linux/virt/kvm/arm/arch_timer.c

429 lines
11 KiB
C
Raw Normal View History

/*
* Copyright (C) 2012 ARM Ltd.
* Author: Marc Zyngier <marc.zyngier@arm.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/cpu.h>
#include <linux/of_irq.h>
#include <linux/kvm.h>
#include <linux/kvm_host.h>
#include <linux/interrupt.h>
#include <clocksource/arm_arch_timer.h>
#include <asm/arch_timer.h>
#include <kvm/arm_vgic.h>
#include <kvm/arm_arch_timer.h>
static struct timecounter *timecounter;
static struct workqueue_struct *wqueue;
static unsigned int host_vtimer_irq;
static cycle_t kvm_phys_timer_read(void)
{
return timecounter->cc->read(timecounter->cc);
}
static bool timer_is_armed(struct arch_timer_cpu *timer)
{
return timer->armed;
}
/* timer_arm: as in "arm the timer", not as in ARM the company */
static void timer_arm(struct arch_timer_cpu *timer, u64 ns)
{
timer->armed = true;
hrtimer_start(&timer->timer, ktime_add_ns(ktime_get(), ns),
HRTIMER_MODE_ABS);
}
static void timer_disarm(struct arch_timer_cpu *timer)
{
if (timer_is_armed(timer)) {
hrtimer_cancel(&timer->timer);
cancel_work_sync(&timer->expired);
timer->armed = false;
}
}
static void kvm_timer_inject_irq(struct kvm_vcpu *vcpu)
{
int ret;
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
kvm_vgic_set_phys_irq_active(timer->map, true);
ret = kvm_vgic_inject_mapped_irq(vcpu->kvm, vcpu->vcpu_id,
timer->map,
timer->irq->level);
WARN_ON(ret);
}
static irqreturn_t kvm_arch_timer_handler(int irq, void *dev_id)
{
struct kvm_vcpu *vcpu = *(struct kvm_vcpu **)dev_id;
/*
* We disable the timer in the world switch and let it be
* handled by kvm_timer_sync_hwstate(). Getting a timer
* interrupt at this point is a sure sign of some major
* breakage.
*/
pr_warn("Unexpected interrupt %d on vcpu %p\n", irq, vcpu);
return IRQ_HANDLED;
}
/*
* Work function for handling the backup timer that we schedule when a vcpu is
* no longer running, but had a timer programmed to fire in the future.
*/
static void kvm_timer_inject_irq_work(struct work_struct *work)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(work, struct kvm_vcpu, arch.timer_cpu.expired);
vcpu->arch.timer_cpu.armed = false;
/*
* If the vcpu is blocked we want to wake it up so that it will see
* the timer has expired when entering the guest.
*/
kvm_vcpu_kick(vcpu);
}
static enum hrtimer_restart kvm_timer_expire(struct hrtimer *hrt)
{
struct arch_timer_cpu *timer;
timer = container_of(hrt, struct arch_timer_cpu, timer);
queue_work(wqueue, &timer->expired);
return HRTIMER_NORESTART;
}
static bool kvm_timer_irq_can_fire(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
return !(timer->cntv_ctl & ARCH_TIMER_CTRL_IT_MASK) &&
(timer->cntv_ctl & ARCH_TIMER_CTRL_ENABLE) &&
!kvm_vgic_get_phys_irq_active(timer->map);
}
bool kvm_timer_should_fire(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
cycle_t cval, now;
if (!kvm_timer_irq_can_fire(vcpu))
return false;
cval = timer->cntv_cval;
now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
return cval <= now;
}
/*
* Schedule the background timer before calling kvm_vcpu_block, so that this
* thread is removed from its waitqueue and made runnable when there's a timer
* interrupt to handle.
*/
void kvm_timer_schedule(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
u64 ns;
cycle_t cval, now;
BUG_ON(timer_is_armed(timer));
/*
* No need to schedule a background timer if the guest timer has
* already expired, because kvm_vcpu_block will return before putting
* the thread to sleep.
*/
if (kvm_timer_should_fire(vcpu))
return;
/*
* If the timer is not capable of raising interrupts (disabled or
* masked), then there's no more work for us to do.
*/
if (!kvm_timer_irq_can_fire(vcpu))
return;
/* The timer has not yet expired, schedule a background timer */
cval = timer->cntv_cval;
now = kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
ns = cyclecounter_cyc2ns(timecounter->cc,
cval - now,
timecounter->mask,
&timecounter->frac);
timer_arm(timer, ns);
}
void kvm_timer_unschedule(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
timer_disarm(timer);
}
/**
* kvm_timer_flush_hwstate - prepare to move the virt timer to the cpu
* @vcpu: The vcpu pointer
*
* Check if the virtual timer has expired while we were running in the host,
* and inject an interrupt if that was the case.
*/
void kvm_timer_flush_hwstate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
arm/arm64: KVM: Fix arch timer behavior for disabled interrupts We have an interesting issue when the guest disables the timer interrupt on the VGIC, which happens when turning VCPUs off using PSCI, for example. The problem is that because the guest disables the virtual interrupt at the VGIC level, we never inject interrupts to the guest and therefore never mark the interrupt as active on the physical distributor. The host also never takes the timer interrupt (we only use the timer device to trigger a guest exit and everything else is done in software), so the interrupt does not become active through normal means. The result is that we keep entering the guest with a programmed timer that will always fire as soon as we context switch the hardware timer state and run the guest, preventing forward progress for the VCPU. Since the active state on the physical distributor is really part of the timer logic, it is the job of our virtual arch timer driver to manage this state. The timer->map->active boolean field indicates whether we have signalled this interrupt to the vgic and if that interrupt is still pending or active. As long as that is the case, the hardware doesn't have to generate physical interrupts and therefore we mark the interrupt as active on the physical distributor. We also have to restore the pending state of an interrupt that was queued to an LR but was retired from the LR for some reason, while remaining pending in the LR. Cc: Marc Zyngier <marc.zyngier@arm.com> Reported-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-10-16 12:41:21 +02:00
bool phys_active;
int ret;
if (kvm_timer_should_fire(vcpu))
kvm_timer_inject_irq(vcpu);
arm/arm64: KVM: Fix arch timer behavior for disabled interrupts We have an interesting issue when the guest disables the timer interrupt on the VGIC, which happens when turning VCPUs off using PSCI, for example. The problem is that because the guest disables the virtual interrupt at the VGIC level, we never inject interrupts to the guest and therefore never mark the interrupt as active on the physical distributor. The host also never takes the timer interrupt (we only use the timer device to trigger a guest exit and everything else is done in software), so the interrupt does not become active through normal means. The result is that we keep entering the guest with a programmed timer that will always fire as soon as we context switch the hardware timer state and run the guest, preventing forward progress for the VCPU. Since the active state on the physical distributor is really part of the timer logic, it is the job of our virtual arch timer driver to manage this state. The timer->map->active boolean field indicates whether we have signalled this interrupt to the vgic and if that interrupt is still pending or active. As long as that is the case, the hardware doesn't have to generate physical interrupts and therefore we mark the interrupt as active on the physical distributor. We also have to restore the pending state of an interrupt that was queued to an LR but was retired from the LR for some reason, while remaining pending in the LR. Cc: Marc Zyngier <marc.zyngier@arm.com> Reported-by: Lorenzo Pieralisi <lorenzo.pieralisi@arm.com> Signed-off-by: Christoffer Dall <christoffer.dall@linaro.org>
2015-10-16 12:41:21 +02:00
/*
* We keep track of whether the edge-triggered interrupt has been
* signalled to the vgic/guest, and if so, we mask the interrupt and
* the physical distributor to prevent the timer from raising a
* physical interrupt whenever we run a guest, preventing forward
* VCPU progress.
*/
if (kvm_vgic_get_phys_irq_active(timer->map))
phys_active = true;
else
phys_active = false;
ret = irq_set_irqchip_state(timer->map->irq,
IRQCHIP_STATE_ACTIVE,
phys_active);
WARN_ON(ret);
}
/**
* kvm_timer_sync_hwstate - sync timer state from cpu
* @vcpu: The vcpu pointer
*
* Check if the virtual timer has expired while we were running in the guest,
* and inject an interrupt if that was the case.
*/
void kvm_timer_sync_hwstate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
BUG_ON(timer_is_armed(timer));
if (kvm_timer_should_fire(vcpu))
kvm_timer_inject_irq(vcpu);
}
int kvm_timer_vcpu_reset(struct kvm_vcpu *vcpu,
const struct kvm_irq_level *irq)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
struct irq_phys_map *map;
/*
* The vcpu timer irq number cannot be determined in
* kvm_timer_vcpu_init() because it is called much before
* kvm_vcpu_set_target(). To handle this, we determine
* vcpu timer irq number when the vcpu is reset.
*/
timer->irq = irq;
/*
* The bits in CNTV_CTL are architecturally reset to UNKNOWN for ARMv8
* and to 0 for ARMv7. We provide an implementation that always
* resets the timer to be disabled and unmasked and is compliant with
* the ARMv7 architecture.
*/
timer->cntv_ctl = 0;
/*
* Tell the VGIC that the virtual interrupt is tied to a
* physical interrupt. We do that once per VCPU.
*/
map = kvm_vgic_map_phys_irq(vcpu, irq->irq, host_vtimer_irq);
if (WARN_ON(IS_ERR(map)))
return PTR_ERR(map);
timer->map = map;
return 0;
}
void kvm_timer_vcpu_init(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
INIT_WORK(&timer->expired, kvm_timer_inject_irq_work);
hrtimer_init(&timer->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
timer->timer.function = kvm_timer_expire;
}
static void kvm_timer_init_interrupt(void *info)
{
enable_percpu_irq(host_vtimer_irq, 0);
}
int kvm_arm_timer_set_reg(struct kvm_vcpu *vcpu, u64 regid, u64 value)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
switch (regid) {
case KVM_REG_ARM_TIMER_CTL:
timer->cntv_ctl = value;
break;
case KVM_REG_ARM_TIMER_CNT:
vcpu->kvm->arch.timer.cntvoff = kvm_phys_timer_read() - value;
break;
case KVM_REG_ARM_TIMER_CVAL:
timer->cntv_cval = value;
break;
default:
return -1;
}
return 0;
}
u64 kvm_arm_timer_get_reg(struct kvm_vcpu *vcpu, u64 regid)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
switch (regid) {
case KVM_REG_ARM_TIMER_CTL:
return timer->cntv_ctl;
case KVM_REG_ARM_TIMER_CNT:
return kvm_phys_timer_read() - vcpu->kvm->arch.timer.cntvoff;
case KVM_REG_ARM_TIMER_CVAL:
return timer->cntv_cval;
}
return (u64)-1;
}
static int kvm_timer_cpu_notify(struct notifier_block *self,
unsigned long action, void *cpu)
{
switch (action) {
case CPU_STARTING:
case CPU_STARTING_FROZEN:
kvm_timer_init_interrupt(NULL);
break;
case CPU_DYING:
case CPU_DYING_FROZEN:
disable_percpu_irq(host_vtimer_irq);
break;
}
return NOTIFY_OK;
}
static struct notifier_block kvm_timer_cpu_nb = {
.notifier_call = kvm_timer_cpu_notify,
};
static const struct of_device_id arch_timer_of_match[] = {
{ .compatible = "arm,armv7-timer", },
{ .compatible = "arm,armv8-timer", },
{},
};
int kvm_timer_hyp_init(void)
{
struct device_node *np;
unsigned int ppi;
int err;
timecounter = arch_timer_get_timecounter();
if (!timecounter)
return -ENODEV;
np = of_find_matching_node(NULL, arch_timer_of_match);
if (!np) {
kvm_err("kvm_arch_timer: can't find DT node\n");
return -ENODEV;
}
ppi = irq_of_parse_and_map(np, 2);
if (!ppi) {
kvm_err("kvm_arch_timer: no virtual timer interrupt\n");
err = -EINVAL;
goto out;
}
err = request_percpu_irq(ppi, kvm_arch_timer_handler,
"kvm guest timer", kvm_get_running_vcpus());
if (err) {
kvm_err("kvm_arch_timer: can't request interrupt %d (%d)\n",
ppi, err);
goto out;
}
host_vtimer_irq = ppi;
err = __register_cpu_notifier(&kvm_timer_cpu_nb);
if (err) {
kvm_err("Cannot register timer CPU notifier\n");
goto out_free;
}
wqueue = create_singlethread_workqueue("kvm_arch_timer");
if (!wqueue) {
err = -ENOMEM;
goto out_free;
}
kvm_info("%s IRQ%d\n", np->name, ppi);
on_each_cpu(kvm_timer_init_interrupt, NULL, 1);
goto out;
out_free:
free_percpu_irq(ppi, kvm_get_running_vcpus());
out:
of_node_put(np);
return err;
}
void kvm_timer_vcpu_terminate(struct kvm_vcpu *vcpu)
{
struct arch_timer_cpu *timer = &vcpu->arch.timer_cpu;
timer_disarm(timer);
if (timer->map)
kvm_vgic_unmap_phys_irq(vcpu, timer->map);
}
void kvm_timer_enable(struct kvm *kvm)
{
if (kvm->arch.timer.enabled)
return;
/*
* There is a potential race here between VCPUs starting for the first
* time, which may be enabling the timer multiple times. That doesn't
* hurt though, because we're just setting a variable to the same
* variable that it already was. The important thing is that all
* VCPUs have the enabled variable set, before entering the guest, if
* the arch timers are enabled.
*/
if (timecounter && wqueue)
kvm->arch.timer.enabled = 1;
}
void kvm_timer_init(struct kvm *kvm)
{
kvm->arch.timer.cntvoff = kvm_phys_timer_read();
}