linux/include/sound/pcm.h

1591 lines
54 KiB
C
Raw Normal View History

/* SPDX-License-Identifier: GPL-2.0-or-later */
#ifndef __SOUND_PCM_H
#define __SOUND_PCM_H
/*
* Digital Audio (PCM) abstract layer
* Copyright (c) by Jaroslav Kysela <perex@perex.cz>
* Abramo Bagnara <abramo@alsa-project.org>
*/
#include <sound/asound.h>
#include <sound/memalloc.h>
#include <sound/minors.h>
#include <linux/poll.h>
#include <linux/mm.h>
#include <linux/bitops.h>
#include <linux/pm_qos.h>
ALSA: pcm: More fine-grained PCM link locking We have currently two global locks, a rwlock and a rwsem, that are used for managing linking the PCM streams. Due to these global locks, once when a linked stream is used, the lock granularity suffers a lot. This patch attempts to eliminate the former global lock for atomic ops. The latter rwsem needs remaining because of the loosy way of the loop calls in snd_pcm_action_nonatomic(), as well as for avoiding the deadlock at linking. However, these are used far rarely, actually only by two actions (prepare and reset), where both are no timing critical ones. So this can be still seen as a good improvement. The basic strategy to eliminate the rwlock is to assure group->lock at adding or removing a stream to / from the group. Since we already takes the group lock whenever taking the all substream locks under the group, this shouldn't be a big problem. The reference to group pointer in snd_pcm_substream object is protected by the stream lock itself. However, there are still pitfalls: a race window at re-locking and the lifecycle of group object. The former is a small race window for dereferencing the substream group object opened while snd_pcm_action() performs re-locking to avoid ABBA deadlocks. This includes the unlink of group during that window, too. And the latter is the kfree performed after all streams are removed from the group while it's still dereferenced. For addressing these corner cases, two new tricks are introduced: - After re-locking, the group assigned to the stream is checked again; if the group is changed, we retry the whole procedure. - Introduce a refcount to snd_pcm_group object, so that it's freed only when it's empty and really no one refers to it. (Some readers might wonder why not RCU for the latter. RCU in this case would cost more than refcounting, unfortunately. We take the group lock sooner or later, hence the performance improvement by RCU would be negligible. Meanwhile, because we need to deal with schedulable context depending on the pcm->nonatomic flag, it'll become dynamic RCU/SRCU switch, and the grace period may become too long.) Along with these changes, there are a significant amount of code refactoring. The complex group re-lock & ref code is factored out to snd_pcm_stream_group_ref() function, for example. Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-01-13 08:50:33 +00:00
#include <linux/refcount.h>
#include <linux/uio.h>
#define snd_pcm_substream_chip(substream) ((substream)->private_data)
#define snd_pcm_chip(pcm) ((pcm)->private_data)
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
#include <sound/pcm_oss.h>
#endif
/*
* Hardware (lowlevel) section
*/
struct snd_pcm_hardware {
unsigned int info; /* SNDRV_PCM_INFO_* */
u64 formats; /* SNDRV_PCM_FMTBIT_* */
u32 subformats; /* for S32_LE, SNDRV_PCM_SUBFMTBIT_* */
unsigned int rates; /* SNDRV_PCM_RATE_* */
unsigned int rate_min; /* min rate */
unsigned int rate_max; /* max rate */
unsigned int channels_min; /* min channels */
unsigned int channels_max; /* max channels */
size_t buffer_bytes_max; /* max buffer size */
size_t period_bytes_min; /* min period size */
size_t period_bytes_max; /* max period size */
unsigned int periods_min; /* min # of periods */
unsigned int periods_max; /* max # of periods */
size_t fifo_size; /* fifo size in bytes */
};
ALSA: Avoid using timespec for struct snd_pcm_status The struct snd_pcm_status will use 'timespec' type variables to record timestamp, which is not year 2038 safe on 32bits system. Userspace will use SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT as commands to issue ioctl() to fill the 'snd_pcm_status' structure in userspace. The command number is always defined through _IOR/_IOW/IORW, so when userspace changes the definition of 'struct timespec' to use 64-bit types, the command number also changes. Thus in the kernel, we now need to define two versions of each such ioctl and corresponding ioctl commands to handle 32bit time_t and 64bit time_t in native mode: struct snd_pcm_status32 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; struct snd_pcm_status64 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; Moreover in compat file, we renamed or introduced new structures to handle 32bit/64bit time_t in compatible mode. The 'struct snd_pcm_status32' and snd_pcm_status_user32() are used to handle 32bit time_t in compat mode. 'struct compat_snd_pcm_status64' and snd_pcm_status_user_compat64() are used to handle 64bit time_t. The implicit padding before timespec is made explicit to avoid incompatible structure layout between 32-bit and 64-bit x86 due to the different alignment requirements, and the snd_pcm_status structure is now hidden from the kernel to avoid relying on the timespec definitio definitionn Finally we can replace SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT with new commands and introduce new functions to fill new 'struct snd_pcm_status64' instead of using unsafe 'struct snd_pcm_status'. Then in future, the new commands can be matched when userspace changes 'timespec' to 64bit type to make a size change of 'struct snd_pcm_status'. When glibc changes time_t to 64-bit, any recompiled program will issue ioctl commands that the kernel does not understand without this patch. Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-04-24 12:06:11 +00:00
struct snd_pcm_status64;
struct snd_pcm_substream;
struct snd_pcm_audio_tstamp_config; /* definitions further down */
struct snd_pcm_audio_tstamp_report;
struct snd_pcm_ops {
int (*open)(struct snd_pcm_substream *substream);
int (*close)(struct snd_pcm_substream *substream);
int (*ioctl)(struct snd_pcm_substream * substream,
unsigned int cmd, void *arg);
int (*hw_params)(struct snd_pcm_substream *substream,
struct snd_pcm_hw_params *params);
int (*hw_free)(struct snd_pcm_substream *substream);
int (*prepare)(struct snd_pcm_substream *substream);
int (*trigger)(struct snd_pcm_substream *substream, int cmd);
int (*sync_stop)(struct snd_pcm_substream *substream);
snd_pcm_uframes_t (*pointer)(struct snd_pcm_substream *substream);
int (*get_time_info)(struct snd_pcm_substream *substream,
struct timespec64 *system_ts, struct timespec64 *audio_ts,
struct snd_pcm_audio_tstamp_config *audio_tstamp_config,
struct snd_pcm_audio_tstamp_report *audio_tstamp_report);
int (*fill_silence)(struct snd_pcm_substream *substream, int channel,
unsigned long pos, unsigned long bytes);
int (*copy)(struct snd_pcm_substream *substream, int channel,
unsigned long pos, struct iov_iter *iter, unsigned long bytes);
struct page *(*page)(struct snd_pcm_substream *substream,
unsigned long offset);
int (*mmap)(struct snd_pcm_substream *substream, struct vm_area_struct *vma);
int (*ack)(struct snd_pcm_substream *substream);
};
/*
*
*/
#if defined(CONFIG_SND_DYNAMIC_MINORS)
#define SNDRV_PCM_DEVICES (SNDRV_OS_MINORS-2)
#else
#define SNDRV_PCM_DEVICES 8
#endif
#define SNDRV_PCM_IOCTL1_RESET 0
/* 1 is absent slot. */
#define SNDRV_PCM_IOCTL1_CHANNEL_INFO 2
/* 3 is absent slot. */
#define SNDRV_PCM_IOCTL1_FIFO_SIZE 4
#define SNDRV_PCM_IOCTL1_SYNC_ID 5
#define SNDRV_PCM_TRIGGER_STOP 0
#define SNDRV_PCM_TRIGGER_START 1
#define SNDRV_PCM_TRIGGER_PAUSE_PUSH 2
#define SNDRV_PCM_TRIGGER_PAUSE_RELEASE 3
#define SNDRV_PCM_TRIGGER_SUSPEND 4
#define SNDRV_PCM_TRIGGER_RESUME 5
#define SNDRV_PCM_TRIGGER_DRAIN 6
#define SNDRV_PCM_POS_XRUN ((snd_pcm_uframes_t)-1)
/* If you change this don't forget to change rates[] table in pcm_native.c */
#define SNDRV_PCM_RATE_5512 (1U<<0) /* 5512Hz */
#define SNDRV_PCM_RATE_8000 (1U<<1) /* 8000Hz */
#define SNDRV_PCM_RATE_11025 (1U<<2) /* 11025Hz */
#define SNDRV_PCM_RATE_16000 (1U<<3) /* 16000Hz */
#define SNDRV_PCM_RATE_22050 (1U<<4) /* 22050Hz */
#define SNDRV_PCM_RATE_32000 (1U<<5) /* 32000Hz */
#define SNDRV_PCM_RATE_44100 (1U<<6) /* 44100Hz */
#define SNDRV_PCM_RATE_48000 (1U<<7) /* 48000Hz */
#define SNDRV_PCM_RATE_64000 (1U<<8) /* 64000Hz */
#define SNDRV_PCM_RATE_88200 (1U<<9) /* 88200Hz */
#define SNDRV_PCM_RATE_96000 (1U<<10) /* 96000Hz */
#define SNDRV_PCM_RATE_176400 (1U<<11) /* 176400Hz */
#define SNDRV_PCM_RATE_192000 (1U<<12) /* 192000Hz */
#define SNDRV_PCM_RATE_352800 (1U<<13) /* 352800Hz */
#define SNDRV_PCM_RATE_384000 (1U<<14) /* 384000Hz */
#define SNDRV_PCM_RATE_705600 (1U<<15) /* 705600Hz */
#define SNDRV_PCM_RATE_768000 (1U<<16) /* 768000Hz */
/* extended rates since 6.12 */
#define SNDRV_PCM_RATE_12000 (1U<<17) /* 12000Hz */
#define SNDRV_PCM_RATE_24000 (1U<<18) /* 24000Hz */
#define SNDRV_PCM_RATE_128000 (1U<<19) /* 128000Hz */
#define SNDRV_PCM_RATE_CONTINUOUS (1U<<30) /* continuous range */
#define SNDRV_PCM_RATE_KNOT (1U<<31) /* supports more non-continuous rates */
#define SNDRV_PCM_RATE_8000_44100 (SNDRV_PCM_RATE_8000|SNDRV_PCM_RATE_11025|\
SNDRV_PCM_RATE_16000|SNDRV_PCM_RATE_22050|\
SNDRV_PCM_RATE_32000|SNDRV_PCM_RATE_44100)
#define SNDRV_PCM_RATE_8000_48000 (SNDRV_PCM_RATE_8000_44100|SNDRV_PCM_RATE_48000)
#define SNDRV_PCM_RATE_8000_96000 (SNDRV_PCM_RATE_8000_48000|SNDRV_PCM_RATE_64000|\
SNDRV_PCM_RATE_88200|SNDRV_PCM_RATE_96000)
#define SNDRV_PCM_RATE_8000_192000 (SNDRV_PCM_RATE_8000_96000|SNDRV_PCM_RATE_176400|\
SNDRV_PCM_RATE_192000)
#define SNDRV_PCM_RATE_8000_384000 (SNDRV_PCM_RATE_8000_192000|\
SNDRV_PCM_RATE_352800|\
SNDRV_PCM_RATE_384000)
#define SNDRV_PCM_RATE_8000_768000 (SNDRV_PCM_RATE_8000_384000|\
SNDRV_PCM_RATE_705600|\
SNDRV_PCM_RATE_768000)
#define _SNDRV_PCM_FMTBIT(fmt) (1ULL << (__force int)SNDRV_PCM_FORMAT_##fmt)
#define SNDRV_PCM_FMTBIT_S8 _SNDRV_PCM_FMTBIT(S8)
#define SNDRV_PCM_FMTBIT_U8 _SNDRV_PCM_FMTBIT(U8)
#define SNDRV_PCM_FMTBIT_S16_LE _SNDRV_PCM_FMTBIT(S16_LE)
#define SNDRV_PCM_FMTBIT_S16_BE _SNDRV_PCM_FMTBIT(S16_BE)
#define SNDRV_PCM_FMTBIT_U16_LE _SNDRV_PCM_FMTBIT(U16_LE)
#define SNDRV_PCM_FMTBIT_U16_BE _SNDRV_PCM_FMTBIT(U16_BE)
#define SNDRV_PCM_FMTBIT_S24_LE _SNDRV_PCM_FMTBIT(S24_LE)
#define SNDRV_PCM_FMTBIT_S24_BE _SNDRV_PCM_FMTBIT(S24_BE)
#define SNDRV_PCM_FMTBIT_U24_LE _SNDRV_PCM_FMTBIT(U24_LE)
#define SNDRV_PCM_FMTBIT_U24_BE _SNDRV_PCM_FMTBIT(U24_BE)
ALSA: pcm: comment about relation between msbits hw parameter and [S|U]32 formats Regarding to handling [U|S][32|24] PCM formats, many userspace application developers and driver developers have confusion, since they require them to understand justification or padding. It easily loses consistency and soundness to operate with many type of devices. In this commit, I attempt to solve the situation by adding comment about relation between [S|U]32 formats and 'msbits' hardware parameter. The formats are used for 'left-justified' sample format, and the available bit count in most significant bit is delivered to userspace in msbits hardware parameter (struct snd_pcm_hw_params.msbits), which is decided by msbits constraint added by pcm drivers (snd_pcm_hw_constraint_msbits()). In driver side, the msbits constraint includes two elements; the physical width of format and the available width of the format in most significant bit. The former is used to match SAMPLE_BITS of format. (For my convenience, I ignore wildcard in the usage of the constraint.) As a result of interaction between ALSA pcm core and ALSA pcm application, when the format in which SAMPLE_BITS equals to physical width of the msbits constaint, the msbits parameter is set by referring to the available width of the constraint. When the msbits parameter is not changed in the above process, ALSA pcm core set it alternatively with SAMPLE_BIT of chosen format. In userspace application side, the msbits is only available after calling ioctl(2) with SNDRV_PCM_IOCTL_HW_PARAMS request. Even if the hardware parameter structure includes somewhat value of SAMPLE_BITS interval parameter as width of format, all of the width is not always available since msbits can be less than the width. I note that [S|U]24 formats are used for 'right-justified' 24 bit sample formats within 32 bit frame. The first byte in most significant bit should be invalidated. Although the msbits exposed to userspace should be zero as invalid value, actually it is 32 from physical width of format. [ corrected typos -- tiwai ] Signed-off-by: Takashi Sakamoto <o-takashi@sakamocchi.jp> Link: https://lore.kernel.org/r/20210529033353.21641-1-o-takashi@sakamocchi.jp Signed-off-by: Takashi Iwai <tiwai@suse.de>
2021-05-29 03:33:53 +00:00
// For S32/U32 formats, 'msbits' hardware parameter is often used to deliver information about the
// available bit count in most significant bit. It's for the case of so-called 'left-justified' or
// `right-padding` sample which has less width than 32 bit.
#define SNDRV_PCM_FMTBIT_S32_LE _SNDRV_PCM_FMTBIT(S32_LE)
#define SNDRV_PCM_FMTBIT_S32_BE _SNDRV_PCM_FMTBIT(S32_BE)
#define SNDRV_PCM_FMTBIT_U32_LE _SNDRV_PCM_FMTBIT(U32_LE)
#define SNDRV_PCM_FMTBIT_U32_BE _SNDRV_PCM_FMTBIT(U32_BE)
#define SNDRV_PCM_FMTBIT_FLOAT_LE _SNDRV_PCM_FMTBIT(FLOAT_LE)
#define SNDRV_PCM_FMTBIT_FLOAT_BE _SNDRV_PCM_FMTBIT(FLOAT_BE)
#define SNDRV_PCM_FMTBIT_FLOAT64_LE _SNDRV_PCM_FMTBIT(FLOAT64_LE)
#define SNDRV_PCM_FMTBIT_FLOAT64_BE _SNDRV_PCM_FMTBIT(FLOAT64_BE)
#define SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE _SNDRV_PCM_FMTBIT(IEC958_SUBFRAME_LE)
#define SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE _SNDRV_PCM_FMTBIT(IEC958_SUBFRAME_BE)
#define SNDRV_PCM_FMTBIT_MU_LAW _SNDRV_PCM_FMTBIT(MU_LAW)
#define SNDRV_PCM_FMTBIT_A_LAW _SNDRV_PCM_FMTBIT(A_LAW)
#define SNDRV_PCM_FMTBIT_IMA_ADPCM _SNDRV_PCM_FMTBIT(IMA_ADPCM)
#define SNDRV_PCM_FMTBIT_MPEG _SNDRV_PCM_FMTBIT(MPEG)
#define SNDRV_PCM_FMTBIT_GSM _SNDRV_PCM_FMTBIT(GSM)
#define SNDRV_PCM_FMTBIT_S20_LE _SNDRV_PCM_FMTBIT(S20_LE)
#define SNDRV_PCM_FMTBIT_U20_LE _SNDRV_PCM_FMTBIT(U20_LE)
#define SNDRV_PCM_FMTBIT_S20_BE _SNDRV_PCM_FMTBIT(S20_BE)
#define SNDRV_PCM_FMTBIT_U20_BE _SNDRV_PCM_FMTBIT(U20_BE)
#define SNDRV_PCM_FMTBIT_SPECIAL _SNDRV_PCM_FMTBIT(SPECIAL)
#define SNDRV_PCM_FMTBIT_S24_3LE _SNDRV_PCM_FMTBIT(S24_3LE)
#define SNDRV_PCM_FMTBIT_U24_3LE _SNDRV_PCM_FMTBIT(U24_3LE)
#define SNDRV_PCM_FMTBIT_S24_3BE _SNDRV_PCM_FMTBIT(S24_3BE)
#define SNDRV_PCM_FMTBIT_U24_3BE _SNDRV_PCM_FMTBIT(U24_3BE)
#define SNDRV_PCM_FMTBIT_S20_3LE _SNDRV_PCM_FMTBIT(S20_3LE)
#define SNDRV_PCM_FMTBIT_U20_3LE _SNDRV_PCM_FMTBIT(U20_3LE)
#define SNDRV_PCM_FMTBIT_S20_3BE _SNDRV_PCM_FMTBIT(S20_3BE)
#define SNDRV_PCM_FMTBIT_U20_3BE _SNDRV_PCM_FMTBIT(U20_3BE)
#define SNDRV_PCM_FMTBIT_S18_3LE _SNDRV_PCM_FMTBIT(S18_3LE)
#define SNDRV_PCM_FMTBIT_U18_3LE _SNDRV_PCM_FMTBIT(U18_3LE)
#define SNDRV_PCM_FMTBIT_S18_3BE _SNDRV_PCM_FMTBIT(S18_3BE)
#define SNDRV_PCM_FMTBIT_U18_3BE _SNDRV_PCM_FMTBIT(U18_3BE)
#define SNDRV_PCM_FMTBIT_G723_24 _SNDRV_PCM_FMTBIT(G723_24)
#define SNDRV_PCM_FMTBIT_G723_24_1B _SNDRV_PCM_FMTBIT(G723_24_1B)
#define SNDRV_PCM_FMTBIT_G723_40 _SNDRV_PCM_FMTBIT(G723_40)
#define SNDRV_PCM_FMTBIT_G723_40_1B _SNDRV_PCM_FMTBIT(G723_40_1B)
#define SNDRV_PCM_FMTBIT_DSD_U8 _SNDRV_PCM_FMTBIT(DSD_U8)
#define SNDRV_PCM_FMTBIT_DSD_U16_LE _SNDRV_PCM_FMTBIT(DSD_U16_LE)
#define SNDRV_PCM_FMTBIT_DSD_U32_LE _SNDRV_PCM_FMTBIT(DSD_U32_LE)
#define SNDRV_PCM_FMTBIT_DSD_U16_BE _SNDRV_PCM_FMTBIT(DSD_U16_BE)
#define SNDRV_PCM_FMTBIT_DSD_U32_BE _SNDRV_PCM_FMTBIT(DSD_U32_BE)
#ifdef SNDRV_LITTLE_ENDIAN
#define SNDRV_PCM_FMTBIT_S16 SNDRV_PCM_FMTBIT_S16_LE
#define SNDRV_PCM_FMTBIT_U16 SNDRV_PCM_FMTBIT_U16_LE
#define SNDRV_PCM_FMTBIT_S24 SNDRV_PCM_FMTBIT_S24_LE
#define SNDRV_PCM_FMTBIT_U24 SNDRV_PCM_FMTBIT_U24_LE
#define SNDRV_PCM_FMTBIT_S32 SNDRV_PCM_FMTBIT_S32_LE
#define SNDRV_PCM_FMTBIT_U32 SNDRV_PCM_FMTBIT_U32_LE
#define SNDRV_PCM_FMTBIT_FLOAT SNDRV_PCM_FMTBIT_FLOAT_LE
#define SNDRV_PCM_FMTBIT_FLOAT64 SNDRV_PCM_FMTBIT_FLOAT64_LE
#define SNDRV_PCM_FMTBIT_IEC958_SUBFRAME SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
#define SNDRV_PCM_FMTBIT_S20 SNDRV_PCM_FMTBIT_S20_LE
#define SNDRV_PCM_FMTBIT_U20 SNDRV_PCM_FMTBIT_U20_LE
#endif
#ifdef SNDRV_BIG_ENDIAN
#define SNDRV_PCM_FMTBIT_S16 SNDRV_PCM_FMTBIT_S16_BE
#define SNDRV_PCM_FMTBIT_U16 SNDRV_PCM_FMTBIT_U16_BE
#define SNDRV_PCM_FMTBIT_S24 SNDRV_PCM_FMTBIT_S24_BE
#define SNDRV_PCM_FMTBIT_U24 SNDRV_PCM_FMTBIT_U24_BE
#define SNDRV_PCM_FMTBIT_S32 SNDRV_PCM_FMTBIT_S32_BE
#define SNDRV_PCM_FMTBIT_U32 SNDRV_PCM_FMTBIT_U32_BE
#define SNDRV_PCM_FMTBIT_FLOAT SNDRV_PCM_FMTBIT_FLOAT_BE
#define SNDRV_PCM_FMTBIT_FLOAT64 SNDRV_PCM_FMTBIT_FLOAT64_BE
#define SNDRV_PCM_FMTBIT_IEC958_SUBFRAME SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE
#define SNDRV_PCM_FMTBIT_S20 SNDRV_PCM_FMTBIT_S20_BE
#define SNDRV_PCM_FMTBIT_U20 SNDRV_PCM_FMTBIT_U20_BE
#endif
#define _SNDRV_PCM_SUBFMTBIT(fmt) BIT((__force int)SNDRV_PCM_SUBFORMAT_##fmt)
#define SNDRV_PCM_SUBFMTBIT_STD _SNDRV_PCM_SUBFMTBIT(STD)
#define SNDRV_PCM_SUBFMTBIT_MSBITS_MAX _SNDRV_PCM_SUBFMTBIT(MSBITS_MAX)
#define SNDRV_PCM_SUBFMTBIT_MSBITS_20 _SNDRV_PCM_SUBFMTBIT(MSBITS_20)
#define SNDRV_PCM_SUBFMTBIT_MSBITS_24 _SNDRV_PCM_SUBFMTBIT(MSBITS_24)
struct snd_pcm_file {
struct snd_pcm_substream *substream;
int no_compat_mmap;
unsigned int user_pversion; /* supported protocol version */
};
struct snd_pcm_hw_rule;
typedef int (*snd_pcm_hw_rule_func_t)(struct snd_pcm_hw_params *params,
struct snd_pcm_hw_rule *rule);
struct snd_pcm_hw_rule {
unsigned int cond;
int var;
int deps[5];
snd_pcm_hw_rule_func_t func;
void *private;
};
struct snd_pcm_hw_constraints {
struct snd_mask masks[SNDRV_PCM_HW_PARAM_LAST_MASK -
SNDRV_PCM_HW_PARAM_FIRST_MASK + 1];
struct snd_interval intervals[SNDRV_PCM_HW_PARAM_LAST_INTERVAL -
SNDRV_PCM_HW_PARAM_FIRST_INTERVAL + 1];
unsigned int rules_num;
unsigned int rules_all;
struct snd_pcm_hw_rule *rules;
};
static inline struct snd_mask *constrs_mask(struct snd_pcm_hw_constraints *constrs,
snd_pcm_hw_param_t var)
{
return &constrs->masks[var - SNDRV_PCM_HW_PARAM_FIRST_MASK];
}
static inline struct snd_interval *constrs_interval(struct snd_pcm_hw_constraints *constrs,
snd_pcm_hw_param_t var)
{
return &constrs->intervals[var - SNDRV_PCM_HW_PARAM_FIRST_INTERVAL];
}
struct snd_ratnum {
unsigned int num;
unsigned int den_min, den_max, den_step;
};
struct snd_ratden {
unsigned int num_min, num_max, num_step;
unsigned int den;
};
struct snd_pcm_hw_constraint_ratnums {
int nrats;
const struct snd_ratnum *rats;
};
struct snd_pcm_hw_constraint_ratdens {
int nrats;
const struct snd_ratden *rats;
};
struct snd_pcm_hw_constraint_list {
const unsigned int *list;
unsigned int count;
unsigned int mask;
};
struct snd_pcm_hw_constraint_ranges {
unsigned int count;
const struct snd_interval *ranges;
unsigned int mask;
};
/*
* userspace-provided audio timestamp config to kernel,
* structure is for internal use only and filled with dedicated unpack routine
*/
struct snd_pcm_audio_tstamp_config {
/* 5 of max 16 bits used */
u32 type_requested:4;
u32 report_delay:1; /* add total delay to A/D or D/A */
};
static inline void snd_pcm_unpack_audio_tstamp_config(__u32 data,
struct snd_pcm_audio_tstamp_config *config)
{
config->type_requested = data & 0xF;
config->report_delay = (data >> 4) & 1;
}
/*
* kernel-provided audio timestamp report to user-space
* structure is for internal use only and read by dedicated pack routine
*/
struct snd_pcm_audio_tstamp_report {
/* 6 of max 16 bits used for bit-fields */
/* for backwards compatibility */
u32 valid:1;
/* actual type if hardware could not support requested timestamp */
u32 actual_type:4;
/* accuracy represented in ns units */
u32 accuracy_report:1; /* 0 if accuracy unknown, 1 if accuracy field is valid */
u32 accuracy; /* up to 4.29s, will be packed in separate field */
};
static inline void snd_pcm_pack_audio_tstamp_report(__u32 *data, __u32 *accuracy,
const struct snd_pcm_audio_tstamp_report *report)
{
u32 tmp;
tmp = report->accuracy_report;
tmp <<= 4;
tmp |= report->actual_type;
tmp <<= 1;
tmp |= report->valid;
*data &= 0xffff; /* zero-clear MSBs */
*data |= (tmp << 16);
*accuracy = report->accuracy;
}
struct snd_pcm_runtime {
/* -- Status -- */
snd_pcm_state_t state; /* stream state */
snd_pcm_state_t suspended_state; /* suspended stream state */
struct snd_pcm_substream *trigger_master;
struct timespec64 trigger_tstamp; /* trigger timestamp */
bool trigger_tstamp_latched; /* trigger timestamp latched in low-level driver/hardware */
int overrange;
snd_pcm_uframes_t avail_max;
snd_pcm_uframes_t hw_ptr_base; /* Position at buffer restart */
snd_pcm_uframes_t hw_ptr_interrupt; /* Position at interrupt time */
unsigned long hw_ptr_jiffies; /* Time when hw_ptr is updated */
unsigned long hw_ptr_buffer_jiffies; /* buffer time in jiffies */
snd_pcm_sframes_t delay; /* extra delay; typically FIFO size */
u64 hw_ptr_wrap; /* offset for hw_ptr due to boundary wrap-around */
/* -- HW params -- */
snd_pcm_access_t access; /* access mode */
snd_pcm_format_t format; /* SNDRV_PCM_FORMAT_* */
snd_pcm_subformat_t subformat; /* subformat */
unsigned int rate; /* rate in Hz */
unsigned int channels; /* channels */
snd_pcm_uframes_t period_size; /* period size */
unsigned int periods; /* periods */
snd_pcm_uframes_t buffer_size; /* buffer size */
snd_pcm_uframes_t min_align; /* Min alignment for the format */
size_t byte_align;
unsigned int frame_bits;
unsigned int sample_bits;
unsigned int info;
unsigned int rate_num;
unsigned int rate_den;
unsigned int no_period_wakeup: 1;
/* -- SW params; see struct snd_pcm_sw_params for comments -- */
int tstamp_mode;
unsigned int period_step;
snd_pcm_uframes_t start_threshold;
snd_pcm_uframes_t stop_threshold;
snd_pcm_uframes_t silence_threshold;
snd_pcm_uframes_t silence_size;
snd_pcm_uframes_t boundary;
/* internal data of auto-silencer */
snd_pcm_uframes_t silence_start; /* starting pointer to silence area */
snd_pcm_uframes_t silence_filled; /* already filled part of silence area */
bool std_sync_id; /* hardware synchronization - standard per card ID */
/* -- mmap -- */
struct snd_pcm_mmap_status *status;
struct snd_pcm_mmap_control *control;
/* -- locking / scheduling -- */
snd_pcm_uframes_t twake; /* do transfer (!poll) wakeup if non-zero */
wait_queue_head_t sleep; /* poll sleep */
wait_queue_head_t tsleep; /* transfer sleep */
struct snd_fasync *fasync;
bool stop_operating; /* sync_stop will be called */
struct mutex buffer_mutex; /* protect for buffer changes */
ALSA: pcm: Fix potential AB/BA lock with buffer_mutex and mmap_lock syzbot caught a potential deadlock between the PCM runtime->buffer_mutex and the mm->mmap_lock. It was brought by the recent fix to cover the racy read/write and other ioctls, and in that commit, I overlooked a (hopefully only) corner case that may take the revert lock, namely, the OSS mmap. The OSS mmap operation exceptionally allows to re-configure the parameters inside the OSS mmap syscall, where mm->mmap_mutex is already held. Meanwhile, the copy_from/to_user calls at read/write operations also take the mm->mmap_lock internally, hence it may lead to a AB/BA deadlock. A similar problem was already seen in the past and we fixed it with a refcount (in commit b248371628aa). The former fix covered only the call paths with OSS read/write and OSS ioctls, while we need to cover the concurrent access via both ALSA and OSS APIs now. This patch addresses the problem above by replacing the buffer_mutex lock in the read/write operations with a refcount similar as we've used for OSS. The new field, runtime->buffer_accessing, keeps the number of concurrent read/write operations. Unlike the former buffer_mutex protection, this protects only around the copy_from/to_user() calls; the other codes are basically protected by the PCM stream lock. The refcount can be a negative, meaning blocked by the ioctls. If a negative value is seen, the read/write aborts with -EBUSY. In the ioctl side, OTOH, they check this refcount, too, and set to a negative value for blocking unless it's already being accessed. Reported-by: syzbot+6e5c88838328e99c7e1c@syzkaller.appspotmail.com Fixes: dca947d4d26d ("ALSA: pcm: Fix races among concurrent read/write and buffer changes") Cc: <stable@vger.kernel.org> Link: https://lore.kernel.org/r/000000000000381a0d05db622a81@google.com Link: https://lore.kernel.org/r/20220330120903.4738-1-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>
2022-03-30 12:09:03 +00:00
atomic_t buffer_accessing; /* >0: in r/w operation, <0: blocked */
/* -- private section -- */
void *private_data;
void (*private_free)(struct snd_pcm_runtime *runtime);
/* -- hardware description -- */
struct snd_pcm_hardware hw;
struct snd_pcm_hw_constraints hw_constraints;
/* -- timer -- */
unsigned int timer_resolution; /* timer resolution */
int tstamp_type; /* timestamp type */
/* -- DMA -- */
unsigned char *dma_area; /* DMA area */
dma_addr_t dma_addr; /* physical bus address (not accessible from main CPU) */
size_t dma_bytes; /* size of DMA area */
struct snd_dma_buffer *dma_buffer_p; /* allocated buffer */
ALSA: pcm: Introduce managed buffer allocation mode This patch adds the support for the feature to automatically allocate and free PCM buffers, so called "managed buffer allocation" mode. It's set up via new PCM helpers, snd_pcm_set_managed_buffer() and snd_pcm_set_managed_buffer_all(), both of which correspond to the existing preallocator helpers, snd_pcm_lib_preallocate_pages() and snd_pcm_lib_preallocate_pages_for_all(). When the new helper is used, it not only performs the pre-allocation of buffers, but also it manages to call snd_pcm_lib_malloc_pages() before the PCM hw_params ops and snd_lib_pcm_free() after the PCM hw_free ops inside PCM core, respectively. This allows drivers to drop the explicit calls of the memory allocation / release functions, and it will be a good amount of code reduction in the end of this patch series. When the PCM substream is set to the managed buffer allocation mode, the managed_buffer_alloc flag is set in the substream object. Since some drivers want to know when a buffer is newly allocated or re-allocated at hw_params callback (e.g. want to set up the additional stuff for the given buffer only at allocation time), now PCM core turns on buffer_changed flag when the buffer has changed. The standard conversions to use the new API will be straightforward: - Replace snd_pcm_lib_preallocate*() calls with the corresponding snd_pcm_set_managed_buffer*(); the arguments should be unchanged - Drop superfluous snd_pcm_lib_malloc() and snd_pcm_lib_free() calls; the check of snd_pcm_lib_malloc() returns should be replaced with the check of runtime->buffer_changed flag. - If hw_params or hw_free becomes empty, drop them from PCM ops Link: https://lore.kernel.org/r/20191117085308.23915-2-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-11-17 08:53:01 +00:00
unsigned int buffer_changed:1; /* buffer allocation changed; set only in managed mode */
/* -- audio timestamp config -- */
struct snd_pcm_audio_tstamp_config audio_tstamp_config;
struct snd_pcm_audio_tstamp_report audio_tstamp_report;
struct timespec64 driver_tstamp;
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
/* -- OSS things -- */
struct snd_pcm_oss_runtime oss;
#endif
};
struct snd_pcm_group { /* keep linked substreams */
spinlock_t lock;
struct mutex mutex;
struct list_head substreams;
ALSA: pcm: More fine-grained PCM link locking We have currently two global locks, a rwlock and a rwsem, that are used for managing linking the PCM streams. Due to these global locks, once when a linked stream is used, the lock granularity suffers a lot. This patch attempts to eliminate the former global lock for atomic ops. The latter rwsem needs remaining because of the loosy way of the loop calls in snd_pcm_action_nonatomic(), as well as for avoiding the deadlock at linking. However, these are used far rarely, actually only by two actions (prepare and reset), where both are no timing critical ones. So this can be still seen as a good improvement. The basic strategy to eliminate the rwlock is to assure group->lock at adding or removing a stream to / from the group. Since we already takes the group lock whenever taking the all substream locks under the group, this shouldn't be a big problem. The reference to group pointer in snd_pcm_substream object is protected by the stream lock itself. However, there are still pitfalls: a race window at re-locking and the lifecycle of group object. The former is a small race window for dereferencing the substream group object opened while snd_pcm_action() performs re-locking to avoid ABBA deadlocks. This includes the unlink of group during that window, too. And the latter is the kfree performed after all streams are removed from the group while it's still dereferenced. For addressing these corner cases, two new tricks are introduced: - After re-locking, the group assigned to the stream is checked again; if the group is changed, we retry the whole procedure. - Introduce a refcount to snd_pcm_group object, so that it's freed only when it's empty and really no one refers to it. (Some readers might wonder why not RCU for the latter. RCU in this case would cost more than refcounting, unfortunately. We take the group lock sooner or later, hence the performance improvement by RCU would be negligible. Meanwhile, because we need to deal with schedulable context depending on the pcm->nonatomic flag, it'll become dynamic RCU/SRCU switch, and the grace period may become too long.) Along with these changes, there are a significant amount of code refactoring. The complex group re-lock & ref code is factored out to snd_pcm_stream_group_ref() function, for example. Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-01-13 08:50:33 +00:00
refcount_t refs;
};
struct pid;
struct snd_pcm_substream {
struct snd_pcm *pcm;
struct snd_pcm_str *pstr;
void *private_data; /* copied from pcm->private_data */
int number;
char name[32]; /* substream name */
int stream; /* stream (direction) */
struct pm_qos_request latency_pm_qos_req; /* pm_qos request */
size_t buffer_bytes_max; /* limit ring buffer size */
struct snd_dma_buffer dma_buffer;
size_t dma_max;
/* -- hardware operations -- */
const struct snd_pcm_ops *ops;
/* -- runtime information -- */
struct snd_pcm_runtime *runtime;
/* -- timer section -- */
struct snd_timer *timer; /* timer */
unsigned timer_running: 1; /* time is running */
long wait_time; /* time in ms for R/W to wait for avail */
/* -- next substream -- */
struct snd_pcm_substream *next;
/* -- linked substreams -- */
struct list_head link_list; /* linked list member */
struct snd_pcm_group self_group; /* fake group for non linked substream (with substream lock inside) */
struct snd_pcm_group *group; /* pointer to current group */
/* -- assigned files -- */
int ref_count;
atomic_t mmap_count;
unsigned int f_flags;
void (*pcm_release)(struct snd_pcm_substream *);
struct pid *pid;
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
/* -- OSS things -- */
struct snd_pcm_oss_substream oss;
#endif
#ifdef CONFIG_SND_VERBOSE_PROCFS
struct snd_info_entry *proc_root;
#endif /* CONFIG_SND_VERBOSE_PROCFS */
/* misc flags */
unsigned int hw_opened: 1;
ALSA: pcm: Introduce managed buffer allocation mode This patch adds the support for the feature to automatically allocate and free PCM buffers, so called "managed buffer allocation" mode. It's set up via new PCM helpers, snd_pcm_set_managed_buffer() and snd_pcm_set_managed_buffer_all(), both of which correspond to the existing preallocator helpers, snd_pcm_lib_preallocate_pages() and snd_pcm_lib_preallocate_pages_for_all(). When the new helper is used, it not only performs the pre-allocation of buffers, but also it manages to call snd_pcm_lib_malloc_pages() before the PCM hw_params ops and snd_lib_pcm_free() after the PCM hw_free ops inside PCM core, respectively. This allows drivers to drop the explicit calls of the memory allocation / release functions, and it will be a good amount of code reduction in the end of this patch series. When the PCM substream is set to the managed buffer allocation mode, the managed_buffer_alloc flag is set in the substream object. Since some drivers want to know when a buffer is newly allocated or re-allocated at hw_params callback (e.g. want to set up the additional stuff for the given buffer only at allocation time), now PCM core turns on buffer_changed flag when the buffer has changed. The standard conversions to use the new API will be straightforward: - Replace snd_pcm_lib_preallocate*() calls with the corresponding snd_pcm_set_managed_buffer*(); the arguments should be unchanged - Drop superfluous snd_pcm_lib_malloc() and snd_pcm_lib_free() calls; the check of snd_pcm_lib_malloc() returns should be replaced with the check of runtime->buffer_changed flag. - If hw_params or hw_free becomes empty, drop them from PCM ops Link: https://lore.kernel.org/r/20191117085308.23915-2-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-11-17 08:53:01 +00:00
unsigned int managed_buffer_alloc:1;
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
unsigned int xrun_counter; /* number of times xrun happens */
#endif /* CONFIG_SND_PCM_XRUN_DEBUG */
};
#define SUBSTREAM_BUSY(substream) ((substream)->ref_count > 0)
struct snd_pcm_str {
int stream; /* stream (direction) */
struct snd_pcm *pcm;
/* -- substreams -- */
unsigned int substream_count;
unsigned int substream_opened;
struct snd_pcm_substream *substream;
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
/* -- OSS things -- */
struct snd_pcm_oss_stream oss;
#endif
#ifdef CONFIG_SND_VERBOSE_PROCFS
struct snd_info_entry *proc_root;
#ifdef CONFIG_SND_PCM_XRUN_DEBUG
unsigned int xrun_debug; /* 0 = disabled, 1 = verbose, 2 = stacktrace */
#endif
#endif
struct snd_kcontrol *chmap_kctl; /* channel-mapping controls */
struct device *dev;
};
struct snd_pcm {
struct snd_card *card;
struct list_head list;
int device; /* device number */
unsigned int info_flags;
unsigned short dev_class;
unsigned short dev_subclass;
char id[64];
char name[80];
struct snd_pcm_str streams[2];
struct mutex open_mutex;
wait_queue_head_t open_wait;
void *private_data;
void (*private_free) (struct snd_pcm *pcm);
bool internal; /* pcm is for internal use only */
bool nonatomic; /* whole PCM operations are in non-atomic context */
bool no_device_suspend; /* don't invoke device PM suspend */
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
struct snd_pcm_oss oss;
#endif
};
/*
* Registering
*/
extern const struct file_operations snd_pcm_f_ops[2];
int snd_pcm_new(struct snd_card *card, const char *id, int device,
int playback_count, int capture_count,
struct snd_pcm **rpcm);
int snd_pcm_new_internal(struct snd_card *card, const char *id, int device,
int playback_count, int capture_count,
struct snd_pcm **rpcm);
int snd_pcm_new_stream(struct snd_pcm *pcm, int stream, int substream_count);
#if IS_ENABLED(CONFIG_SND_PCM_OSS)
struct snd_pcm_notify {
int (*n_register) (struct snd_pcm * pcm);
int (*n_disconnect) (struct snd_pcm * pcm);
int (*n_unregister) (struct snd_pcm * pcm);
struct list_head list;
};
int snd_pcm_notify(struct snd_pcm_notify *notify, int nfree);
#endif
/*
* Native I/O
*/
int snd_pcm_info(struct snd_pcm_substream *substream, struct snd_pcm_info *info);
int snd_pcm_info_user(struct snd_pcm_substream *substream,
struct snd_pcm_info __user *info);
ALSA: Avoid using timespec for struct snd_pcm_status The struct snd_pcm_status will use 'timespec' type variables to record timestamp, which is not year 2038 safe on 32bits system. Userspace will use SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT as commands to issue ioctl() to fill the 'snd_pcm_status' structure in userspace. The command number is always defined through _IOR/_IOW/IORW, so when userspace changes the definition of 'struct timespec' to use 64-bit types, the command number also changes. Thus in the kernel, we now need to define two versions of each such ioctl and corresponding ioctl commands to handle 32bit time_t and 64bit time_t in native mode: struct snd_pcm_status32 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; struct snd_pcm_status64 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; Moreover in compat file, we renamed or introduced new structures to handle 32bit/64bit time_t in compatible mode. The 'struct snd_pcm_status32' and snd_pcm_status_user32() are used to handle 32bit time_t in compat mode. 'struct compat_snd_pcm_status64' and snd_pcm_status_user_compat64() are used to handle 64bit time_t. The implicit padding before timespec is made explicit to avoid incompatible structure layout between 32-bit and 64-bit x86 due to the different alignment requirements, and the snd_pcm_status structure is now hidden from the kernel to avoid relying on the timespec definitio definitionn Finally we can replace SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT with new commands and introduce new functions to fill new 'struct snd_pcm_status64' instead of using unsafe 'struct snd_pcm_status'. Then in future, the new commands can be matched when userspace changes 'timespec' to 64bit type to make a size change of 'struct snd_pcm_status'. When glibc changes time_t to 64-bit, any recompiled program will issue ioctl commands that the kernel does not understand without this patch. Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-04-24 12:06:11 +00:00
int snd_pcm_status64(struct snd_pcm_substream *substream,
struct snd_pcm_status64 *status);
int snd_pcm_start(struct snd_pcm_substream *substream);
int snd_pcm_stop(struct snd_pcm_substream *substream, snd_pcm_state_t status);
int snd_pcm_drain_done(struct snd_pcm_substream *substream);
int snd_pcm_stop_xrun(struct snd_pcm_substream *substream);
#ifdef CONFIG_PM
int snd_pcm_suspend_all(struct snd_pcm *pcm);
#else
static inline int snd_pcm_suspend_all(struct snd_pcm *pcm)
{
return 0;
}
#endif
int snd_pcm_kernel_ioctl(struct snd_pcm_substream *substream, unsigned int cmd, void *arg);
int snd_pcm_open_substream(struct snd_pcm *pcm, int stream, struct file *file,
struct snd_pcm_substream **rsubstream);
void snd_pcm_release_substream(struct snd_pcm_substream *substream);
int snd_pcm_attach_substream(struct snd_pcm *pcm, int stream, struct file *file,
struct snd_pcm_substream **rsubstream);
void snd_pcm_detach_substream(struct snd_pcm_substream *substream);
int snd_pcm_mmap_data(struct snd_pcm_substream *substream, struct file *file, struct vm_area_struct *area);
#ifdef CONFIG_SND_DEBUG
void snd_pcm_debug_name(struct snd_pcm_substream *substream,
char *name, size_t len);
#else
static inline void
snd_pcm_debug_name(struct snd_pcm_substream *substream, char *buf, size_t size)
{
*buf = 0;
}
#endif
/*
* PCM library
*/
/**
* snd_pcm_stream_linked - Check whether the substream is linked with others
* @substream: substream to check
*
* Return: true if the given substream is being linked with others
*/
static inline int snd_pcm_stream_linked(struct snd_pcm_substream *substream)
{
return substream->group != &substream->self_group;
}
void snd_pcm_stream_lock(struct snd_pcm_substream *substream);
void snd_pcm_stream_unlock(struct snd_pcm_substream *substream);
void snd_pcm_stream_lock_irq(struct snd_pcm_substream *substream);
void snd_pcm_stream_unlock_irq(struct snd_pcm_substream *substream);
unsigned long _snd_pcm_stream_lock_irqsave(struct snd_pcm_substream *substream);
unsigned long _snd_pcm_stream_lock_irqsave_nested(struct snd_pcm_substream *substream);
/**
* snd_pcm_stream_lock_irqsave - Lock the PCM stream
* @substream: PCM substream
* @flags: irq flags
*
* This locks the PCM stream like snd_pcm_stream_lock() but with the local
* IRQ (only when nonatomic is false). In nonatomic case, this is identical
* as snd_pcm_stream_lock().
*/
#define snd_pcm_stream_lock_irqsave(substream, flags) \
do { \
typecheck(unsigned long, flags); \
flags = _snd_pcm_stream_lock_irqsave(substream); \
} while (0)
void snd_pcm_stream_unlock_irqrestore(struct snd_pcm_substream *substream,
unsigned long flags);
/**
* snd_pcm_stream_lock_irqsave_nested - Single-nested PCM stream locking
* @substream: PCM substream
* @flags: irq flags
*
* This locks the PCM stream like snd_pcm_stream_lock_irqsave() but with
* the single-depth lockdep subclass.
*/
#define snd_pcm_stream_lock_irqsave_nested(substream, flags) \
do { \
typecheck(unsigned long, flags); \
flags = _snd_pcm_stream_lock_irqsave_nested(substream); \
} while (0)
/* definitions for guard(); use like guard(pcm_stream_lock) */
DEFINE_LOCK_GUARD_1(pcm_stream_lock, struct snd_pcm_substream,
snd_pcm_stream_lock(_T->lock),
snd_pcm_stream_unlock(_T->lock))
DEFINE_LOCK_GUARD_1(pcm_stream_lock_irq, struct snd_pcm_substream,
snd_pcm_stream_lock_irq(_T->lock),
snd_pcm_stream_unlock_irq(_T->lock))
DEFINE_LOCK_GUARD_1(pcm_stream_lock_irqsave, struct snd_pcm_substream,
snd_pcm_stream_lock_irqsave(_T->lock, _T->flags),
snd_pcm_stream_unlock_irqrestore(_T->lock, _T->flags),
unsigned long flags)
/**
* snd_pcm_group_for_each_entry - iterate over the linked substreams
* @s: the iterator
* @substream: the substream
*
* Iterate over the all linked substreams to the given @substream.
* When @substream isn't linked with any others, this gives returns @substream
* itself once.
*/
#define snd_pcm_group_for_each_entry(s, substream) \
list_for_each_entry(s, &substream->group->substreams, link_list)
#define for_each_pcm_streams(stream) \
for (stream = SNDRV_PCM_STREAM_PLAYBACK; \
stream <= SNDRV_PCM_STREAM_LAST; \
stream++)
/**
* snd_pcm_running - Check whether the substream is in a running state
* @substream: substream to check
*
* Return: true if the given substream is in the state RUNNING, or in the
* state DRAINING for playback.
*/
static inline int snd_pcm_running(struct snd_pcm_substream *substream)
{
return (substream->runtime->state == SNDRV_PCM_STATE_RUNNING ||
(substream->runtime->state == SNDRV_PCM_STATE_DRAINING &&
substream->stream == SNDRV_PCM_STREAM_PLAYBACK));
}
/**
* __snd_pcm_set_state - Change the current PCM state
* @runtime: PCM runtime to set
* @state: the current state to set
*
* Call within the stream lock
*/
static inline void __snd_pcm_set_state(struct snd_pcm_runtime *runtime,
snd_pcm_state_t state)
{
runtime->state = state;
runtime->status->state = state; /* copy for mmap */
}
/**
* bytes_to_samples - Unit conversion of the size from bytes to samples
* @runtime: PCM runtime instance
* @size: size in bytes
*
* Return: the size in samples
*/
static inline ssize_t bytes_to_samples(struct snd_pcm_runtime *runtime, ssize_t size)
{
return size * 8 / runtime->sample_bits;
}
/**
* bytes_to_frames - Unit conversion of the size from bytes to frames
* @runtime: PCM runtime instance
* @size: size in bytes
*
* Return: the size in frames
*/
static inline snd_pcm_sframes_t bytes_to_frames(struct snd_pcm_runtime *runtime, ssize_t size)
{
return size * 8 / runtime->frame_bits;
}
/**
* samples_to_bytes - Unit conversion of the size from samples to bytes
* @runtime: PCM runtime instance
* @size: size in samples
*
* Return: the byte size
*/
static inline ssize_t samples_to_bytes(struct snd_pcm_runtime *runtime, ssize_t size)
{
return size * runtime->sample_bits / 8;
}
/**
* frames_to_bytes - Unit conversion of the size from frames to bytes
* @runtime: PCM runtime instance
* @size: size in frames
*
* Return: the byte size
*/
static inline ssize_t frames_to_bytes(struct snd_pcm_runtime *runtime, snd_pcm_sframes_t size)
{
return size * runtime->frame_bits / 8;
}
/**
* frame_aligned - Check whether the byte size is aligned to frames
* @runtime: PCM runtime instance
* @bytes: size in bytes
*
* Return: true if aligned, or false if not
*/
static inline int frame_aligned(struct snd_pcm_runtime *runtime, ssize_t bytes)
{
return bytes % runtime->byte_align == 0;
}
/**
* snd_pcm_lib_buffer_bytes - Get the buffer size of the current PCM in bytes
* @substream: PCM substream
*
* Return: buffer byte size
*/
static inline size_t snd_pcm_lib_buffer_bytes(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return frames_to_bytes(runtime, runtime->buffer_size);
}
/**
* snd_pcm_lib_period_bytes - Get the period size of the current PCM in bytes
* @substream: PCM substream
*
* Return: period byte size
*/
static inline size_t snd_pcm_lib_period_bytes(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return frames_to_bytes(runtime, runtime->period_size);
}
/**
* snd_pcm_playback_avail - Get the available (writable) space for playback
* @runtime: PCM runtime instance
*
* Result is between 0 ... (boundary - 1)
*
* Return: available frame size
*/
static inline snd_pcm_uframes_t snd_pcm_playback_avail(struct snd_pcm_runtime *runtime)
{
snd_pcm_sframes_t avail = runtime->status->hw_ptr + runtime->buffer_size - runtime->control->appl_ptr;
if (avail < 0)
avail += runtime->boundary;
else if ((snd_pcm_uframes_t) avail >= runtime->boundary)
avail -= runtime->boundary;
return avail;
}
/**
* snd_pcm_capture_avail - Get the available (readable) space for capture
* @runtime: PCM runtime instance
*
* Result is between 0 ... (boundary - 1)
*
* Return: available frame size
*/
static inline snd_pcm_uframes_t snd_pcm_capture_avail(struct snd_pcm_runtime *runtime)
{
snd_pcm_sframes_t avail = runtime->status->hw_ptr - runtime->control->appl_ptr;
if (avail < 0)
avail += runtime->boundary;
return avail;
}
/**
* snd_pcm_playback_hw_avail - Get the queued space for playback
* @runtime: PCM runtime instance
*
* Return: available frame size
*/
static inline snd_pcm_sframes_t snd_pcm_playback_hw_avail(struct snd_pcm_runtime *runtime)
{
return runtime->buffer_size - snd_pcm_playback_avail(runtime);
}
/**
* snd_pcm_capture_hw_avail - Get the free space for capture
* @runtime: PCM runtime instance
*
* Return: available frame size
*/
static inline snd_pcm_sframes_t snd_pcm_capture_hw_avail(struct snd_pcm_runtime *runtime)
{
return runtime->buffer_size - snd_pcm_capture_avail(runtime);
}
/**
* snd_pcm_playback_ready - check whether the playback buffer is available
* @substream: the pcm substream instance
*
* Checks whether enough free space is available on the playback buffer.
*
* Return: Non-zero if available, or zero if not.
*/
static inline int snd_pcm_playback_ready(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return snd_pcm_playback_avail(runtime) >= runtime->control->avail_min;
}
/**
* snd_pcm_capture_ready - check whether the capture buffer is available
* @substream: the pcm substream instance
*
* Checks whether enough capture data is available on the capture buffer.
*
* Return: Non-zero if available, or zero if not.
*/
static inline int snd_pcm_capture_ready(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return snd_pcm_capture_avail(runtime) >= runtime->control->avail_min;
}
/**
* snd_pcm_playback_data - check whether any data exists on the playback buffer
* @substream: the pcm substream instance
*
* Checks whether any data exists on the playback buffer.
*
* Return: Non-zero if any data exists, or zero if not. If stop_threshold
* is bigger or equal to boundary, then this function returns always non-zero.
*/
static inline int snd_pcm_playback_data(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
if (runtime->stop_threshold >= runtime->boundary)
return 1;
return snd_pcm_playback_avail(runtime) < runtime->buffer_size;
}
/**
* snd_pcm_playback_empty - check whether the playback buffer is empty
* @substream: the pcm substream instance
*
* Checks whether the playback buffer is empty.
*
* Return: Non-zero if empty, or zero if not.
*/
static inline int snd_pcm_playback_empty(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return snd_pcm_playback_avail(runtime) >= runtime->buffer_size;
}
/**
* snd_pcm_capture_empty - check whether the capture buffer is empty
* @substream: the pcm substream instance
*
* Checks whether the capture buffer is empty.
*
* Return: Non-zero if empty, or zero if not.
*/
static inline int snd_pcm_capture_empty(struct snd_pcm_substream *substream)
{
struct snd_pcm_runtime *runtime = substream->runtime;
return snd_pcm_capture_avail(runtime) == 0;
}
/**
* snd_pcm_trigger_done - Mark the master substream
* @substream: the pcm substream instance
* @master: the linked master substream
*
* When multiple substreams of the same card are linked and the hardware
* supports the single-shot operation, the driver calls this in the loop
* in snd_pcm_group_for_each_entry() for marking the substream as "done".
* Then most of trigger operations are performed only to the given master
* substream.
*
* The trigger_master mark is cleared at timestamp updates at the end
* of trigger operations.
*/
static inline void snd_pcm_trigger_done(struct snd_pcm_substream *substream,
struct snd_pcm_substream *master)
{
substream->runtime->trigger_master = master;
}
static inline int hw_is_mask(int var)
{
return var >= SNDRV_PCM_HW_PARAM_FIRST_MASK &&
var <= SNDRV_PCM_HW_PARAM_LAST_MASK;
}
static inline int hw_is_interval(int var)
{
return var >= SNDRV_PCM_HW_PARAM_FIRST_INTERVAL &&
var <= SNDRV_PCM_HW_PARAM_LAST_INTERVAL;
}
static inline struct snd_mask *hw_param_mask(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
return &params->masks[var - SNDRV_PCM_HW_PARAM_FIRST_MASK];
}
static inline struct snd_interval *hw_param_interval(struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
return &params->intervals[var - SNDRV_PCM_HW_PARAM_FIRST_INTERVAL];
}
static inline const struct snd_mask *hw_param_mask_c(const struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
return &params->masks[var - SNDRV_PCM_HW_PARAM_FIRST_MASK];
}
static inline const struct snd_interval *hw_param_interval_c(const struct snd_pcm_hw_params *params,
snd_pcm_hw_param_t var)
{
return &params->intervals[var - SNDRV_PCM_HW_PARAM_FIRST_INTERVAL];
}
/**
* params_channels - Get the number of channels from the hw params
* @p: hw params
*
* Return: the number of channels
*/
static inline unsigned int params_channels(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_CHANNELS)->min;
}
/**
* params_rate - Get the sample rate from the hw params
* @p: hw params
*
* Return: the sample rate
*/
static inline unsigned int params_rate(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_RATE)->min;
}
/**
* params_period_size - Get the period size (in frames) from the hw params
* @p: hw params
*
* Return: the period size in frames
*/
static inline unsigned int params_period_size(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_PERIOD_SIZE)->min;
}
/**
* params_periods - Get the number of periods from the hw params
* @p: hw params
*
* Return: the number of periods
*/
static inline unsigned int params_periods(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_PERIODS)->min;
}
/**
* params_buffer_size - Get the buffer size (in frames) from the hw params
* @p: hw params
*
* Return: the buffer size in frames
*/
static inline unsigned int params_buffer_size(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_BUFFER_SIZE)->min;
}
/**
* params_buffer_bytes - Get the buffer size (in bytes) from the hw params
* @p: hw params
*
* Return: the buffer size in bytes
*/
static inline unsigned int params_buffer_bytes(const struct snd_pcm_hw_params *p)
{
return hw_param_interval_c(p, SNDRV_PCM_HW_PARAM_BUFFER_BYTES)->min;
}
int snd_interval_refine(struct snd_interval *i, const struct snd_interval *v);
int snd_interval_list(struct snd_interval *i, unsigned int count,
const unsigned int *list, unsigned int mask);
int snd_interval_ranges(struct snd_interval *i, unsigned int count,
const struct snd_interval *list, unsigned int mask);
int snd_interval_ratnum(struct snd_interval *i,
unsigned int rats_count, const struct snd_ratnum *rats,
unsigned int *nump, unsigned int *denp);
void _snd_pcm_hw_params_any(struct snd_pcm_hw_params *params);
void _snd_pcm_hw_param_setempty(struct snd_pcm_hw_params *params, snd_pcm_hw_param_t var);
int snd_pcm_hw_refine(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params);
int snd_pcm_hw_constraint_mask64(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
u_int64_t mask);
int snd_pcm_hw_constraint_minmax(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
unsigned int min, unsigned int max);
int snd_pcm_hw_constraint_integer(struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var);
int snd_pcm_hw_constraint_list(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_list *l);
int snd_pcm_hw_constraint_ranges(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_ranges *r);
int snd_pcm_hw_constraint_ratnums(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_ratnums *r);
int snd_pcm_hw_constraint_ratdens(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
const struct snd_pcm_hw_constraint_ratdens *r);
int snd_pcm_hw_constraint_msbits(struct snd_pcm_runtime *runtime,
unsigned int cond,
unsigned int width,
unsigned int msbits);
int snd_pcm_hw_constraint_step(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var,
unsigned long step);
int snd_pcm_hw_constraint_pow2(struct snd_pcm_runtime *runtime,
unsigned int cond,
snd_pcm_hw_param_t var);
int snd_pcm_hw_rule_noresample(struct snd_pcm_runtime *runtime,
unsigned int base_rate);
int snd_pcm_hw_rule_add(struct snd_pcm_runtime *runtime,
unsigned int cond,
int var,
snd_pcm_hw_rule_func_t func, void *private,
int dep, ...);
/**
* snd_pcm_hw_constraint_single() - Constrain parameter to a single value
* @runtime: PCM runtime instance
* @var: The hw_params variable to constrain
* @val: The value to constrain to
*
* Return: Positive if the value is changed, zero if it's not changed, or a
* negative error code.
*/
static inline int snd_pcm_hw_constraint_single(
struct snd_pcm_runtime *runtime, snd_pcm_hw_param_t var,
unsigned int val)
{
return snd_pcm_hw_constraint_minmax(runtime, var, val, val);
}
int snd_pcm_format_signed(snd_pcm_format_t format);
int snd_pcm_format_unsigned(snd_pcm_format_t format);
int snd_pcm_format_linear(snd_pcm_format_t format);
int snd_pcm_format_little_endian(snd_pcm_format_t format);
int snd_pcm_format_big_endian(snd_pcm_format_t format);
#if 0 /* just for kernel-doc */
/**
* snd_pcm_format_cpu_endian - Check the PCM format is CPU-endian
* @format: the format to check
*
* Return: 1 if the given PCM format is CPU-endian, 0 if
* opposite, or a negative error code if endian not specified.
*/
int snd_pcm_format_cpu_endian(snd_pcm_format_t format);
#endif /* DocBook */
#ifdef SNDRV_LITTLE_ENDIAN
#define snd_pcm_format_cpu_endian(format) snd_pcm_format_little_endian(format)
#else
#define snd_pcm_format_cpu_endian(format) snd_pcm_format_big_endian(format)
#endif
int snd_pcm_format_width(snd_pcm_format_t format); /* in bits */
int snd_pcm_format_physical_width(snd_pcm_format_t format); /* in bits */
ssize_t snd_pcm_format_size(snd_pcm_format_t format, size_t samples);
const unsigned char *snd_pcm_format_silence_64(snd_pcm_format_t format);
int snd_pcm_format_set_silence(snd_pcm_format_t format, void *buf, unsigned int frames);
void snd_pcm_set_ops(struct snd_pcm * pcm, int direction,
const struct snd_pcm_ops *ops);
void snd_pcm_set_sync_per_card(struct snd_pcm_substream *substream, struct snd_pcm_hw_params *params,
const unsigned char *id, unsigned int len);
/**
* snd_pcm_set_sync - set the PCM sync id
* @substream: the pcm substream
*
* Use the default PCM sync identifier for the specific card.
*/
static inline void snd_pcm_set_sync(struct snd_pcm_substream *substream)
{
substream->runtime->std_sync_id = true;
}
int snd_pcm_lib_ioctl(struct snd_pcm_substream *substream,
unsigned int cmd, void *arg);
void snd_pcm_period_elapsed_under_stream_lock(struct snd_pcm_substream *substream);
void snd_pcm_period_elapsed(struct snd_pcm_substream *substream);
snd_pcm_sframes_t __snd_pcm_lib_xfer(struct snd_pcm_substream *substream,
void *buf, bool interleaved,
snd_pcm_uframes_t frames, bool in_kernel);
static inline snd_pcm_sframes_t
snd_pcm_lib_write(struct snd_pcm_substream *substream,
const void __user *buf, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void __force *)buf, true, frames, false);
}
static inline snd_pcm_sframes_t
snd_pcm_lib_read(struct snd_pcm_substream *substream,
void __user *buf, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void __force *)buf, true, frames, false);
}
static inline snd_pcm_sframes_t
snd_pcm_lib_writev(struct snd_pcm_substream *substream,
void __user **bufs, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void *)bufs, false, frames, false);
}
static inline snd_pcm_sframes_t
snd_pcm_lib_readv(struct snd_pcm_substream *substream,
void __user **bufs, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void *)bufs, false, frames, false);
}
static inline snd_pcm_sframes_t
snd_pcm_kernel_write(struct snd_pcm_substream *substream,
const void *buf, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, (void *)buf, true, frames, true);
}
static inline snd_pcm_sframes_t
snd_pcm_kernel_read(struct snd_pcm_substream *substream,
void *buf, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, buf, true, frames, true);
}
static inline snd_pcm_sframes_t
snd_pcm_kernel_writev(struct snd_pcm_substream *substream,
void **bufs, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, bufs, false, frames, true);
}
static inline snd_pcm_sframes_t
snd_pcm_kernel_readv(struct snd_pcm_substream *substream,
void **bufs, snd_pcm_uframes_t frames)
{
return __snd_pcm_lib_xfer(substream, bufs, false, frames, true);
}
int snd_pcm_hw_limit_rates(struct snd_pcm_hardware *hw);
static inline int
snd_pcm_limit_hw_rates(struct snd_pcm_runtime *runtime)
{
return snd_pcm_hw_limit_rates(&runtime->hw);
}
unsigned int snd_pcm_rate_to_rate_bit(unsigned int rate);
unsigned int snd_pcm_rate_bit_to_rate(unsigned int rate_bit);
unsigned int snd_pcm_rate_mask_intersect(unsigned int rates_a,
unsigned int rates_b);
unsigned int snd_pcm_rate_range_to_bits(unsigned int rate_min,
unsigned int rate_max);
/**
* snd_pcm_set_runtime_buffer - Set the PCM runtime buffer
* @substream: PCM substream to set
* @bufp: the buffer information, NULL to clear
*
* Copy the buffer information to runtime->dma_buffer when @bufp is non-NULL.
* Otherwise it clears the current buffer information.
*/
static inline void snd_pcm_set_runtime_buffer(struct snd_pcm_substream *substream,
struct snd_dma_buffer *bufp)
{
struct snd_pcm_runtime *runtime = substream->runtime;
if (bufp) {
runtime->dma_buffer_p = bufp;
runtime->dma_area = bufp->area;
runtime->dma_addr = bufp->addr;
runtime->dma_bytes = bufp->bytes;
} else {
runtime->dma_buffer_p = NULL;
runtime->dma_area = NULL;
runtime->dma_addr = 0;
runtime->dma_bytes = 0;
}
}
/**
* snd_pcm_gettime - Fill the timespec64 depending on the timestamp mode
* @runtime: PCM runtime instance
* @tv: timespec64 to fill
*/
static inline void snd_pcm_gettime(struct snd_pcm_runtime *runtime,
struct timespec64 *tv)
{
switch (runtime->tstamp_type) {
case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC:
ktime_get_ts64(tv);
break;
case SNDRV_PCM_TSTAMP_TYPE_MONOTONIC_RAW:
ktime_get_raw_ts64(tv);
break;
default:
ktime_get_real_ts64(tv);
break;
}
}
/*
* Memory
*/
void snd_pcm_lib_preallocate_free(struct snd_pcm_substream *substream);
void snd_pcm_lib_preallocate_free_for_all(struct snd_pcm *pcm);
void snd_pcm_lib_preallocate_pages(struct snd_pcm_substream *substream,
int type, struct device *data,
size_t size, size_t max);
void snd_pcm_lib_preallocate_pages_for_all(struct snd_pcm *pcm,
int type, void *data,
size_t size, size_t max);
int snd_pcm_lib_malloc_pages(struct snd_pcm_substream *substream, size_t size);
int snd_pcm_lib_free_pages(struct snd_pcm_substream *substream);
int snd_pcm_set_managed_buffer(struct snd_pcm_substream *substream, int type,
struct device *data, size_t size, size_t max);
int snd_pcm_set_managed_buffer_all(struct snd_pcm *pcm, int type,
struct device *data,
size_t size, size_t max);
/**
* snd_pcm_set_fixed_buffer - Preallocate and set up the fixed size PCM buffer
* @substream: the pcm substream instance
* @type: DMA type (SNDRV_DMA_TYPE_*)
* @data: DMA type dependent data
* @size: the requested pre-allocation size in bytes
*
* This is a variant of snd_pcm_set_managed_buffer(), but this pre-allocates
* only the given sized buffer and doesn't allow re-allocation nor dynamic
* allocation of a larger buffer unlike the standard one.
* The function may return -ENOMEM error, hence the caller must check it.
*
* Return: zero if successful, or a negative error code
*/
static inline int __must_check
snd_pcm_set_fixed_buffer(struct snd_pcm_substream *substream, int type,
struct device *data, size_t size)
{
return snd_pcm_set_managed_buffer(substream, type, data, size, 0);
}
/**
* snd_pcm_set_fixed_buffer_all - Preallocate and set up the fixed size PCM buffer
* @pcm: the pcm instance
* @type: DMA type (SNDRV_DMA_TYPE_*)
* @data: DMA type dependent data
* @size: the requested pre-allocation size in bytes
*
* Apply the set up of the fixed buffer via snd_pcm_set_fixed_buffer() for
* all substream. If any of allocation fails, it returns -ENOMEM, hence the
* caller must check the return value.
*
* Return: zero if successful, or a negative error code
*/
static inline int __must_check
snd_pcm_set_fixed_buffer_all(struct snd_pcm *pcm, int type,
struct device *data, size_t size)
{
return snd_pcm_set_managed_buffer_all(pcm, type, data, size, 0);
}
ALSA: pcm: Introduce managed buffer allocation mode This patch adds the support for the feature to automatically allocate and free PCM buffers, so called "managed buffer allocation" mode. It's set up via new PCM helpers, snd_pcm_set_managed_buffer() and snd_pcm_set_managed_buffer_all(), both of which correspond to the existing preallocator helpers, snd_pcm_lib_preallocate_pages() and snd_pcm_lib_preallocate_pages_for_all(). When the new helper is used, it not only performs the pre-allocation of buffers, but also it manages to call snd_pcm_lib_malloc_pages() before the PCM hw_params ops and snd_lib_pcm_free() after the PCM hw_free ops inside PCM core, respectively. This allows drivers to drop the explicit calls of the memory allocation / release functions, and it will be a good amount of code reduction in the end of this patch series. When the PCM substream is set to the managed buffer allocation mode, the managed_buffer_alloc flag is set in the substream object. Since some drivers want to know when a buffer is newly allocated or re-allocated at hw_params callback (e.g. want to set up the additional stuff for the given buffer only at allocation time), now PCM core turns on buffer_changed flag when the buffer has changed. The standard conversions to use the new API will be straightforward: - Replace snd_pcm_lib_preallocate*() calls with the corresponding snd_pcm_set_managed_buffer*(); the arguments should be unchanged - Drop superfluous snd_pcm_lib_malloc() and snd_pcm_lib_free() calls; the check of snd_pcm_lib_malloc() returns should be replaced with the check of runtime->buffer_changed flag. - If hw_params or hw_free becomes empty, drop them from PCM ops Link: https://lore.kernel.org/r/20191117085308.23915-2-tiwai@suse.de Signed-off-by: Takashi Iwai <tiwai@suse.de>
2019-11-17 08:53:01 +00:00
#define snd_pcm_get_dma_buf(substream) ((substream)->runtime->dma_buffer_p)
/**
* snd_pcm_sgbuf_get_addr - Get the DMA address at the corresponding offset
* @substream: PCM substream
* @ofs: byte offset
*
* Return: DMA address
*/
static inline dma_addr_t
snd_pcm_sgbuf_get_addr(struct snd_pcm_substream *substream, unsigned int ofs)
{
return snd_sgbuf_get_addr(snd_pcm_get_dma_buf(substream), ofs);
}
/**
* snd_pcm_sgbuf_get_chunk_size - Compute the max size that fits within the
* contig. page from the given size
* @substream: PCM substream
* @ofs: byte offset
* @size: byte size to examine
*
* Return: chunk size
*/
static inline unsigned int
snd_pcm_sgbuf_get_chunk_size(struct snd_pcm_substream *substream,
unsigned int ofs, unsigned int size)
{
return snd_sgbuf_get_chunk_size(snd_pcm_get_dma_buf(substream), ofs, size);
}
int snd_pcm_lib_default_mmap(struct snd_pcm_substream *substream,
struct vm_area_struct *area);
/* mmap for io-memory area */
#if defined(CONFIG_X86) || defined(CONFIG_PPC) || defined(CONFIG_ALPHA)
#define SNDRV_PCM_INFO_MMAP_IOMEM SNDRV_PCM_INFO_MMAP
int snd_pcm_lib_mmap_iomem(struct snd_pcm_substream *substream, struct vm_area_struct *area);
#else
#define SNDRV_PCM_INFO_MMAP_IOMEM 0
#define snd_pcm_lib_mmap_iomem NULL
#endif
/**
* snd_pcm_limit_isa_dma_size - Get the max size fitting with ISA DMA transfer
* @dma: DMA number
* @max: pointer to store the max size
*/
static inline void snd_pcm_limit_isa_dma_size(int dma, size_t *max)
{
*max = dma < 4 ? 64 * 1024 : 128 * 1024;
}
/*
* Misc
*/
#define SNDRV_PCM_DEFAULT_CON_SPDIF (IEC958_AES0_CON_EMPHASIS_NONE|\
(IEC958_AES1_CON_ORIGINAL<<8)|\
(IEC958_AES1_CON_PCM_CODER<<8)|\
(IEC958_AES3_CON_FS_48000<<24))
const char *snd_pcm_format_name(snd_pcm_format_t format);
/**
* snd_pcm_direction_name - Get a string naming the direction of a stream
* @direction: Stream's direction, one of SNDRV_PCM_STREAM_XXX
*
* Returns a string naming the direction of the stream.
*/
static inline const char *snd_pcm_direction_name(int direction)
{
if (direction == SNDRV_PCM_STREAM_PLAYBACK)
return "Playback";
else
return "Capture";
}
/**
* snd_pcm_stream_str - Get a string naming the direction of a stream
* @substream: the pcm substream instance
*
* Return: A string naming the direction of the stream.
*/
static inline const char *snd_pcm_stream_str(struct snd_pcm_substream *substream)
{
return snd_pcm_direction_name(substream->stream);
}
/*
* PCM channel-mapping control API
*/
/* array element of channel maps */
struct snd_pcm_chmap_elem {
unsigned char channels;
unsigned char map[15];
};
/* channel map information; retrieved via snd_kcontrol_chip() */
struct snd_pcm_chmap {
struct snd_pcm *pcm; /* assigned PCM instance */
int stream; /* PLAYBACK or CAPTURE */
struct snd_kcontrol *kctl;
const struct snd_pcm_chmap_elem *chmap;
unsigned int max_channels;
unsigned int channel_mask; /* optional: active channels bitmask */
void *private_data; /* optional: private data pointer */
};
/**
* snd_pcm_chmap_substream - get the PCM substream assigned to the given chmap info
* @info: chmap information
* @idx: the substream number index
*
* Return: the matched PCM substream, or NULL if not found
*/
static inline struct snd_pcm_substream *
snd_pcm_chmap_substream(struct snd_pcm_chmap *info, unsigned int idx)
{
struct snd_pcm_substream *s;
for (s = info->pcm->streams[info->stream].substream; s; s = s->next)
if (s->number == idx)
return s;
return NULL;
}
/* ALSA-standard channel maps (RL/RR prior to C/LFE) */
extern const struct snd_pcm_chmap_elem snd_pcm_std_chmaps[];
/* Other world's standard channel maps (C/LFE prior to RL/RR) */
extern const struct snd_pcm_chmap_elem snd_pcm_alt_chmaps[];
/* bit masks to be passed to snd_pcm_chmap.channel_mask field */
#define SND_PCM_CHMAP_MASK_24 ((1U << 2) | (1U << 4))
#define SND_PCM_CHMAP_MASK_246 (SND_PCM_CHMAP_MASK_24 | (1U << 6))
#define SND_PCM_CHMAP_MASK_2468 (SND_PCM_CHMAP_MASK_246 | (1U << 8))
int snd_pcm_add_chmap_ctls(struct snd_pcm *pcm, int stream,
const struct snd_pcm_chmap_elem *chmap,
int max_channels,
unsigned long private_value,
struct snd_pcm_chmap **info_ret);
/**
* pcm_format_to_bits - Strong-typed conversion of pcm_format to bitwise
* @pcm_format: PCM format
*
* Return: 64bit mask corresponding to the given PCM format
*/
static inline u64 pcm_format_to_bits(snd_pcm_format_t pcm_format)
{
return 1ULL << (__force int) pcm_format;
}
/**
* pcm_for_each_format - helper to iterate for each format type
* @f: the iterator variable in snd_pcm_format_t type
*/
#define pcm_for_each_format(f) \
for ((f) = SNDRV_PCM_FORMAT_FIRST; \
(__force int)(f) <= (__force int)SNDRV_PCM_FORMAT_LAST; \
(f) = (__force snd_pcm_format_t)((__force int)(f) + 1))
/* printk helpers */
#define pcm_err(pcm, fmt, args...) \
dev_err((pcm)->card->dev, fmt, ##args)
#define pcm_warn(pcm, fmt, args...) \
dev_warn((pcm)->card->dev, fmt, ##args)
#define pcm_dbg(pcm, fmt, args...) \
dev_dbg((pcm)->card->dev, fmt, ##args)
/* helpers for copying between iov_iter and iomem */
int copy_to_iter_fromio(struct iov_iter *itert, const void __iomem *src,
size_t count);
int copy_from_iter_toio(void __iomem *dst, struct iov_iter *iter, size_t count);
ALSA: Avoid using timespec for struct snd_pcm_status The struct snd_pcm_status will use 'timespec' type variables to record timestamp, which is not year 2038 safe on 32bits system. Userspace will use SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT as commands to issue ioctl() to fill the 'snd_pcm_status' structure in userspace. The command number is always defined through _IOR/_IOW/IORW, so when userspace changes the definition of 'struct timespec' to use 64-bit types, the command number also changes. Thus in the kernel, we now need to define two versions of each such ioctl and corresponding ioctl commands to handle 32bit time_t and 64bit time_t in native mode: struct snd_pcm_status32 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; struct snd_pcm_status64 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; Moreover in compat file, we renamed or introduced new structures to handle 32bit/64bit time_t in compatible mode. The 'struct snd_pcm_status32' and snd_pcm_status_user32() are used to handle 32bit time_t in compat mode. 'struct compat_snd_pcm_status64' and snd_pcm_status_user_compat64() are used to handle 64bit time_t. The implicit padding before timespec is made explicit to avoid incompatible structure layout between 32-bit and 64-bit x86 due to the different alignment requirements, and the snd_pcm_status structure is now hidden from the kernel to avoid relying on the timespec definitio definitionn Finally we can replace SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT with new commands and introduce new functions to fill new 'struct snd_pcm_status64' instead of using unsafe 'struct snd_pcm_status'. Then in future, the new commands can be matched when userspace changes 'timespec' to 64bit type to make a size change of 'struct snd_pcm_status'. When glibc changes time_t to 64-bit, any recompiled program will issue ioctl commands that the kernel does not understand without this patch. Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-04-24 12:06:11 +00:00
struct snd_pcm_status64 {
snd_pcm_state_t state; /* stream state */
u8 rsvd[4];
s64 trigger_tstamp_sec; /* time when stream was started/stopped/paused */
s64 trigger_tstamp_nsec;
s64 tstamp_sec; /* reference timestamp */
s64 tstamp_nsec;
snd_pcm_uframes_t appl_ptr; /* appl ptr */
snd_pcm_uframes_t hw_ptr; /* hw ptr */
snd_pcm_sframes_t delay; /* current delay in frames */
snd_pcm_uframes_t avail; /* number of frames available */
snd_pcm_uframes_t avail_max; /* max frames available on hw since last status */
snd_pcm_uframes_t overrange; /* count of ADC (capture) overrange detections from last status */
snd_pcm_state_t suspended_state; /* suspended stream state */
__u32 audio_tstamp_data; /* needed for 64-bit alignment, used for configs/report to/from userspace */
s64 audio_tstamp_sec; /* sample counter, wall clock, PHC or on-demand sync'ed */
s64 audio_tstamp_nsec;
s64 driver_tstamp_sec; /* useful in case reference system tstamp is reported with delay */
s64 driver_tstamp_nsec;
__u32 audio_tstamp_accuracy; /* in ns units, only valid if indicated in audio_tstamp_data */
unsigned char reserved[52-4*sizeof(s64)]; /* must be filled with zero */
};
#define SNDRV_PCM_IOCTL_STATUS64 _IOR('A', 0x20, struct snd_pcm_status64)
#define SNDRV_PCM_IOCTL_STATUS_EXT64 _IOWR('A', 0x24, struct snd_pcm_status64)
struct snd_pcm_status32 {
snd_pcm_state_t state; /* stream state */
ALSA: Avoid using timespec for struct snd_pcm_status The struct snd_pcm_status will use 'timespec' type variables to record timestamp, which is not year 2038 safe on 32bits system. Userspace will use SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT as commands to issue ioctl() to fill the 'snd_pcm_status' structure in userspace. The command number is always defined through _IOR/_IOW/IORW, so when userspace changes the definition of 'struct timespec' to use 64-bit types, the command number also changes. Thus in the kernel, we now need to define two versions of each such ioctl and corresponding ioctl commands to handle 32bit time_t and 64bit time_t in native mode: struct snd_pcm_status32 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; struct snd_pcm_status64 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; Moreover in compat file, we renamed or introduced new structures to handle 32bit/64bit time_t in compatible mode. The 'struct snd_pcm_status32' and snd_pcm_status_user32() are used to handle 32bit time_t in compat mode. 'struct compat_snd_pcm_status64' and snd_pcm_status_user_compat64() are used to handle 64bit time_t. The implicit padding before timespec is made explicit to avoid incompatible structure layout between 32-bit and 64-bit x86 due to the different alignment requirements, and the snd_pcm_status structure is now hidden from the kernel to avoid relying on the timespec definitio definitionn Finally we can replace SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT with new commands and introduce new functions to fill new 'struct snd_pcm_status64' instead of using unsafe 'struct snd_pcm_status'. Then in future, the new commands can be matched when userspace changes 'timespec' to 64bit type to make a size change of 'struct snd_pcm_status'. When glibc changes time_t to 64-bit, any recompiled program will issue ioctl commands that the kernel does not understand without this patch. Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-04-24 12:06:11 +00:00
s32 trigger_tstamp_sec; /* time when stream was started/stopped/paused */
s32 trigger_tstamp_nsec;
s32 tstamp_sec; /* reference timestamp */
s32 tstamp_nsec;
u32 appl_ptr; /* appl ptr */
u32 hw_ptr; /* hw ptr */
s32 delay; /* current delay in frames */
u32 avail; /* number of frames available */
u32 avail_max; /* max frames available on hw since last status */
u32 overrange; /* count of ADC (capture) overrange detections from last status */
snd_pcm_state_t suspended_state; /* suspended stream state */
ALSA: Avoid using timespec for struct snd_pcm_status The struct snd_pcm_status will use 'timespec' type variables to record timestamp, which is not year 2038 safe on 32bits system. Userspace will use SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT as commands to issue ioctl() to fill the 'snd_pcm_status' structure in userspace. The command number is always defined through _IOR/_IOW/IORW, so when userspace changes the definition of 'struct timespec' to use 64-bit types, the command number also changes. Thus in the kernel, we now need to define two versions of each such ioctl and corresponding ioctl commands to handle 32bit time_t and 64bit time_t in native mode: struct snd_pcm_status32 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; struct snd_pcm_status64 { ...... s32 trigger_tstamp_sec; s32 trigger_tstamp_nsec; ...... s32 audio_tstamp_sec; s32 audio_tstamp_nsec; ...... }; Moreover in compat file, we renamed or introduced new structures to handle 32bit/64bit time_t in compatible mode. The 'struct snd_pcm_status32' and snd_pcm_status_user32() are used to handle 32bit time_t in compat mode. 'struct compat_snd_pcm_status64' and snd_pcm_status_user_compat64() are used to handle 64bit time_t. The implicit padding before timespec is made explicit to avoid incompatible structure layout between 32-bit and 64-bit x86 due to the different alignment requirements, and the snd_pcm_status structure is now hidden from the kernel to avoid relying on the timespec definitio definitionn Finally we can replace SNDRV_PCM_IOCTL_STATUS and SNDRV_PCM_IOCTL_STATUS_EXT with new commands and introduce new functions to fill new 'struct snd_pcm_status64' instead of using unsafe 'struct snd_pcm_status'. Then in future, the new commands can be matched when userspace changes 'timespec' to 64bit type to make a size change of 'struct snd_pcm_status'. When glibc changes time_t to 64-bit, any recompiled program will issue ioctl commands that the kernel does not understand without this patch. Signed-off-by: Baolin Wang <baolin.wang@linaro.org> Signed-off-by: Arnd Bergmann <arnd@arndb.de>
2018-04-24 12:06:11 +00:00
u32 audio_tstamp_data; /* needed for 64-bit alignment, used for configs/report to/from userspace */
s32 audio_tstamp_sec; /* sample counter, wall clock, PHC or on-demand sync'ed */
s32 audio_tstamp_nsec;
s32 driver_tstamp_sec; /* useful in case reference system tstamp is reported with delay */
s32 driver_tstamp_nsec;
u32 audio_tstamp_accuracy; /* in ns units, only valid if indicated in audio_tstamp_data */
unsigned char reserved[52-4*sizeof(s32)]; /* must be filled with zero */
};
#define SNDRV_PCM_IOCTL_STATUS32 _IOR('A', 0x20, struct snd_pcm_status32)
#define SNDRV_PCM_IOCTL_STATUS_EXT32 _IOWR('A', 0x24, struct snd_pcm_status32)
#endif /* __SOUND_PCM_H */