
|
unsigned int zone = lba / uzonesize; /* integer division */
|
||
|
unsigned int lba_offset = lba - (zone * uzonesize);
|
||
|
unsigned int pages;
|
||
|
u16 pba;
|
||
|
alauda_ensure_map_for_zone(us, zone);
|
||
|
|
||
|
/* Not overflowing capacity? */
|
||
|
if (lba >= max_lba) {
|
||
|
US_DEBUGP("Error: Requested lba %u exceeds "
|
||
|
"maximum %u\n", lba, max_lba);
|
||
|
result = USB_STOR_TRANSPORT_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Find number of pages we can read in this block */
|
||
|
pages = min(sectors, blocksize - page);
|
||
|
len = pages << pageshift;
|
||
|
|
||
|
/* Find where this lba lives on disk */
|
||
|
pba = MEDIA_INFO(us).lba_to_pba[zone][lba_offset];
|
||
|
|
||
|
if (pba == UNDEF) { /* this lba was never written */
|
||
|
US_DEBUGP("Read %d zero pages (LBA %d) page %d\n",
|
||
|
pages, lba, page);
|
||
|
|
||
|
/* This is not really an error. It just means
|
||
|
that the block has never been written.
|
||
|
Instead of returning USB_STOR_TRANSPORT_ERROR
|
||
|
it is better to return all zero data. */
|
||
|
|
||
|
memset(buffer, 0, len);
|
||
|
} else {
|
||
|
US_DEBUGP("Read %d pages, from PBA %d"
|
||
|
" (LBA %d) page %d\n",
|
||
|
pages, pba, lba, page);
|
||
|
|
||
|
result = alauda_read_block(us, pba, page, pages, buffer);
|
||
|
if (result != USB_STOR_TRANSPORT_GOOD)
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Store the data in the transfer buffer */
|
||
|
usb_stor_access_xfer_buf(buffer, len, us->srb,
|
||
|
&index, &offset, TO_XFER_BUF);
|
||
|
|
||
|
page = 0;
|
||
|
lba++;
|
||
|
sectors -= pages;
|
||
|
}
|
||
|
|
||
|
kfree(buffer);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Write data to a specific sector address
|
||
|
*/
|
||
|
static int alauda_write_data(struct us_data *us, unsigned long address,
|
||
|
unsigned int sectors)
|
||
|
{
|
||
|
unsigned char *buffer, *blockbuffer;
|
||
|
unsigned int page, len, index, offset;
|
||
|
unsigned int blockshift = MEDIA_INFO(us).blockshift;
|
||
|
unsigned int pageshift = MEDIA_INFO(us).pageshift;
|
||
|
unsigned int blocksize = MEDIA_INFO(us).blocksize;
|
||
|
unsigned int pagesize = MEDIA_INFO(us).pagesize;
|
||
|
u16 lba, max_lba;
|
||
|
int result;
|
||
|
|
||
|
/*
|
||
|
* Since we don't write the user data directly to the device,
|
||
|
* we have to create a bounce buffer and move the data a piece
|
||
|
* at a time between the bounce buffer and the actual transfer buffer.
|
||
|
*/
|
||
|
|
||
|
len = min(sectors, blocksize) * pagesize;
|
||
|
buffer = kmalloc(len, GFP_NOIO);
|
||
|
if (buffer == NULL) {
|
||
|
printk("alauda_write_data: Out of memory\n");
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* We also need a temporary block buffer, where we read in the old data,
|
||
|
* overwrite parts with the new data, and manipulate the redundancy data
|
||
|
*/
|
||
|
blockbuffer = kmalloc((pagesize + 64) * blocksize, GFP_NOIO);
|
||
|
if (blockbuffer == NULL) {
|
||
|
printk("alauda_write_data: Out of memory\n");
|
||
|
kfree(buffer);
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
}
|
||
|
|
||
|
/* Figure out the initial LBA and page */
|
||
|
lba = address >> blockshift;
|
||
|
page = (address & MEDIA_INFO(us).blockmask);
|
||
|
max_lba = MEDIA_INFO(us).capacity >> (pageshift + blockshift);
|
||
|
|
||
|
result = USB_STOR_TRANSPORT_GOOD;
|
||
|
index = offset = 0;
|
||
|
|
||
|
while (sectors > 0) {
|
||
|
/* Write as many sectors as possible in this block */
|
||
|
unsigned int pages = min(sectors, blocksize - page);
|
||
|
len = pages << pageshift;
|
||
|
|
||
|
/* Not overflowing capacity? */
|
||
|
if (lba >= max_lba) {
|
||
|
US_DEBUGP("alauda_write_data: Requested lba %u exceeds "
|
||
|
"maximum %u\n", lba, max_lba);
|
||
|
result = USB_STOR_TRANSPORT_ERROR;
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
/* Get the data from the transfer buffer */
|
||
|
usb_stor_access_xfer_buf(buffer, len, us->srb,
|
||
|
&index, &offset, FROM_XFER_BUF);
|
||
|
|
||
|
result = alauda_write_lba(us, lba, page, pages, buffer,
|
||
|
blockbuffer);
|
||
|
if (result != USB_STOR_TRANSPORT_GOOD)
|
||
|
break;
|
||
|
|
||
|
page = 0;
|
||
|
lba++;
|
||
|
sectors -= pages;
|
||
|
}
|
||
|
|
||
|
kfree(buffer);
|
||
|
kfree(blockbuffer);
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Our interface with the rest of the world
|
||
|
*/
|
||
|
|
||
|
static void alauda_info_destructor(void *extra)
|
||
|
{
|
||
|
struct alauda_info *info = (struct alauda_info *) extra;
|
||
|
int port;
|
||
|
|
||
|
if (!info)
|
||
|
return;
|
||
|
|
||
|
for (port = 0; port < 2; port++) {
|
||
|
struct alauda_media_info *media_info = &info->port[port];
|
||
|
|
||
|
alauda_free_maps(media_info);
|
||
|
kfree(media_info->lba_to_pba);
|
||
|
kfree(media_info->pba_to_lba);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Initialize alauda_info struct and find the data-write endpoint
|
||
|
*/
|
||
|
int init_alauda(struct us_data *us)
|
||
|
{
|
||
|
struct alauda_info *info;
|
||
|
struct usb_host_interface *altsetting = us->pusb_intf->cur_altsetting;
|
||
|
nand_init_ecc();
|
||
|
|
||
|
us->extra = kzalloc(sizeof(struct alauda_info), GFP_NOIO);
|
||
|
if (!us->extra) {
|
||
|
US_DEBUGP("init_alauda: Gah! Can't allocate storage for"
|
||
|
"alauda info struct!\n");
|
||
|
return USB_STOR_TRANSPORT_ERROR;
|
||
|
}
|
||
|
info = (struct alauda_info *) us->extra;
|
||
|
us->extra_destructor = alauda_info_destructor;
|
||
|
|
||
|
info->wr_ep = usb_sndbulkpipe(us->pusb_dev,
|
||
|
altsetting->endpoint[0].desc.bEndpointAddress
|
||
|
& USB_ENDPOINT_NUMBER_MASK);
|
||
|
|
||
|
return USB_STOR_TRANSPORT_GOOD;
|
||
|
}
|
||
|
|
||
|
int alauda_transport(struct scsi_cmnd *srb, struct us_data *us)
|
||
|
{
|
||
|
int rc;
|
||
|
struct alauda_info *info = (struct alauda_info *) us->extra;
|
||
|
unsigned char *ptr = us->iobuf;
|
||
|
static unsigned char inquiry_response[36] = {
|
||
|
0x00, 0x80, 0x00, 0x01, 0x1F, 0x00, 0x00, 0x00
|
||
|
};
|
||
|
|
||
|
if (srb->cmnd[0] == INQUIRY) {
|
||
|
US_DEBUGP("alauda_transport: INQUIRY. "
|
||
|
"Returning bogus response.\n");
|
||
|
memcpy(ptr, inquiry_response, sizeof(inquiry_response));
|
||
|
fill_inquiry_response(us, ptr, 36);
|
||
|
return USB_STOR_TRANSPORT_GOOD;
|
||
|
}
|
||
|
|
||
|
if (srb->cmnd[0] == TEST_UNIT_READY) {
|
||
|
US_DEBUGP("alauda_transport: TEST_UNIT_READY.\n");
|
||
|
return alauda_check_media(us);
|
||
|
}
|
||
|
|
||
|
if (srb->cmnd[0] == READ_CAPACITY) {
|
||
|
unsigned int num_zones;
|
||
|
unsigned long capacity;
|
||
|
|
||
|
rc = alauda_check_media(us);
|
||
|
if (rc != USB_STOR_TRANSPORT_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
num_zones = MEDIA_INFO(us).capacity >> (MEDIA_INFO(us).zoneshift
|
||
|
+ MEDIA_INFO(us).blockshift + MEDIA_INFO(us).pageshift);
|
||
|
|
||
|
capacity = num_zones * MEDIA_INFO(us).uzonesize
|
||
|
* MEDIA_INFO(us).blocksize;
|
||
|
|
||
|
/* Report capacity and page size */
|
||
|
((__be32 *) ptr)[0] = cpu_to_be32(capacity - 1);
|
||
|
((__be32 *) ptr)[1] = cpu_to_be32(512);
|
||
|
|
||
|
usb_stor_set_xfer_buf(ptr, 8, srb);
|
||
|
return USB_STOR_TRANSPORT_GOOD;
|
||
|
}
|
||
|
|
||
|
if (srb->cmnd[0] == READ_10) {
|
||
|
unsigned int page, pages;
|
||
|
|
||
|
rc = alauda_check_media(us);
|
||
|
if (rc != USB_STOR_TRANSPORT_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
page = short_pack(srb->cmnd[3], srb->cmnd[2]);
|
||
|
page <<= 16;
|
||
|
page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
|
||
|
pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
|
||
|
|
||
|
US_DEBUGP("alauda_transport: READ_10: page %d pagect %d\n",
|
||
|
page, pages);
|
||
|
|
||
|
return alauda_read_data(us, page, pages);
|
||
|
}
|
||
|
|
||
|
if (srb->cmnd[0] == WRITE_10) {
|
||
|
unsigned int page, pages;
|
||
|
|
||
|
rc = alauda_check_media(us);
|
||
|
if (rc != USB_STOR_TRANSPORT_GOOD)
|
||
|
return rc;
|
||
|
|
||
|
page = short_pack(srb->cmnd[3], srb->cmnd[2]);
|
||
|
page <<= 16;
|
||
|
page |= short_pack(srb->cmnd[5], srb->cmnd[4]);
|
||
|
pages = short_pack(srb->cmnd[8], srb->cmnd[7]);
|
||
|
|
||
|
US_DEBUGP("alauda_transport: WRITE_10: page %d pagect %d\n",
|
||
|
page, pages);
|
||
|
|
||
|
return alauda_write_data(us, page, pages);
|
||
|
}
|
||
|
|
||
|
if (srb->cmnd[0] == REQUEST_SENSE) {
|
||
|
US_DEBUGP("alauda_transport: REQUEST_SENSE.\n");
|
||
|
|
||
|
memset(ptr, 0, 18);
|
||
|
ptr[0] = 0xF0;
|
||
|
ptr[2] = info->sense_key;
|
||
|
ptr[7] = 11;
|
||
|
ptr[12] = info->sense_asc;
|
||
|
ptr[13] = info->sense_ascq;
|
||
|
usb_stor_set_xfer_buf(ptr, 18, srb);
|
||
|
|
||
|
return USB_STOR_TRANSPORT_GOOD;
|
||
|
}
|
||
|
|
||
|
if (srb->cmnd[0] == ALLOW_MEDIUM_REMOVAL) {
|
||
|
/* sure. whatever. not like we can stop the user from popping
|
||
|
the media out of the device (no locking doors, etc) */
|
||
|
return USB_STOR_TRANSPORT_GOOD;
|
||
|
}
|
||
|
|
||
|
US_DEBUGP("alauda_transport: Gah! Unknown command: %d (0x%x)\n",
|
||
|
srb->cmnd[0], srb->cmnd[0]);
|
||
|
info->sense_key = 0x05;
|
||
|
info->sense_asc = 0x20;
|
||
|
info->sense_ascq = 0x00;
|
||
|
return USB_STOR_TRANSPORT_FAILED;
|
||
|
}
|
||
|
|