linux/tools/mm/thpmaps

676 lines
25 KiB
Plaintext
Raw Normal View History

tools/mm: add thpmaps script to dump THP usage info With the proliferation of large folios for file-backed memory, and more recently the introduction of multi-size THP for anonymous memory, it is becoming useful to be able to see exactly how large folios are mapped into processes. For some architectures (e.g. arm64), if most memory is mapped using contpte-sized and -aligned blocks, TLB usage can be optimized so it's useful to see where these requirements are and are not being met. thpmaps is a Python utility that reads /proc/<pid>/smaps, /proc/<pid>/pagemap and /proc/kpageflags to print information about how transparent huge pages (both file and anon) are mapped to a specified process or cgroup. It aims to help users debug and optimize their workloads. In future we may wish to introduce stats directly into the kernel (e.g. smaps or similar), but for now this provides a short term solution without the need to introduce any new ABI. Run with help option for a full listing of the arguments: # ./thpmaps --help --8<-- usage: thpmaps [-h] [--pid pid | --cgroup path] [--rollup] [--cont size[KMG]] [--inc-smaps] [--inc-empty] [--periodic sleep_ms] Prints information about how transparent huge pages are mapped, either system-wide, or for a specified process or cgroup. When run with --pid, the user explicitly specifies the set of pids to scan. e.g. "--pid 10 [--pid 134 ...]". When run with --cgroup, the user passes either a v1 or v2 cgroup and all pids that belong to the cgroup subtree are scanned. When run with neither --pid nor --cgroup, the full set of pids on the system is gathered from /proc and scanned as if the user had provided "--pid 1 --pid 2 ...". A default set of statistics is always generated for THP mappings. However, it is also possible to generate additional statistics for "contiguous block mappings" where the block size is user-defined. Statistics are maintained independently for anonymous and file-backed (pagecache) memory and are shown both in kB and as a percentage of either total anonymous or total file-backed memory as appropriate. THP Statistics -------------- Statistics are always generated for fully- and contiguously-mapped THPs whose mapping address is aligned to their size, for each <size> supported by the system. Separate counters describe THPs mapped by PTE vs those mapped by PMD. (Although note a THP can only be mapped by PMD if it is PMD-sized): - anon-thp-pte-aligned-<size>kB - file-thp-pte-aligned-<size>kB - anon-thp-pmd-aligned-<size>kB - file-thp-pmd-aligned-<size>kB Similarly, statistics are always generated for fully- and contiguously- mapped THPs whose mapping address is *not* aligned to their size, for each <size> supported by the system. Due to the unaligned mapping, it is impossible to map by PMD, so there are only PTE counters for this case: - anon-thp-pte-unaligned-<size>kB - file-thp-pte-unaligned-<size>kB Statistics are also always generated for mapped pages that belong to a THP but where the is THP is *not* fully- and contiguously- mapped. These "partial" mappings are all counted in the same counter regardless of the size of the THP that is partially mapped: - anon-thp-pte-partial - file-thp-pte-partial Contiguous Block Statistics --------------------------- An optional, additional set of statistics is generated for every contiguous block size specified with `--cont <size>`. These statistics show how much memory is mapped in contiguous blocks of <size> and also aligned to <size>. A given contiguous block must all belong to the same THP, but there is no requirement for it to be the *whole* THP. Separate counters describe contiguous blocks mapped by PTE vs those mapped by PMD: - anon-cont-pte-aligned-<size>kB - file-cont-pte-aligned-<size>kB - anon-cont-pmd-aligned-<size>kB - file-cont-pmd-aligned-<size>kB As an example, if monitoring 64K contiguous blocks (--cont 64K), there are a number of sources that could provide such blocks: a fully- and contiguously-mapped 64K THP that is aligned to a 64K boundary would provide 1 block. A fully- and contiguously-mapped 128K THP that is aligned to at least a 64K boundary would provide 2 blocks. Or a 128K THP that maps its first 100K, but contiguously and starting at a 64K boundary would provide 1 block. A fully- and contiguously-mapped 2M THP would provide 32 blocks. There are many other possible permutations. options: -h, --help show this help message and exit --pid pid Process id of the target process. Maybe issued multiple times to scan multiple processes. --pid and --cgroup are mutually exclusive. If neither are provided, all processes are scanned to provide system-wide information. --cgroup path Path to the target cgroup in sysfs. Iterates over every pid in the cgroup and its children. --pid and --cgroup are mutually exclusive. If neither are provided, all processes are scanned to provide system-wide information. --rollup Sum the per-vma statistics to provide a summary over the whole system, process or cgroup. --cont size[KMG] Adds stats for memory that is mapped in contiguous blocks of <size> and also aligned to <size>. May be issued multiple times to track multiple sized blocks. Useful to infer e.g. arm64 contpte and hpa mappings. Size must be a power-of-2 number of pages. --inc-smaps Include all numerical, additive /proc/<pid>/smaps stats in the output. --inc-empty Show all statistics including those whose value is 0. --periodic sleep_ms Run in a loop, polling every sleep_ms milliseconds. Requires root privilege to access pagemap and kpageflags. --8<-- Example command to summarise fully and partially mapped THPs and 64K contiguous blocks over all VMAs in all processes in the system (--inc-empty forces printing stats that are 0): # ./thpmaps --cont 64K --rollup --inc-empty --8<-- anon-thp-pmd-aligned-2048kB: 139264 kB ( 6%) file-thp-pmd-aligned-2048kB: 0 kB ( 0%) anon-thp-pte-aligned-16kB: 0 kB ( 0%) anon-thp-pte-aligned-32kB: 0 kB ( 0%) anon-thp-pte-aligned-64kB: 72256 kB ( 3%) anon-thp-pte-aligned-128kB: 0 kB ( 0%) anon-thp-pte-aligned-256kB: 0 kB ( 0%) anon-thp-pte-aligned-512kB: 0 kB ( 0%) anon-thp-pte-aligned-1024kB: 0 kB ( 0%) anon-thp-pte-aligned-2048kB: 0 kB ( 0%) anon-thp-pte-unaligned-16kB: 0 kB ( 0%) anon-thp-pte-unaligned-32kB: 0 kB ( 0%) anon-thp-pte-unaligned-64kB: 0 kB ( 0%) anon-thp-pte-unaligned-128kB: 0 kB ( 0%) anon-thp-pte-unaligned-256kB: 0 kB ( 0%) anon-thp-pte-unaligned-512kB: 0 kB ( 0%) anon-thp-pte-unaligned-1024kB: 0 kB ( 0%) anon-thp-pte-unaligned-2048kB: 0 kB ( 0%) anon-thp-pte-partial: 63232 kB ( 3%) file-thp-pte-aligned-16kB: 809024 kB (47%) file-thp-pte-aligned-32kB: 43168 kB ( 3%) file-thp-pte-aligned-64kB: 98496 kB ( 6%) file-thp-pte-aligned-128kB: 17536 kB ( 1%) file-thp-pte-aligned-256kB: 0 kB ( 0%) file-thp-pte-aligned-512kB: 0 kB ( 0%) file-thp-pte-aligned-1024kB: 0 kB ( 0%) file-thp-pte-aligned-2048kB: 0 kB ( 0%) file-thp-pte-unaligned-16kB: 21712 kB ( 1%) file-thp-pte-unaligned-32kB: 704 kB ( 0%) file-thp-pte-unaligned-64kB: 896 kB ( 0%) file-thp-pte-unaligned-128kB: 44928 kB ( 3%) file-thp-pte-unaligned-256kB: 0 kB ( 0%) file-thp-pte-unaligned-512kB: 0 kB ( 0%) file-thp-pte-unaligned-1024kB: 0 kB ( 0%) file-thp-pte-unaligned-2048kB: 0 kB ( 0%) file-thp-pte-partial: 9252 kB ( 1%) anon-cont-pmd-aligned-64kB: 139264 kB ( 6%) file-cont-pmd-aligned-64kB: 0 kB ( 0%) anon-cont-pte-aligned-64kB: 100672 kB ( 4%) file-cont-pte-aligned-64kB: 161856 kB ( 9%) --8<-- Link: https://lkml.kernel.org/r/20240116141235.960842-1-ryan.roberts@arm.com Signed-off-by: Ryan Roberts <ryan.roberts@arm.com> Tested-by: Barry Song <v-songbaohua@oppo.com> Cc: Alistair Popple <apopple@nvidia.com> Cc: David Hildenbrand <david@redhat.com> Cc: John Hubbard <jhubbard@nvidia.com> Cc: Kefeng Wang <wangkefeng.wang@huawei.com> Cc: Matthew Wilcox (Oracle) <willy@infradead.org> Cc: William Kucharski <william.kucharski@oracle.com> Cc: Zenghui Yu <yuzenghui@huawei.com> Cc: Zi Yan <ziy@nvidia.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
2024-01-16 14:12:35 +00:00
#!/usr/bin/env python3
# SPDX-License-Identifier: GPL-2.0-only
# Copyright (C) 2024 ARM Ltd.
#
# Utility providing smaps-like output detailing transparent hugepage usage.
# For more info, run:
# ./thpmaps --help
#
# Requires numpy:
# pip3 install numpy
import argparse
import collections
import math
import os
import re
import resource
import shutil
import sys
import textwrap
import time
import numpy as np
with open('/sys/kernel/mm/transparent_hugepage/hpage_pmd_size') as f:
PAGE_SIZE = resource.getpagesize()
PAGE_SHIFT = int(math.log2(PAGE_SIZE))
PMD_SIZE = int(f.read())
PMD_ORDER = int(math.log2(PMD_SIZE / PAGE_SIZE))
def align_forward(v, a):
return (v + (a - 1)) & ~(a - 1)
def align_offset(v, a):
return v & (a - 1)
def kbnr(kb):
# Convert KB to number of pages.
return (kb << 10) >> PAGE_SHIFT
def nrkb(nr):
# Convert number of pages to KB.
return (nr << PAGE_SHIFT) >> 10
def odkb(order):
# Convert page order to KB.
return (PAGE_SIZE << order) >> 10
def cont_ranges_all(search, index):
# Given a list of arrays, find the ranges for which values are monotonically
# incrementing in all arrays. all arrays in search and index must be the
# same size.
sz = len(search[0])
r = np.full(sz, 2)
d = np.diff(search[0]) == 1
for dd in [np.diff(arr) == 1 for arr in search[1:]]:
d &= dd
r[1:] -= d
r[:-1] -= d
return [np.repeat(arr, r).reshape(-1, 2) for arr in index]
class ArgException(Exception):
pass
class FileIOException(Exception):
pass
class BinArrayFile:
# Base class used to read /proc/<pid>/pagemap and /proc/kpageflags into a
# numpy array. Use inherrited class in a with clause to ensure file is
# closed when it goes out of scope.
def __init__(self, filename, element_size):
self.element_size = element_size
self.filename = filename
self.fd = os.open(self.filename, os.O_RDONLY)
def cleanup(self):
os.close(self.fd)
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.cleanup()
def _readin(self, offset, buffer):
length = os.preadv(self.fd, (buffer,), offset)
if len(buffer) != length:
raise FileIOException('error: {} failed to read {} bytes at {:x}'
.format(self.filename, len(buffer), offset))
def _toarray(self, buf):
assert(self.element_size == 8)
return np.frombuffer(buf, dtype=np.uint64)
def getv(self, vec):
vec *= self.element_size
offsets = vec[:, 0]
lengths = (np.diff(vec) + self.element_size).reshape(len(vec))
buf = bytearray(int(np.sum(lengths)))
view = memoryview(buf)
pos = 0
for offset, length in zip(offsets, lengths):
offset = int(offset)
length = int(length)
self._readin(offset, view[pos:pos+length])
pos += length
return self._toarray(buf)
def get(self, index, nr=1):
offset = index * self.element_size
length = nr * self.element_size
buf = bytearray(length)
self._readin(offset, buf)
return self._toarray(buf)
PM_PAGE_PRESENT = 1 << 63
PM_PFN_MASK = (1 << 55) - 1
class PageMap(BinArrayFile):
# Read ranges of a given pid's pagemap into a numpy array.
def __init__(self, pid='self'):
super().__init__(f'/proc/{pid}/pagemap', 8)
KPF_ANON = 1 << 12
KPF_COMPOUND_HEAD = 1 << 15
KPF_COMPOUND_TAIL = 1 << 16
KPF_THP = 1 << 22
class KPageFlags(BinArrayFile):
# Read ranges of /proc/kpageflags into a numpy array.
def __init__(self):
super().__init__(f'/proc/kpageflags', 8)
vma_all_stats = set([
"Size",
"Rss",
"Pss",
"Pss_Dirty",
"Shared_Clean",
"Shared_Dirty",
"Private_Clean",
"Private_Dirty",
"Referenced",
"Anonymous",
"KSM",
"LazyFree",
"AnonHugePages",
"ShmemPmdMapped",
"FilePmdMapped",
"Shared_Hugetlb",
"Private_Hugetlb",
"Swap",
"SwapPss",
"Locked",
])
vma_min_stats = set([
"Rss",
"Anonymous",
"AnonHugePages",
"ShmemPmdMapped",
"FilePmdMapped",
])
VMA = collections.namedtuple('VMA', [
'name',
'start',
'end',
'read',
'write',
'execute',
'private',
'pgoff',
'major',
'minor',
'inode',
'stats',
])
class VMAList:
# A container for VMAs, parsed from /proc/<pid>/smaps. Iterate over the
# instance to receive VMAs.
def __init__(self, pid='self', stats=[]):
self.vmas = []
with open(f'/proc/{pid}/smaps', 'r') as file:
for line in file:
elements = line.split()
if '-' in elements[0]:
start, end = map(lambda x: int(x, 16), elements[0].split('-'))
major, minor = map(lambda x: int(x, 16), elements[3].split(':'))
self.vmas.append(VMA(
name=elements[5] if len(elements) == 6 else '',
start=start,
end=end,
read=elements[1][0] == 'r',
write=elements[1][1] == 'w',
execute=elements[1][2] == 'x',
private=elements[1][3] == 'p',
pgoff=int(elements[2], 16),
major=major,
minor=minor,
inode=int(elements[4], 16),
stats={},
))
else:
param = elements[0][:-1]
if param in stats:
value = int(elements[1])
self.vmas[-1].stats[param] = {'type': None, 'value': value}
def __iter__(self):
yield from self.vmas
def thp_parse(vma, kpageflags, ranges, indexes, vfns, pfns, anons, heads):
# Given 4 same-sized arrays representing a range within a page table backed
# by THPs (vfns: virtual frame numbers, pfns: physical frame numbers, anons:
# True if page is anonymous, heads: True if page is head of a THP), return a
# dictionary of statistics describing the mapped THPs.
stats = {
'file': {
'partial': 0,
'aligned': [0] * (PMD_ORDER + 1),
'unaligned': [0] * (PMD_ORDER + 1),
},
'anon': {
'partial': 0,
'aligned': [0] * (PMD_ORDER + 1),
'unaligned': [0] * (PMD_ORDER + 1),
},
}
for rindex, rpfn in zip(ranges[0], ranges[2]):
index_next = int(rindex[0])
index_end = int(rindex[1]) + 1
pfn_end = int(rpfn[1]) + 1
folios = indexes[index_next:index_end][heads[index_next:index_end]]
# Account pages for any partially mapped THP at the front. In that case,
# the first page of the range is a tail.
nr = (int(folios[0]) if len(folios) else index_end) - index_next
stats['anon' if anons[index_next] else 'file']['partial'] += nr
# Account pages for any partially mapped THP at the back. In that case,
# the next page after the range is a tail.
if len(folios):
flags = int(kpageflags.get(pfn_end)[0])
if flags & KPF_COMPOUND_TAIL:
nr = index_end - int(folios[-1])
folios = folios[:-1]
index_end -= nr
stats['anon' if anons[index_end - 1] else 'file']['partial'] += nr
# Account fully mapped THPs in the middle of the range.
if len(folios):
folio_nrs = np.append(np.diff(folios), np.uint64(index_end - folios[-1]))
folio_orders = np.log2(folio_nrs).astype(np.uint64)
for index, order in zip(folios, folio_orders):
index = int(index)
order = int(order)
nr = 1 << order
vfn = int(vfns[index])
align = 'aligned' if align_forward(vfn, nr) == vfn else 'unaligned'
anon = 'anon' if anons[index] else 'file'
stats[anon][align][order] += nr
# Account PMD-mapped THPs spearately, so filter out of the stats. There is a
# race between acquiring the smaps stats and reading pagemap, where memory
# could be deallocated. So clamp to zero incase it would have gone negative.
anon_pmd_mapped = vma.stats['AnonHugePages']['value']
file_pmd_mapped = vma.stats['ShmemPmdMapped']['value'] + \
vma.stats['FilePmdMapped']['value']
stats['anon']['aligned'][PMD_ORDER] = max(0, stats['anon']['aligned'][PMD_ORDER] - kbnr(anon_pmd_mapped))
stats['file']['aligned'][PMD_ORDER] = max(0, stats['file']['aligned'][PMD_ORDER] - kbnr(file_pmd_mapped))
rstats = {
f"anon-thp-pmd-aligned-{odkb(PMD_ORDER)}kB": {'type': 'anon', 'value': anon_pmd_mapped},
f"file-thp-pmd-aligned-{odkb(PMD_ORDER)}kB": {'type': 'file', 'value': file_pmd_mapped},
}
def flatten_sub(type, subtype, stats):
param = f"{type}-thp-pte-{subtype}-{{}}kB"
for od, nr in enumerate(stats[2:], 2):
rstats[param.format(odkb(od))] = {'type': type, 'value': nrkb(nr)}
def flatten_type(type, stats):
flatten_sub(type, 'aligned', stats['aligned'])
flatten_sub(type, 'unaligned', stats['unaligned'])
rstats[f"{type}-thp-pte-partial"] = {'type': type, 'value': nrkb(stats['partial'])}
flatten_type('anon', stats['anon'])
flatten_type('file', stats['file'])
return rstats
def cont_parse(vma, order, ranges, anons, heads):
# Given 4 same-sized arrays representing a range within a page table backed
# by THPs (vfns: virtual frame numbers, pfns: physical frame numbers, anons:
# True if page is anonymous, heads: True if page is head of a THP), return a
# dictionary of statistics describing the contiguous blocks.
nr_cont = 1 << order
nr_anon = 0
nr_file = 0
for rindex, rvfn, rpfn in zip(*ranges):
index_next = int(rindex[0])
index_end = int(rindex[1]) + 1
vfn_start = int(rvfn[0])
pfn_start = int(rpfn[0])
if align_offset(pfn_start, nr_cont) != align_offset(vfn_start, nr_cont):
continue
off = align_forward(vfn_start, nr_cont) - vfn_start
index_next += off
while index_next + nr_cont <= index_end:
folio_boundary = heads[index_next+1:index_next+nr_cont].any()
if not folio_boundary:
if anons[index_next]:
nr_anon += nr_cont
else:
nr_file += nr_cont
index_next += nr_cont
# Account blocks that are PMD-mapped spearately, so filter out of the stats.
# There is a race between acquiring the smaps stats and reading pagemap,
# where memory could be deallocated. So clamp to zero incase it would have
# gone negative.
anon_pmd_mapped = vma.stats['AnonHugePages']['value']
file_pmd_mapped = vma.stats['ShmemPmdMapped']['value'] + \
vma.stats['FilePmdMapped']['value']
nr_anon = max(0, nr_anon - kbnr(anon_pmd_mapped))
nr_file = max(0, nr_file - kbnr(file_pmd_mapped))
rstats = {
f"anon-cont-pmd-aligned-{nrkb(nr_cont)}kB": {'type': 'anon', 'value': anon_pmd_mapped},
f"file-cont-pmd-aligned-{nrkb(nr_cont)}kB": {'type': 'file', 'value': file_pmd_mapped},
}
rstats[f"anon-cont-pte-aligned-{nrkb(nr_cont)}kB"] = {'type': 'anon', 'value': nrkb(nr_anon)}
rstats[f"file-cont-pte-aligned-{nrkb(nr_cont)}kB"] = {'type': 'file', 'value': nrkb(nr_file)}
return rstats
def vma_print(vma, pid):
# Prints a VMA instance in a format similar to smaps. The main difference is
# that the pid is included as the first value.
print("{:010d}: {:016x}-{:016x} {}{}{}{} {:08x} {:02x}:{:02x} {:08x} {}"
.format(
pid, vma.start, vma.end,
'r' if vma.read else '-', 'w' if vma.write else '-',
'x' if vma.execute else '-', 'p' if vma.private else 's',
vma.pgoff, vma.major, vma.minor, vma.inode, vma.name
))
def stats_print(stats, tot_anon, tot_file, inc_empty):
# Print a statistics dictionary.
label_field = 32
for label, stat in stats.items():
type = stat['type']
value = stat['value']
if value or inc_empty:
pad = max(0, label_field - len(label) - 1)
if type == 'anon' and tot_anon > 0:
percent = f' ({value / tot_anon:3.0%})'
elif type == 'file' and tot_file > 0:
percent = f' ({value / tot_file:3.0%})'
else:
percent = ''
print(f"{label}:{' ' * pad}{value:8} kB{percent}")
def vma_parse(vma, pagemap, kpageflags, contorders):
# Generate thp and cont statistics for a single VMA.
start = vma.start >> PAGE_SHIFT
end = vma.end >> PAGE_SHIFT
pmes = pagemap.get(start, end - start)
present = pmes & PM_PAGE_PRESENT != 0
pfns = pmes & PM_PFN_MASK
pfns = pfns[present]
vfns = np.arange(start, end, dtype=np.uint64)
vfns = vfns[present]
pfn_vec = cont_ranges_all([pfns], [pfns])[0]
flags = kpageflags.getv(pfn_vec)
anons = flags & KPF_ANON != 0
heads = flags & KPF_COMPOUND_HEAD != 0
thps = flags & KPF_THP != 0
vfns = vfns[thps]
pfns = pfns[thps]
anons = anons[thps]
heads = heads[thps]
indexes = np.arange(len(vfns), dtype=np.uint64)
ranges = cont_ranges_all([vfns, pfns], [indexes, vfns, pfns])
thpstats = thp_parse(vma, kpageflags, ranges, indexes, vfns, pfns, anons, heads)
contstats = [cont_parse(vma, order, ranges, anons, heads) for order in contorders]
tot_anon = vma.stats['Anonymous']['value']
tot_file = vma.stats['Rss']['value'] - tot_anon
return {
**thpstats,
**{k: v for s in contstats for k, v in s.items()}
}, tot_anon, tot_file
def do_main(args):
pids = set()
rollup = {}
rollup_anon = 0
rollup_file = 0
if args.cgroup:
strict = False
for walk_info in os.walk(args.cgroup):
cgroup = walk_info[0]
with open(f'{cgroup}/cgroup.procs') as pidfile:
for line in pidfile.readlines():
pids.add(int(line.strip()))
elif args.pid:
strict = True
pids = pids.union(args.pid)
else:
strict = False
for pid in os.listdir('/proc'):
if pid.isdigit():
pids.add(int(pid))
if not args.rollup:
print(" PID START END PROT OFFSET DEV INODE OBJECT")
for pid in pids:
try:
with PageMap(pid) as pagemap:
with KPageFlags() as kpageflags:
for vma in VMAList(pid, vma_all_stats if args.inc_smaps else vma_min_stats):
if (vma.read or vma.write or vma.execute) and vma.stats['Rss']['value'] > 0:
stats, vma_anon, vma_file = vma_parse(vma, pagemap, kpageflags, args.cont)
else:
stats = {}
vma_anon = 0
vma_file = 0
if args.inc_smaps:
stats = {**vma.stats, **stats}
if args.rollup:
for k, v in stats.items():
if k in rollup:
assert(rollup[k]['type'] == v['type'])
rollup[k]['value'] += v['value']
else:
rollup[k] = v
rollup_anon += vma_anon
rollup_file += vma_file
else:
vma_print(vma, pid)
stats_print(stats, vma_anon, vma_file, args.inc_empty)
except (FileNotFoundError, ProcessLookupError, FileIOException):
if strict:
raise
if args.rollup:
stats_print(rollup, rollup_anon, rollup_file, args.inc_empty)
def main():
docs_width = shutil.get_terminal_size().columns
docs_width -= 2
docs_width = min(80, docs_width)
def format(string):
text = re.sub(r'\s+', ' ', string)
text = re.sub(r'\s*\\n\s*', '\n', text)
paras = text.split('\n')
paras = [textwrap.fill(p, width=docs_width) for p in paras]
return '\n'.join(paras)
def formatter(prog):
return argparse.RawDescriptionHelpFormatter(prog, width=docs_width)
def size2order(human):
units = {
"K": 2**10, "M": 2**20, "G": 2**30,
"k": 2**10, "m": 2**20, "g": 2**30,
}
unit = 1
if human[-1] in units:
unit = units[human[-1]]
human = human[:-1]
try:
size = int(human)
except ValueError:
raise ArgException('error: --cont value must be integer size with optional KMG unit')
size *= unit
order = int(math.log2(size / PAGE_SIZE))
if order < 1:
raise ArgException('error: --cont value must be size of at least 2 pages')
if (1 << order) * PAGE_SIZE != size:
raise ArgException('error: --cont value must be size of power-of-2 pages')
if order > PMD_ORDER:
raise ArgException('error: --cont value must be less than or equal to PMD order')
return order
parser = argparse.ArgumentParser(formatter_class=formatter,
description=format("""Prints information about how transparent huge
pages are mapped, either system-wide, or for a specified
process or cgroup.\\n
\\n
When run with --pid, the user explicitly specifies the set
of pids to scan. e.g. "--pid 10 [--pid 134 ...]". When run
with --cgroup, the user passes either a v1 or v2 cgroup and
all pids that belong to the cgroup subtree are scanned. When
run with neither --pid nor --cgroup, the full set of pids on
the system is gathered from /proc and scanned as if the user
had provided "--pid 1 --pid 2 ...".\\n
\\n
A default set of statistics is always generated for THP
mappings. However, it is also possible to generate
additional statistics for "contiguous block mappings" where
the block size is user-defined.\\n
\\n
Statistics are maintained independently for anonymous and
file-backed (pagecache) memory and are shown both in kB and
as a percentage of either total anonymous or total
file-backed memory as appropriate.\\n
\\n
THP Statistics\\n
--------------\\n
\\n
Statistics are always generated for fully- and
contiguously-mapped THPs whose mapping address is aligned to
their size, for each <size> supported by the system.
Separate counters describe THPs mapped by PTE vs those
mapped by PMD. (Although note a THP can only be mapped by
PMD if it is PMD-sized):\\n
\\n
- anon-thp-pte-aligned-<size>kB\\n
- file-thp-pte-aligned-<size>kB\\n
- anon-thp-pmd-aligned-<size>kB\\n
- file-thp-pmd-aligned-<size>kB\\n
\\n
Similarly, statistics are always generated for fully- and
contiguously-mapped THPs whose mapping address is *not*
aligned to their size, for each <size> supported by the
system. Due to the unaligned mapping, it is impossible to
map by PMD, so there are only PTE counters for this case:\\n
\\n
- anon-thp-pte-unaligned-<size>kB\\n
- file-thp-pte-unaligned-<size>kB\\n
\\n
Statistics are also always generated for mapped pages that
belong to a THP but where the is THP is *not* fully- and
contiguously- mapped. These "partial" mappings are all
counted in the same counter regardless of the size of the
THP that is partially mapped:\\n
\\n
- anon-thp-pte-partial\\n
- file-thp-pte-partial\\n
\\n
Contiguous Block Statistics\\n
---------------------------\\n
\\n
An optional, additional set of statistics is generated for
every contiguous block size specified with `--cont <size>`.
These statistics show how much memory is mapped in
contiguous blocks of <size> and also aligned to <size>. A
given contiguous block must all belong to the same THP, but
there is no requirement for it to be the *whole* THP.
Separate counters describe contiguous blocks mapped by PTE
vs those mapped by PMD:\\n
\\n
- anon-cont-pte-aligned-<size>kB\\n
- file-cont-pte-aligned-<size>kB\\n
- anon-cont-pmd-aligned-<size>kB\\n
- file-cont-pmd-aligned-<size>kB\\n
\\n
As an example, if monitoring 64K contiguous blocks (--cont
64K), there are a number of sources that could provide such
blocks: a fully- and contiguously-mapped 64K THP that is
aligned to a 64K boundary would provide 1 block. A fully-
and contiguously-mapped 128K THP that is aligned to at least
a 64K boundary would provide 2 blocks. Or a 128K THP that
maps its first 100K, but contiguously and starting at a 64K
boundary would provide 1 block. A fully- and
contiguously-mapped 2M THP would provide 32 blocks. There
are many other possible permutations.\\n"""),
epilog=format("""Requires root privilege to access pagemap and
kpageflags."""))
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument('--pid',
metavar='pid', required=False, type=int, default=[], action='append',
help="""Process id of the target process. Maybe issued multiple times to
scan multiple processes. --pid and --cgroup are mutually exclusive.
If neither are provided, all processes are scanned to provide
system-wide information.""")
group.add_argument('--cgroup',
metavar='path', required=False,
help="""Path to the target cgroup in sysfs. Iterates over every pid in
the cgroup and its children. --pid and --cgroup are mutually
exclusive. If neither are provided, all processes are scanned to
provide system-wide information.""")
parser.add_argument('--rollup',
required=False, default=False, action='store_true',
help="""Sum the per-vma statistics to provide a summary over the whole
system, process or cgroup.""")
parser.add_argument('--cont',
metavar='size[KMG]', required=False, default=[], action='append',
help="""Adds stats for memory that is mapped in contiguous blocks of
<size> and also aligned to <size>. May be issued multiple times to
track multiple sized blocks. Useful to infer e.g. arm64 contpte and
hpa mappings. Size must be a power-of-2 number of pages.""")
parser.add_argument('--inc-smaps',
required=False, default=False, action='store_true',
help="""Include all numerical, additive /proc/<pid>/smaps stats in the
output.""")
parser.add_argument('--inc-empty',
required=False, default=False, action='store_true',
help="""Show all statistics including those whose value is 0.""")
parser.add_argument('--periodic',
metavar='sleep_ms', required=False, type=int,
help="""Run in a loop, polling every sleep_ms milliseconds.""")
args = parser.parse_args()
try:
args.cont = [size2order(cont) for cont in args.cont]
except ArgException as e:
parser.print_usage()
raise
if args.periodic:
while True:
do_main(args)
print()
time.sleep(args.periodic / 1000)
else:
do_main(args)
if __name__ == "__main__":
try:
main()
except Exception as e:
prog = os.path.basename(sys.argv[0])
print(f'{prog}: {e}')
exit(1)