linux/drivers/media/v4l2-core/v4l2-mem2mem.c

1619 lines
43 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Memory-to-memory device framework for Video for Linux 2 and videobuf.
*
* Helper functions for devices that use videobuf buffers for both their
* source and destination.
*
* Copyright (c) 2009-2010 Samsung Electronics Co., Ltd.
* Pawel Osciak, <pawel@osciak.com>
* Marek Szyprowski, <m.szyprowski@samsung.com>
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <media/media-device.h>
#include <media/videobuf2-v4l2.h>
#include <media/v4l2-mem2mem.h>
#include <media/v4l2-dev.h>
#include <media/v4l2-device.h>
#include <media/v4l2-fh.h>
#include <media/v4l2-event.h>
MODULE_DESCRIPTION("Mem to mem device framework for videobuf");
MODULE_AUTHOR("Pawel Osciak, <pawel@osciak.com>");
MODULE_LICENSE("GPL");
static bool debug;
module_param(debug, bool, 0644);
#define dprintk(fmt, arg...) \
do { \
if (debug) \
printk(KERN_DEBUG "%s: " fmt, __func__, ## arg);\
} while (0)
/* Instance is already queued on the job_queue */
#define TRANS_QUEUED (1 << 0)
/* Instance is currently running in hardware */
#define TRANS_RUNNING (1 << 1)
/* Instance is currently aborting */
#define TRANS_ABORT (1 << 2)
/* The job queue is not running new jobs */
#define QUEUE_PAUSED (1 << 0)
/* Offset base for buffers on the destination queue - used to distinguish
* between source and destination buffers when mmapping - they receive the same
* offsets but for different queues */
#define DST_QUEUE_OFF_BASE (1 << 30)
enum v4l2_m2m_entity_type {
MEM2MEM_ENT_TYPE_SOURCE,
MEM2MEM_ENT_TYPE_SINK,
MEM2MEM_ENT_TYPE_PROC
};
static const char * const m2m_entity_name[] = {
"source",
"sink",
"proc"
};
/**
* struct v4l2_m2m_dev - per-device context
* @source: &struct media_entity pointer with the source entity
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @source_pad: &struct media_pad with the source pad.
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @sink: &struct media_entity pointer with the sink entity
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @sink_pad: &struct media_pad with the sink pad.
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @proc: &struct media_entity pointer with the M2M device itself.
* @proc_pads: &struct media_pad with the @proc pads.
* Used only when the M2M device is registered via
* v4l2_m2m_unregister_media_controller().
* @intf_devnode: &struct media_intf devnode pointer with the interface
* with controls the M2M device.
* @curr_ctx: currently running instance
* @job_queue: instances queued to run
* @job_spinlock: protects job_queue
* @job_work: worker to run queued jobs.
* @job_queue_flags: flags of the queue status, %QUEUE_PAUSED.
* @m2m_ops: driver callbacks
*/
struct v4l2_m2m_dev {
struct v4l2_m2m_ctx *curr_ctx;
#ifdef CONFIG_MEDIA_CONTROLLER
struct media_entity *source;
struct media_pad source_pad;
struct media_entity sink;
struct media_pad sink_pad;
struct media_entity proc;
struct media_pad proc_pads[2];
struct media_intf_devnode *intf_devnode;
#endif
struct list_head job_queue;
spinlock_t job_spinlock;
struct work_struct job_work;
unsigned long job_queue_flags;
const struct v4l2_m2m_ops *m2m_ops;
};
static struct v4l2_m2m_queue_ctx *get_queue_ctx(struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type)
{
if (V4L2_TYPE_IS_OUTPUT(type))
return &m2m_ctx->out_q_ctx;
else
return &m2m_ctx->cap_q_ctx;
}
struct vb2_queue *v4l2_m2m_get_vq(struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type)
{
struct v4l2_m2m_queue_ctx *q_ctx;
q_ctx = get_queue_ctx(m2m_ctx, type);
if (!q_ctx)
return NULL;
return &q_ctx->q;
}
EXPORT_SYMBOL(v4l2_m2m_get_vq);
struct vb2_v4l2_buffer *v4l2_m2m_next_buf(struct v4l2_m2m_queue_ctx *q_ctx)
{
struct v4l2_m2m_buffer *b;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
if (list_empty(&q_ctx->rdy_queue)) {
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return NULL;
}
b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return &b->vb;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_next_buf);
struct vb2_v4l2_buffer *v4l2_m2m_last_buf(struct v4l2_m2m_queue_ctx *q_ctx)
{
struct v4l2_m2m_buffer *b;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
if (list_empty(&q_ctx->rdy_queue)) {
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return NULL;
}
b = list_last_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return &b->vb;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_last_buf);
struct vb2_v4l2_buffer *v4l2_m2m_buf_remove(struct v4l2_m2m_queue_ctx *q_ctx)
{
struct v4l2_m2m_buffer *b;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
if (list_empty(&q_ctx->rdy_queue)) {
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return NULL;
}
b = list_first_entry(&q_ctx->rdy_queue, struct v4l2_m2m_buffer, list);
list_del(&b->list);
q_ctx->num_rdy--;
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return &b->vb;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove);
void v4l2_m2m_buf_remove_by_buf(struct v4l2_m2m_queue_ctx *q_ctx,
struct vb2_v4l2_buffer *vbuf)
{
struct v4l2_m2m_buffer *b;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
b = container_of(vbuf, struct v4l2_m2m_buffer, vb);
list_del(&b->list);
q_ctx->num_rdy--;
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_buf);
struct vb2_v4l2_buffer *
v4l2_m2m_buf_remove_by_idx(struct v4l2_m2m_queue_ctx *q_ctx, unsigned int idx)
{
struct v4l2_m2m_buffer *b, *tmp;
struct vb2_v4l2_buffer *ret = NULL;
unsigned long flags;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
list_for_each_entry_safe(b, tmp, &q_ctx->rdy_queue, list) {
if (b->vb.vb2_buf.index == idx) {
list_del(&b->list);
q_ctx->num_rdy--;
ret = &b->vb;
break;
}
}
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_buf_remove_by_idx);
/*
* Scheduling handlers
*/
void *v4l2_m2m_get_curr_priv(struct v4l2_m2m_dev *m2m_dev)
{
unsigned long flags;
void *ret = NULL;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
if (m2m_dev->curr_ctx)
ret = m2m_dev->curr_ctx->priv;
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
return ret;
}
EXPORT_SYMBOL(v4l2_m2m_get_curr_priv);
/**
* v4l2_m2m_try_run() - select next job to perform and run it if possible
* @m2m_dev: per-device context
*
* Get next transaction (if present) from the waiting jobs list and run it.
*
* Note that this function can run on a given v4l2_m2m_ctx context,
* but call .device_run for another context.
*/
static void v4l2_m2m_try_run(struct v4l2_m2m_dev *m2m_dev)
{
unsigned long flags;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
if (NULL != m2m_dev->curr_ctx) {
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("Another instance is running, won't run now\n");
return;
}
if (list_empty(&m2m_dev->job_queue)) {
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("No job pending\n");
return;
}
if (m2m_dev->job_queue_flags & QUEUE_PAUSED) {
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("Running new jobs is paused\n");
return;
}
m2m_dev->curr_ctx = list_first_entry(&m2m_dev->job_queue,
struct v4l2_m2m_ctx, queue);
m2m_dev->curr_ctx->job_flags |= TRANS_RUNNING;
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("Running job on m2m_ctx: %p\n", m2m_dev->curr_ctx);
m2m_dev->m2m_ops->device_run(m2m_dev->curr_ctx->priv);
}
/*
* __v4l2_m2m_try_queue() - queue a job
* @m2m_dev: m2m device
* @m2m_ctx: m2m context
*
* Check if this context is ready to queue a job.
*
* This function can run in interrupt context.
*/
static void __v4l2_m2m_try_queue(struct v4l2_m2m_dev *m2m_dev,
struct v4l2_m2m_ctx *m2m_ctx)
{
unsigned long flags_job;
struct vb2_v4l2_buffer *dst, *src;
dprintk("Trying to schedule a job for m2m_ctx: %p\n", m2m_ctx);
if (!m2m_ctx->out_q_ctx.q.streaming
|| !m2m_ctx->cap_q_ctx.q.streaming) {
dprintk("Streaming needs to be on for both queues\n");
return;
}
spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
/* If the context is aborted then don't schedule it */
if (m2m_ctx->job_flags & TRANS_ABORT) {
dprintk("Aborted context\n");
goto job_unlock;
}
if (m2m_ctx->job_flags & TRANS_QUEUED) {
dprintk("On job queue already\n");
goto job_unlock;
}
src = v4l2_m2m_next_src_buf(m2m_ctx);
dst = v4l2_m2m_next_dst_buf(m2m_ctx);
if (!src && !m2m_ctx->out_q_ctx.buffered) {
dprintk("No input buffers available\n");
goto job_unlock;
}
if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
dprintk("No output buffers available\n");
goto job_unlock;
}
m2m_ctx->new_frame = true;
if (src && dst && dst->is_held &&
dst->vb2_buf.copied_timestamp &&
dst->vb2_buf.timestamp != src->vb2_buf.timestamp) {
dst->is_held = false;
v4l2_m2m_dst_buf_remove(m2m_ctx);
v4l2_m2m_buf_done(dst, VB2_BUF_STATE_DONE);
dst = v4l2_m2m_next_dst_buf(m2m_ctx);
if (!dst && !m2m_ctx->cap_q_ctx.buffered) {
dprintk("No output buffers available after returning held buffer\n");
goto job_unlock;
}
}
if (src && dst && (m2m_ctx->out_q_ctx.q.subsystem_flags &
VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF))
m2m_ctx->new_frame = !dst->vb2_buf.copied_timestamp ||
dst->vb2_buf.timestamp != src->vb2_buf.timestamp;
media: v4l2-mem2mem: handle draining, stopped and next-buf-is-last states Since the draining and stop phase of the HW decoder mem2mem bahaviour is now clearly defined, we can move handling of the following states to the common v4l2-mem2mem core code: - draining - stopped - next-buf-is-last By introducing the following v4l2-mem2mem APIs: - v4l2_m2m_encoder_cmd/v4l2_m2m_ioctl_encoder_cmd to handle start/stop command - v4l2_m2m_decoder_cmd/v4l2_m2m_ioctl_decoder_cmd to handle start/stop command - v4l2_m2m_update_start_streaming_state to update state on start of streaming of the de/encoder queue - v4l2_m2m_update_stop_streaming_state to update state on stop of streaming of the de/encoder queue - v4l2_m2m_last_buffer_done to make the current dest buffer as the last one And inline helpers: - v4l2_m2m_mark_stopped to mark the de/encoding process as stopped - v4l2_m2m_clear_state to clear the de/encoding state - v4l2_m2m_dst_buf_is_last to detect the current dequeued dst_buf is the last - v4l2_m2m_has_stopped to detect the de/encoding stopped state - v4l2_m2m_is_last_draining_src_buf to detect the current source buffer should be the last processing before stopping the de/encoding process The special next-buf-is-last when min_buffers != 1 case is also handled in v4l2_m2m_qbuf() by reusing the other introduced APIs. This state management has been stolen from the vicodec implementation, and is no-op for drivers not calling the v4l2_m2m_encoder_cmd or v4l2_m2m_decoder_cmd and v4l2_m2m_update_start/stop_streaming_state. The vicodec will be the first one to be converted as an example. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-03-03 15:33:17 +01:00
if (m2m_ctx->has_stopped) {
dprintk("Device has stopped\n");
goto job_unlock;
}
if (m2m_dev->m2m_ops->job_ready
&& (!m2m_dev->m2m_ops->job_ready(m2m_ctx->priv))) {
dprintk("Driver not ready\n");
goto job_unlock;
}
list_add_tail(&m2m_ctx->queue, &m2m_dev->job_queue);
m2m_ctx->job_flags |= TRANS_QUEUED;
job_unlock:
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
}
/**
* v4l2_m2m_try_schedule() - schedule and possibly run a job for any context
* @m2m_ctx: m2m context
*
* Check if this context is ready to queue a job. If suitable,
* run the next queued job on the mem2mem device.
*
* This function shouldn't run in interrupt context.
*
* Note that v4l2_m2m_try_schedule() can schedule one job for this context,
* and then run another job for another context.
*/
void v4l2_m2m_try_schedule(struct v4l2_m2m_ctx *m2m_ctx)
{
struct v4l2_m2m_dev *m2m_dev = m2m_ctx->m2m_dev;
__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
v4l2_m2m_try_run(m2m_dev);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_try_schedule);
/**
* v4l2_m2m_device_run_work() - run pending jobs for the context
* @work: Work structure used for scheduling the execution of this function.
*/
static void v4l2_m2m_device_run_work(struct work_struct *work)
{
struct v4l2_m2m_dev *m2m_dev =
container_of(work, struct v4l2_m2m_dev, job_work);
v4l2_m2m_try_run(m2m_dev);
}
/**
* v4l2_m2m_cancel_job() - cancel pending jobs for the context
* @m2m_ctx: m2m context with jobs to be canceled
*
* In case of streamoff or release called on any context,
* 1] If the context is currently running, then abort job will be called
* 2] If the context is queued, then the context will be removed from
* the job_queue
*/
static void v4l2_m2m_cancel_job(struct v4l2_m2m_ctx *m2m_ctx)
{
struct v4l2_m2m_dev *m2m_dev;
unsigned long flags;
m2m_dev = m2m_ctx->m2m_dev;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
m2m_ctx->job_flags |= TRANS_ABORT;
if (m2m_ctx->job_flags & TRANS_RUNNING) {
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
if (m2m_dev->m2m_ops->job_abort)
m2m_dev->m2m_ops->job_abort(m2m_ctx->priv);
dprintk("m2m_ctx %p running, will wait to complete\n", m2m_ctx);
wait_event(m2m_ctx->finished,
!(m2m_ctx->job_flags & TRANS_RUNNING));
} else if (m2m_ctx->job_flags & TRANS_QUEUED) {
list_del(&m2m_ctx->queue);
m2m_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
dprintk("m2m_ctx: %p had been on queue and was removed\n",
m2m_ctx);
} else {
/* Do nothing, was not on queue/running */
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
}
}
/*
* Schedule the next job, called from v4l2_m2m_job_finish() or
* v4l2_m2m_buf_done_and_job_finish().
*/
static void v4l2_m2m_schedule_next_job(struct v4l2_m2m_dev *m2m_dev,
struct v4l2_m2m_ctx *m2m_ctx)
{
/*
* This instance might have more buffers ready, but since we do not
* allow more than one job on the job_queue per instance, each has
* to be scheduled separately after the previous one finishes.
*/
__v4l2_m2m_try_queue(m2m_dev, m2m_ctx);
/*
* We might be running in atomic context,
* but the job must be run in non-atomic context.
*/
schedule_work(&m2m_dev->job_work);
}
/*
* Assumes job_spinlock is held, called from v4l2_m2m_job_finish() or
* v4l2_m2m_buf_done_and_job_finish().
*/
static bool _v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
struct v4l2_m2m_ctx *m2m_ctx)
{
if (!m2m_dev->curr_ctx || m2m_dev->curr_ctx != m2m_ctx) {
dprintk("Called by an instance not currently running\n");
return false;
}
list_del(&m2m_dev->curr_ctx->queue);
m2m_dev->curr_ctx->job_flags &= ~(TRANS_QUEUED | TRANS_RUNNING);
wake_up(&m2m_dev->curr_ctx->finished);
m2m_dev->curr_ctx = NULL;
return true;
}
void v4l2_m2m_job_finish(struct v4l2_m2m_dev *m2m_dev,
struct v4l2_m2m_ctx *m2m_ctx)
{
unsigned long flags;
bool schedule_next;
/*
* This function should not be used for drivers that support
* holding capture buffers. Those should use
* v4l2_m2m_buf_done_and_job_finish() instead.
*/
WARN_ON(m2m_ctx->out_q_ctx.q.subsystem_flags &
VB2_V4L2_FL_SUPPORTS_M2M_HOLD_CAPTURE_BUF);
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
if (schedule_next)
v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
}
EXPORT_SYMBOL(v4l2_m2m_job_finish);
void v4l2_m2m_buf_done_and_job_finish(struct v4l2_m2m_dev *m2m_dev,
struct v4l2_m2m_ctx *m2m_ctx,
enum vb2_buffer_state state)
{
struct vb2_v4l2_buffer *src_buf, *dst_buf;
bool schedule_next = false;
unsigned long flags;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
src_buf = v4l2_m2m_src_buf_remove(m2m_ctx);
dst_buf = v4l2_m2m_next_dst_buf(m2m_ctx);
if (WARN_ON(!src_buf || !dst_buf))
goto unlock;
dst_buf->is_held = src_buf->flags & V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
if (!dst_buf->is_held) {
v4l2_m2m_dst_buf_remove(m2m_ctx);
v4l2_m2m_buf_done(dst_buf, state);
}
/*
* If the request API is being used, returning the OUTPUT
* (src) buffer will wake-up any process waiting on the
* request file descriptor.
*
* Therefore, return the CAPTURE (dst) buffer first,
* to avoid signalling the request file descriptor
* before the CAPTURE buffer is done.
*/
v4l2_m2m_buf_done(src_buf, state);
schedule_next = _v4l2_m2m_job_finish(m2m_dev, m2m_ctx);
unlock:
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
if (schedule_next)
v4l2_m2m_schedule_next_job(m2m_dev, m2m_ctx);
}
EXPORT_SYMBOL(v4l2_m2m_buf_done_and_job_finish);
void v4l2_m2m_suspend(struct v4l2_m2m_dev *m2m_dev)
{
unsigned long flags;
struct v4l2_m2m_ctx *curr_ctx;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
m2m_dev->job_queue_flags |= QUEUE_PAUSED;
curr_ctx = m2m_dev->curr_ctx;
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
if (curr_ctx)
wait_event(curr_ctx->finished,
!(curr_ctx->job_flags & TRANS_RUNNING));
}
EXPORT_SYMBOL(v4l2_m2m_suspend);
void v4l2_m2m_resume(struct v4l2_m2m_dev *m2m_dev)
{
unsigned long flags;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
m2m_dev->job_queue_flags &= ~QUEUE_PAUSED;
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
v4l2_m2m_try_run(m2m_dev);
}
EXPORT_SYMBOL(v4l2_m2m_resume);
int v4l2_m2m_reqbufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_requestbuffers *reqbufs)
{
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(m2m_ctx, reqbufs->type);
ret = vb2_reqbufs(vq, reqbufs);
/* If count == 0, then the owner has released all buffers and he
is no longer owner of the queue. Otherwise we have an owner. */
if (ret == 0)
vq->owner = reqbufs->count ? file->private_data : NULL;
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_reqbufs);
static void v4l2_m2m_adjust_mem_offset(struct vb2_queue *vq,
struct v4l2_buffer *buf)
{
/* Adjust MMAP memory offsets for the CAPTURE queue */
if (buf->memory == V4L2_MEMORY_MMAP && V4L2_TYPE_IS_CAPTURE(vq->type)) {
if (V4L2_TYPE_IS_MULTIPLANAR(vq->type)) {
unsigned int i;
for (i = 0; i < buf->length; ++i)
buf->m.planes[i].m.mem_offset
+= DST_QUEUE_OFF_BASE;
} else {
buf->m.offset += DST_QUEUE_OFF_BASE;
}
}
}
int v4l2_m2m_querybuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf)
{
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
ret = vb2_querybuf(vq, buf);
if (ret)
return ret;
/* Adjust MMAP memory offsets for the CAPTURE queue */
v4l2_m2m_adjust_mem_offset(vq, buf);
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_querybuf);
media: v4l2-mem2mem: handle draining, stopped and next-buf-is-last states Since the draining and stop phase of the HW decoder mem2mem bahaviour is now clearly defined, we can move handling of the following states to the common v4l2-mem2mem core code: - draining - stopped - next-buf-is-last By introducing the following v4l2-mem2mem APIs: - v4l2_m2m_encoder_cmd/v4l2_m2m_ioctl_encoder_cmd to handle start/stop command - v4l2_m2m_decoder_cmd/v4l2_m2m_ioctl_decoder_cmd to handle start/stop command - v4l2_m2m_update_start_streaming_state to update state on start of streaming of the de/encoder queue - v4l2_m2m_update_stop_streaming_state to update state on stop of streaming of the de/encoder queue - v4l2_m2m_last_buffer_done to make the current dest buffer as the last one And inline helpers: - v4l2_m2m_mark_stopped to mark the de/encoding process as stopped - v4l2_m2m_clear_state to clear the de/encoding state - v4l2_m2m_dst_buf_is_last to detect the current dequeued dst_buf is the last - v4l2_m2m_has_stopped to detect the de/encoding stopped state - v4l2_m2m_is_last_draining_src_buf to detect the current source buffer should be the last processing before stopping the de/encoding process The special next-buf-is-last when min_buffers != 1 case is also handled in v4l2_m2m_qbuf() by reusing the other introduced APIs. This state management has been stolen from the vicodec implementation, and is no-op for drivers not calling the v4l2_m2m_encoder_cmd or v4l2_m2m_decoder_cmd and v4l2_m2m_update_start/stop_streaming_state. The vicodec will be the first one to be converted as an example. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-03-03 15:33:17 +01:00
/*
* This will add the LAST flag and mark the buffer management
* state as stopped.
* This is called when the last capture buffer must be flagged as LAST
* in draining mode from the encoder/decoder driver buf_queue() callback
* or from v4l2_update_last_buf_state() when a capture buffer is available.
*/
void v4l2_m2m_last_buffer_done(struct v4l2_m2m_ctx *m2m_ctx,
struct vb2_v4l2_buffer *vbuf)
{
vbuf->flags |= V4L2_BUF_FLAG_LAST;
vb2_buffer_done(&vbuf->vb2_buf, VB2_BUF_STATE_DONE);
v4l2_m2m_mark_stopped(m2m_ctx);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_last_buffer_done);
/* When stop command is issued, update buffer management state */
static int v4l2_update_last_buf_state(struct v4l2_m2m_ctx *m2m_ctx)
{
struct vb2_v4l2_buffer *next_dst_buf;
if (m2m_ctx->is_draining)
return -EBUSY;
if (m2m_ctx->has_stopped)
return 0;
m2m_ctx->last_src_buf = v4l2_m2m_last_src_buf(m2m_ctx);
m2m_ctx->is_draining = true;
/*
* The processing of the last output buffer queued before
* the STOP command is expected to mark the buffer management
* state as stopped with v4l2_m2m_mark_stopped().
*/
if (m2m_ctx->last_src_buf)
return 0;
/*
* In case the output queue is empty, try to mark the last capture
* buffer as LAST.
*/
next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
if (!next_dst_buf) {
/*
* Wait for the next queued one in encoder/decoder driver
* buf_queue() callback using the v4l2_m2m_dst_buf_is_last()
* helper or in v4l2_m2m_qbuf() if encoder/decoder is not yet
* streaming.
*/
m2m_ctx->next_buf_last = true;
return 0;
}
v4l2_m2m_last_buffer_done(m2m_ctx, next_dst_buf);
return 0;
}
/*
* Updates the encoding/decoding buffer management state, should
* be called from encoder/decoder drivers start_streaming()
*/
void v4l2_m2m_update_start_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
struct vb2_queue *q)
{
/* If start streaming again, untag the last output buffer */
if (V4L2_TYPE_IS_OUTPUT(q->type))
m2m_ctx->last_src_buf = NULL;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_update_start_streaming_state);
/*
* Updates the encoding/decoding buffer management state, should
* be called from encoder/decoder driver stop_streaming()
*/
void v4l2_m2m_update_stop_streaming_state(struct v4l2_m2m_ctx *m2m_ctx,
struct vb2_queue *q)
{
if (V4L2_TYPE_IS_OUTPUT(q->type)) {
/*
* If in draining state, either mark next dst buffer as
* done or flag next one to be marked as done either
* in encoder/decoder driver buf_queue() callback using
* the v4l2_m2m_dst_buf_is_last() helper or in v4l2_m2m_qbuf()
* if encoder/decoder is not yet streaming
*/
if (m2m_ctx->is_draining) {
struct vb2_v4l2_buffer *next_dst_buf;
m2m_ctx->last_src_buf = NULL;
next_dst_buf = v4l2_m2m_dst_buf_remove(m2m_ctx);
if (!next_dst_buf)
m2m_ctx->next_buf_last = true;
else
v4l2_m2m_last_buffer_done(m2m_ctx,
next_dst_buf);
}
} else {
v4l2_m2m_clear_state(m2m_ctx);
}
}
EXPORT_SYMBOL_GPL(v4l2_m2m_update_stop_streaming_state);
static void v4l2_m2m_force_last_buf_done(struct v4l2_m2m_ctx *m2m_ctx,
struct vb2_queue *q)
{
struct vb2_buffer *vb;
struct vb2_v4l2_buffer *vbuf;
unsigned int i;
if (WARN_ON(q->is_output))
return;
if (list_empty(&q->queued_list))
return;
vb = list_first_entry(&q->queued_list, struct vb2_buffer, queued_entry);
for (i = 0; i < vb->num_planes; i++)
vb2_set_plane_payload(vb, i, 0);
/*
* Since the buffer hasn't been queued to the ready queue,
* mark is active and owned before marking it LAST and DONE
*/
vb->state = VB2_BUF_STATE_ACTIVE;
atomic_inc(&q->owned_by_drv_count);
vbuf = to_vb2_v4l2_buffer(vb);
vbuf->field = V4L2_FIELD_NONE;
v4l2_m2m_last_buffer_done(m2m_ctx, vbuf);
}
int v4l2_m2m_qbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf)
{
struct video_device *vdev = video_devdata(file);
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
(buf->flags & V4L2_BUF_FLAG_REQUEST_FD)) {
dprintk("%s: requests cannot be used with capture buffers\n",
__func__);
return -EPERM;
}
media: v4l2-mem2mem: handle draining, stopped and next-buf-is-last states Since the draining and stop phase of the HW decoder mem2mem bahaviour is now clearly defined, we can move handling of the following states to the common v4l2-mem2mem core code: - draining - stopped - next-buf-is-last By introducing the following v4l2-mem2mem APIs: - v4l2_m2m_encoder_cmd/v4l2_m2m_ioctl_encoder_cmd to handle start/stop command - v4l2_m2m_decoder_cmd/v4l2_m2m_ioctl_decoder_cmd to handle start/stop command - v4l2_m2m_update_start_streaming_state to update state on start of streaming of the de/encoder queue - v4l2_m2m_update_stop_streaming_state to update state on stop of streaming of the de/encoder queue - v4l2_m2m_last_buffer_done to make the current dest buffer as the last one And inline helpers: - v4l2_m2m_mark_stopped to mark the de/encoding process as stopped - v4l2_m2m_clear_state to clear the de/encoding state - v4l2_m2m_dst_buf_is_last to detect the current dequeued dst_buf is the last - v4l2_m2m_has_stopped to detect the de/encoding stopped state - v4l2_m2m_is_last_draining_src_buf to detect the current source buffer should be the last processing before stopping the de/encoding process The special next-buf-is-last when min_buffers != 1 case is also handled in v4l2_m2m_qbuf() by reusing the other introduced APIs. This state management has been stolen from the vicodec implementation, and is no-op for drivers not calling the v4l2_m2m_encoder_cmd or v4l2_m2m_decoder_cmd and v4l2_m2m_update_start/stop_streaming_state. The vicodec will be the first one to be converted as an example. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-03-03 15:33:17 +01:00
ret = vb2_qbuf(vq, vdev->v4l2_dev->mdev, buf);
media: v4l2-mem2mem: handle draining, stopped and next-buf-is-last states Since the draining and stop phase of the HW decoder mem2mem bahaviour is now clearly defined, we can move handling of the following states to the common v4l2-mem2mem core code: - draining - stopped - next-buf-is-last By introducing the following v4l2-mem2mem APIs: - v4l2_m2m_encoder_cmd/v4l2_m2m_ioctl_encoder_cmd to handle start/stop command - v4l2_m2m_decoder_cmd/v4l2_m2m_ioctl_decoder_cmd to handle start/stop command - v4l2_m2m_update_start_streaming_state to update state on start of streaming of the de/encoder queue - v4l2_m2m_update_stop_streaming_state to update state on stop of streaming of the de/encoder queue - v4l2_m2m_last_buffer_done to make the current dest buffer as the last one And inline helpers: - v4l2_m2m_mark_stopped to mark the de/encoding process as stopped - v4l2_m2m_clear_state to clear the de/encoding state - v4l2_m2m_dst_buf_is_last to detect the current dequeued dst_buf is the last - v4l2_m2m_has_stopped to detect the de/encoding stopped state - v4l2_m2m_is_last_draining_src_buf to detect the current source buffer should be the last processing before stopping the de/encoding process The special next-buf-is-last when min_buffers != 1 case is also handled in v4l2_m2m_qbuf() by reusing the other introduced APIs. This state management has been stolen from the vicodec implementation, and is no-op for drivers not calling the v4l2_m2m_encoder_cmd or v4l2_m2m_decoder_cmd and v4l2_m2m_update_start/stop_streaming_state. The vicodec will be the first one to be converted as an example. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-03-03 15:33:17 +01:00
if (ret)
return ret;
/* Adjust MMAP memory offsets for the CAPTURE queue */
v4l2_m2m_adjust_mem_offset(vq, buf);
media: v4l2-mem2mem: handle draining, stopped and next-buf-is-last states Since the draining and stop phase of the HW decoder mem2mem bahaviour is now clearly defined, we can move handling of the following states to the common v4l2-mem2mem core code: - draining - stopped - next-buf-is-last By introducing the following v4l2-mem2mem APIs: - v4l2_m2m_encoder_cmd/v4l2_m2m_ioctl_encoder_cmd to handle start/stop command - v4l2_m2m_decoder_cmd/v4l2_m2m_ioctl_decoder_cmd to handle start/stop command - v4l2_m2m_update_start_streaming_state to update state on start of streaming of the de/encoder queue - v4l2_m2m_update_stop_streaming_state to update state on stop of streaming of the de/encoder queue - v4l2_m2m_last_buffer_done to make the current dest buffer as the last one And inline helpers: - v4l2_m2m_mark_stopped to mark the de/encoding process as stopped - v4l2_m2m_clear_state to clear the de/encoding state - v4l2_m2m_dst_buf_is_last to detect the current dequeued dst_buf is the last - v4l2_m2m_has_stopped to detect the de/encoding stopped state - v4l2_m2m_is_last_draining_src_buf to detect the current source buffer should be the last processing before stopping the de/encoding process The special next-buf-is-last when min_buffers != 1 case is also handled in v4l2_m2m_qbuf() by reusing the other introduced APIs. This state management has been stolen from the vicodec implementation, and is no-op for drivers not calling the v4l2_m2m_encoder_cmd or v4l2_m2m_decoder_cmd and v4l2_m2m_update_start/stop_streaming_state. The vicodec will be the first one to be converted as an example. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-03-03 15:33:17 +01:00
/*
* If the capture queue is streaming, but streaming hasn't started
* on the device, but was asked to stop, mark the previously queued
* buffer as DONE with LAST flag since it won't be queued on the
* device.
*/
if (V4L2_TYPE_IS_CAPTURE(vq->type) &&
media: v4l2-mem2mem: handle draining, stopped and next-buf-is-last states Since the draining and stop phase of the HW decoder mem2mem bahaviour is now clearly defined, we can move handling of the following states to the common v4l2-mem2mem core code: - draining - stopped - next-buf-is-last By introducing the following v4l2-mem2mem APIs: - v4l2_m2m_encoder_cmd/v4l2_m2m_ioctl_encoder_cmd to handle start/stop command - v4l2_m2m_decoder_cmd/v4l2_m2m_ioctl_decoder_cmd to handle start/stop command - v4l2_m2m_update_start_streaming_state to update state on start of streaming of the de/encoder queue - v4l2_m2m_update_stop_streaming_state to update state on stop of streaming of the de/encoder queue - v4l2_m2m_last_buffer_done to make the current dest buffer as the last one And inline helpers: - v4l2_m2m_mark_stopped to mark the de/encoding process as stopped - v4l2_m2m_clear_state to clear the de/encoding state - v4l2_m2m_dst_buf_is_last to detect the current dequeued dst_buf is the last - v4l2_m2m_has_stopped to detect the de/encoding stopped state - v4l2_m2m_is_last_draining_src_buf to detect the current source buffer should be the last processing before stopping the de/encoding process The special next-buf-is-last when min_buffers != 1 case is also handled in v4l2_m2m_qbuf() by reusing the other introduced APIs. This state management has been stolen from the vicodec implementation, and is no-op for drivers not calling the v4l2_m2m_encoder_cmd or v4l2_m2m_decoder_cmd and v4l2_m2m_update_start/stop_streaming_state. The vicodec will be the first one to be converted as an example. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-03-03 15:33:17 +01:00
vb2_is_streaming(vq) && !vb2_start_streaming_called(vq) &&
(v4l2_m2m_has_stopped(m2m_ctx) || v4l2_m2m_dst_buf_is_last(m2m_ctx)))
v4l2_m2m_force_last_buf_done(m2m_ctx, vq);
else if (!(buf->flags & V4L2_BUF_FLAG_IN_REQUEST))
v4l2_m2m_try_schedule(m2m_ctx);
media: v4l2-mem2mem: handle draining, stopped and next-buf-is-last states Since the draining and stop phase of the HW decoder mem2mem bahaviour is now clearly defined, we can move handling of the following states to the common v4l2-mem2mem core code: - draining - stopped - next-buf-is-last By introducing the following v4l2-mem2mem APIs: - v4l2_m2m_encoder_cmd/v4l2_m2m_ioctl_encoder_cmd to handle start/stop command - v4l2_m2m_decoder_cmd/v4l2_m2m_ioctl_decoder_cmd to handle start/stop command - v4l2_m2m_update_start_streaming_state to update state on start of streaming of the de/encoder queue - v4l2_m2m_update_stop_streaming_state to update state on stop of streaming of the de/encoder queue - v4l2_m2m_last_buffer_done to make the current dest buffer as the last one And inline helpers: - v4l2_m2m_mark_stopped to mark the de/encoding process as stopped - v4l2_m2m_clear_state to clear the de/encoding state - v4l2_m2m_dst_buf_is_last to detect the current dequeued dst_buf is the last - v4l2_m2m_has_stopped to detect the de/encoding stopped state - v4l2_m2m_is_last_draining_src_buf to detect the current source buffer should be the last processing before stopping the de/encoding process The special next-buf-is-last when min_buffers != 1 case is also handled in v4l2_m2m_qbuf() by reusing the other introduced APIs. This state management has been stolen from the vicodec implementation, and is no-op for drivers not calling the v4l2_m2m_encoder_cmd or v4l2_m2m_decoder_cmd and v4l2_m2m_update_start/stop_streaming_state. The vicodec will be the first one to be converted as an example. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-03-03 15:33:17 +01:00
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_qbuf);
int v4l2_m2m_dqbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf)
{
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
ret = vb2_dqbuf(vq, buf, file->f_flags & O_NONBLOCK);
if (ret)
return ret;
/* Adjust MMAP memory offsets for the CAPTURE queue */
v4l2_m2m_adjust_mem_offset(vq, buf);
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_dqbuf);
int v4l2_m2m_prepare_buf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_buffer *buf)
{
struct video_device *vdev = video_devdata(file);
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(m2m_ctx, buf->type);
ret = vb2_prepare_buf(vq, vdev->v4l2_dev->mdev, buf);
if (ret)
return ret;
/* Adjust MMAP memory offsets for the CAPTURE queue */
v4l2_m2m_adjust_mem_offset(vq, buf);
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_prepare_buf);
int v4l2_m2m_create_bufs(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_create_buffers *create)
{
struct vb2_queue *vq;
vq = v4l2_m2m_get_vq(m2m_ctx, create->format.type);
return vb2_create_bufs(vq, create);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_create_bufs);
int v4l2_m2m_expbuf(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_exportbuffer *eb)
{
struct vb2_queue *vq;
vq = v4l2_m2m_get_vq(m2m_ctx, eb->type);
return vb2_expbuf(vq, eb);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_expbuf);
int v4l2_m2m_streamon(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type)
{
struct vb2_queue *vq;
int ret;
vq = v4l2_m2m_get_vq(m2m_ctx, type);
ret = vb2_streamon(vq, type);
if (!ret)
v4l2_m2m_try_schedule(m2m_ctx);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_streamon);
int v4l2_m2m_streamoff(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
enum v4l2_buf_type type)
{
struct v4l2_m2m_dev *m2m_dev;
struct v4l2_m2m_queue_ctx *q_ctx;
unsigned long flags_job, flags;
int ret;
/* wait until the current context is dequeued from job_queue */
v4l2_m2m_cancel_job(m2m_ctx);
q_ctx = get_queue_ctx(m2m_ctx, type);
ret = vb2_streamoff(&q_ctx->q, type);
if (ret)
return ret;
m2m_dev = m2m_ctx->m2m_dev;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags_job);
/* We should not be scheduled anymore, since we're dropping a queue. */
if (m2m_ctx->job_flags & TRANS_QUEUED)
list_del(&m2m_ctx->queue);
m2m_ctx->job_flags = 0;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
/* Drop queue, since streamoff returns device to the same state as after
* calling reqbufs. */
INIT_LIST_HEAD(&q_ctx->rdy_queue);
q_ctx->num_rdy = 0;
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
if (m2m_dev->curr_ctx == m2m_ctx) {
m2m_dev->curr_ctx = NULL;
wake_up(&m2m_ctx->finished);
}
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags_job);
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_streamoff);
static __poll_t v4l2_m2m_poll_for_data(struct file *file,
struct v4l2_m2m_ctx *m2m_ctx,
struct poll_table_struct *wait)
{
struct vb2_queue *src_q, *dst_q;
__poll_t rc = 0;
unsigned long flags;
src_q = v4l2_m2m_get_src_vq(m2m_ctx);
dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
/*
* There has to be at least one buffer queued on each queued_list, which
* means either in driver already or waiting for driver to claim it
* and start processing.
*/
if ((!src_q->streaming || src_q->error ||
list_empty(&src_q->queued_list)) &&
(!dst_q->streaming || dst_q->error ||
list_empty(&dst_q->queued_list)))
return EPOLLERR;
spin_lock_irqsave(&src_q->done_lock, flags);
if (!list_empty(&src_q->done_list))
rc |= EPOLLOUT | EPOLLWRNORM;
spin_unlock_irqrestore(&src_q->done_lock, flags);
spin_lock_irqsave(&dst_q->done_lock, flags);
/*
* If the last buffer was dequeued from the capture queue, signal
* userspace. DQBUF(CAPTURE) will return -EPIPE.
*/
if (!list_empty(&dst_q->done_list) || dst_q->last_buffer_dequeued)
rc |= EPOLLIN | EPOLLRDNORM;
spin_unlock_irqrestore(&dst_q->done_lock, flags);
return rc;
}
__poll_t v4l2_m2m_poll(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct poll_table_struct *wait)
{
struct video_device *vfd = video_devdata(file);
struct vb2_queue *src_q = v4l2_m2m_get_src_vq(m2m_ctx);
struct vb2_queue *dst_q = v4l2_m2m_get_dst_vq(m2m_ctx);
__poll_t req_events = poll_requested_events(wait);
__poll_t rc = 0;
/*
* poll_wait() MUST be called on the first invocation on all the
* potential queues of interest, even if we are not interested in their
* events during this first call. Failure to do so will result in
* queue's events to be ignored because the poll_table won't be capable
* of adding new wait queues thereafter.
*/
poll_wait(file, &src_q->done_wq, wait);
poll_wait(file, &dst_q->done_wq, wait);
if (req_events & (EPOLLOUT | EPOLLWRNORM | EPOLLIN | EPOLLRDNORM))
rc = v4l2_m2m_poll_for_data(file, m2m_ctx, wait);
if (test_bit(V4L2_FL_USES_V4L2_FH, &vfd->flags)) {
struct v4l2_fh *fh = file->private_data;
poll_wait(file, &fh->wait, wait);
if (v4l2_event_pending(fh))
rc |= EPOLLPRI;
}
return rc;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_poll);
int v4l2_m2m_mmap(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct vm_area_struct *vma)
{
unsigned long offset = vma->vm_pgoff << PAGE_SHIFT;
struct vb2_queue *vq;
if (offset < DST_QUEUE_OFF_BASE) {
vq = v4l2_m2m_get_src_vq(m2m_ctx);
} else {
vq = v4l2_m2m_get_dst_vq(m2m_ctx);
vma->vm_pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
}
return vb2_mmap(vq, vma);
}
EXPORT_SYMBOL(v4l2_m2m_mmap);
#ifndef CONFIG_MMU
unsigned long v4l2_m2m_get_unmapped_area(struct file *file, unsigned long addr,
unsigned long len, unsigned long pgoff,
unsigned long flags)
{
struct v4l2_fh *fh = file->private_data;
unsigned long offset = pgoff << PAGE_SHIFT;
struct vb2_queue *vq;
if (offset < DST_QUEUE_OFF_BASE) {
vq = v4l2_m2m_get_src_vq(fh->m2m_ctx);
} else {
vq = v4l2_m2m_get_dst_vq(fh->m2m_ctx);
pgoff -= (DST_QUEUE_OFF_BASE >> PAGE_SHIFT);
}
return vb2_get_unmapped_area(vq, addr, len, pgoff, flags);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_get_unmapped_area);
#endif
#if defined(CONFIG_MEDIA_CONTROLLER)
void v4l2_m2m_unregister_media_controller(struct v4l2_m2m_dev *m2m_dev)
{
media_remove_intf_links(&m2m_dev->intf_devnode->intf);
media_devnode_remove(m2m_dev->intf_devnode);
media_entity_remove_links(m2m_dev->source);
media_entity_remove_links(&m2m_dev->sink);
media_entity_remove_links(&m2m_dev->proc);
media_device_unregister_entity(m2m_dev->source);
media_device_unregister_entity(&m2m_dev->sink);
media_device_unregister_entity(&m2m_dev->proc);
kfree(m2m_dev->source->name);
kfree(m2m_dev->sink.name);
kfree(m2m_dev->proc.name);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_unregister_media_controller);
static int v4l2_m2m_register_entity(struct media_device *mdev,
struct v4l2_m2m_dev *m2m_dev, enum v4l2_m2m_entity_type type,
struct video_device *vdev, int function)
{
struct media_entity *entity;
struct media_pad *pads;
char *name;
unsigned int len;
int num_pads;
int ret;
switch (type) {
case MEM2MEM_ENT_TYPE_SOURCE:
entity = m2m_dev->source;
pads = &m2m_dev->source_pad;
pads[0].flags = MEDIA_PAD_FL_SOURCE;
num_pads = 1;
break;
case MEM2MEM_ENT_TYPE_SINK:
entity = &m2m_dev->sink;
pads = &m2m_dev->sink_pad;
pads[0].flags = MEDIA_PAD_FL_SINK;
num_pads = 1;
break;
case MEM2MEM_ENT_TYPE_PROC:
entity = &m2m_dev->proc;
pads = m2m_dev->proc_pads;
pads[0].flags = MEDIA_PAD_FL_SINK;
pads[1].flags = MEDIA_PAD_FL_SOURCE;
num_pads = 2;
break;
default:
return -EINVAL;
}
entity->obj_type = MEDIA_ENTITY_TYPE_BASE;
if (type != MEM2MEM_ENT_TYPE_PROC) {
entity->info.dev.major = VIDEO_MAJOR;
entity->info.dev.minor = vdev->minor;
}
len = strlen(vdev->name) + 2 + strlen(m2m_entity_name[type]);
name = kmalloc(len, GFP_KERNEL);
if (!name)
return -ENOMEM;
snprintf(name, len, "%s-%s", vdev->name, m2m_entity_name[type]);
entity->name = name;
entity->function = function;
ret = media_entity_pads_init(entity, num_pads, pads);
if (ret)
return ret;
ret = media_device_register_entity(mdev, entity);
if (ret)
return ret;
return 0;
}
int v4l2_m2m_register_media_controller(struct v4l2_m2m_dev *m2m_dev,
struct video_device *vdev, int function)
{
struct media_device *mdev = vdev->v4l2_dev->mdev;
struct media_link *link;
int ret;
if (!mdev)
return 0;
/* A memory-to-memory device consists in two
* DMA engine and one video processing entities.
* The DMA engine entities are linked to a V4L interface
*/
/* Create the three entities with their pads */
m2m_dev->source = &vdev->entity;
ret = v4l2_m2m_register_entity(mdev, m2m_dev,
MEM2MEM_ENT_TYPE_SOURCE, vdev, MEDIA_ENT_F_IO_V4L);
if (ret)
return ret;
ret = v4l2_m2m_register_entity(mdev, m2m_dev,
MEM2MEM_ENT_TYPE_PROC, vdev, function);
if (ret)
goto err_rel_entity0;
ret = v4l2_m2m_register_entity(mdev, m2m_dev,
MEM2MEM_ENT_TYPE_SINK, vdev, MEDIA_ENT_F_IO_V4L);
if (ret)
goto err_rel_entity1;
/* Connect the three entities */
ret = media_create_pad_link(m2m_dev->source, 0, &m2m_dev->proc, 0,
MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
if (ret)
goto err_rel_entity2;
ret = media_create_pad_link(&m2m_dev->proc, 1, &m2m_dev->sink, 0,
MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
if (ret)
goto err_rm_links0;
/* Create video interface */
m2m_dev->intf_devnode = media_devnode_create(mdev,
MEDIA_INTF_T_V4L_VIDEO, 0,
VIDEO_MAJOR, vdev->minor);
if (!m2m_dev->intf_devnode) {
ret = -ENOMEM;
goto err_rm_links1;
}
/* Connect the two DMA engines to the interface */
link = media_create_intf_link(m2m_dev->source,
&m2m_dev->intf_devnode->intf,
MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
if (!link) {
ret = -ENOMEM;
goto err_rm_devnode;
}
link = media_create_intf_link(&m2m_dev->sink,
&m2m_dev->intf_devnode->intf,
MEDIA_LNK_FL_IMMUTABLE | MEDIA_LNK_FL_ENABLED);
if (!link) {
ret = -ENOMEM;
goto err_rm_intf_link;
}
return 0;
err_rm_intf_link:
media_remove_intf_links(&m2m_dev->intf_devnode->intf);
err_rm_devnode:
media_devnode_remove(m2m_dev->intf_devnode);
err_rm_links1:
media_entity_remove_links(&m2m_dev->sink);
err_rm_links0:
media_entity_remove_links(&m2m_dev->proc);
media_entity_remove_links(m2m_dev->source);
err_rel_entity2:
media_device_unregister_entity(&m2m_dev->proc);
kfree(m2m_dev->proc.name);
err_rel_entity1:
media_device_unregister_entity(&m2m_dev->sink);
kfree(m2m_dev->sink.name);
err_rel_entity0:
media_device_unregister_entity(m2m_dev->source);
kfree(m2m_dev->source->name);
return ret;
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_register_media_controller);
#endif
struct v4l2_m2m_dev *v4l2_m2m_init(const struct v4l2_m2m_ops *m2m_ops)
{
struct v4l2_m2m_dev *m2m_dev;
if (!m2m_ops || WARN_ON(!m2m_ops->device_run))
return ERR_PTR(-EINVAL);
m2m_dev = kzalloc(sizeof *m2m_dev, GFP_KERNEL);
if (!m2m_dev)
return ERR_PTR(-ENOMEM);
m2m_dev->curr_ctx = NULL;
m2m_dev->m2m_ops = m2m_ops;
INIT_LIST_HEAD(&m2m_dev->job_queue);
spin_lock_init(&m2m_dev->job_spinlock);
INIT_WORK(&m2m_dev->job_work, v4l2_m2m_device_run_work);
return m2m_dev;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_init);
void v4l2_m2m_release(struct v4l2_m2m_dev *m2m_dev)
{
kfree(m2m_dev);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_release);
struct v4l2_m2m_ctx *v4l2_m2m_ctx_init(struct v4l2_m2m_dev *m2m_dev,
void *drv_priv,
int (*queue_init)(void *priv, struct vb2_queue *src_vq, struct vb2_queue *dst_vq))
{
struct v4l2_m2m_ctx *m2m_ctx;
struct v4l2_m2m_queue_ctx *out_q_ctx, *cap_q_ctx;
int ret;
m2m_ctx = kzalloc(sizeof *m2m_ctx, GFP_KERNEL);
if (!m2m_ctx)
return ERR_PTR(-ENOMEM);
m2m_ctx->priv = drv_priv;
m2m_ctx->m2m_dev = m2m_dev;
init_waitqueue_head(&m2m_ctx->finished);
out_q_ctx = &m2m_ctx->out_q_ctx;
cap_q_ctx = &m2m_ctx->cap_q_ctx;
INIT_LIST_HEAD(&out_q_ctx->rdy_queue);
INIT_LIST_HEAD(&cap_q_ctx->rdy_queue);
spin_lock_init(&out_q_ctx->rdy_spinlock);
spin_lock_init(&cap_q_ctx->rdy_spinlock);
INIT_LIST_HEAD(&m2m_ctx->queue);
ret = queue_init(drv_priv, &out_q_ctx->q, &cap_q_ctx->q);
if (ret)
goto err;
/*
* Both queues should use same the mutex to lock the m2m context.
* This lock is used in some v4l2_m2m_* helpers.
*/
if (WARN_ON(out_q_ctx->q.lock != cap_q_ctx->q.lock)) {
ret = -EINVAL;
goto err;
}
m2m_ctx->q_lock = out_q_ctx->q.lock;
return m2m_ctx;
err:
kfree(m2m_ctx);
return ERR_PTR(ret);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_init);
void v4l2_m2m_ctx_release(struct v4l2_m2m_ctx *m2m_ctx)
{
/* wait until the current context is dequeued from job_queue */
v4l2_m2m_cancel_job(m2m_ctx);
vb2_queue_release(&m2m_ctx->cap_q_ctx.q);
vb2_queue_release(&m2m_ctx->out_q_ctx.q);
kfree(m2m_ctx);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ctx_release);
void v4l2_m2m_buf_queue(struct v4l2_m2m_ctx *m2m_ctx,
struct vb2_v4l2_buffer *vbuf)
{
struct v4l2_m2m_buffer *b = container_of(vbuf,
struct v4l2_m2m_buffer, vb);
struct v4l2_m2m_queue_ctx *q_ctx;
unsigned long flags;
q_ctx = get_queue_ctx(m2m_ctx, vbuf->vb2_buf.vb2_queue->type);
if (!q_ctx)
return;
spin_lock_irqsave(&q_ctx->rdy_spinlock, flags);
list_add_tail(&b->list, &q_ctx->rdy_queue);
q_ctx->num_rdy++;
spin_unlock_irqrestore(&q_ctx->rdy_spinlock, flags);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_buf_queue);
void v4l2_m2m_buf_copy_metadata(const struct vb2_v4l2_buffer *out_vb,
struct vb2_v4l2_buffer *cap_vb,
bool copy_frame_flags)
{
u32 mask = V4L2_BUF_FLAG_TIMECODE | V4L2_BUF_FLAG_TSTAMP_SRC_MASK;
if (copy_frame_flags)
mask |= V4L2_BUF_FLAG_KEYFRAME | V4L2_BUF_FLAG_PFRAME |
V4L2_BUF_FLAG_BFRAME;
cap_vb->vb2_buf.timestamp = out_vb->vb2_buf.timestamp;
if (out_vb->flags & V4L2_BUF_FLAG_TIMECODE)
cap_vb->timecode = out_vb->timecode;
cap_vb->field = out_vb->field;
cap_vb->flags &= ~mask;
cap_vb->flags |= out_vb->flags & mask;
cap_vb->vb2_buf.copied_timestamp = 1;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_buf_copy_metadata);
void v4l2_m2m_request_queue(struct media_request *req)
{
struct media_request_object *obj, *obj_safe;
struct v4l2_m2m_ctx *m2m_ctx = NULL;
/*
* Queue all objects. Note that buffer objects are at the end of the
* objects list, after all other object types. Once buffer objects
* are queued, the driver might delete them immediately (if the driver
* processes the buffer at once), so we have to use
* list_for_each_entry_safe() to handle the case where the object we
* queue is deleted.
*/
list_for_each_entry_safe(obj, obj_safe, &req->objects, list) {
struct v4l2_m2m_ctx *m2m_ctx_obj;
struct vb2_buffer *vb;
if (!obj->ops->queue)
continue;
if (vb2_request_object_is_buffer(obj)) {
/* Sanity checks */
vb = container_of(obj, struct vb2_buffer, req_obj);
WARN_ON(!V4L2_TYPE_IS_OUTPUT(vb->vb2_queue->type));
m2m_ctx_obj = container_of(vb->vb2_queue,
struct v4l2_m2m_ctx,
out_q_ctx.q);
WARN_ON(m2m_ctx && m2m_ctx_obj != m2m_ctx);
m2m_ctx = m2m_ctx_obj;
}
/*
* The buffer we queue here can in theory be immediately
* unbound, hence the use of list_for_each_entry_safe()
* above and why we call the queue op last.
*/
obj->ops->queue(obj);
}
WARN_ON(!m2m_ctx);
if (m2m_ctx)
v4l2_m2m_try_schedule(m2m_ctx);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_request_queue);
/* Videobuf2 ioctl helpers */
int v4l2_m2m_ioctl_reqbufs(struct file *file, void *priv,
struct v4l2_requestbuffers *rb)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_reqbufs(file, fh->m2m_ctx, rb);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_reqbufs);
int v4l2_m2m_ioctl_create_bufs(struct file *file, void *priv,
struct v4l2_create_buffers *create)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_create_bufs(file, fh->m2m_ctx, create);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_create_bufs);
int v4l2_m2m_ioctl_querybuf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_querybuf(file, fh->m2m_ctx, buf);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_querybuf);
int v4l2_m2m_ioctl_qbuf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_qbuf(file, fh->m2m_ctx, buf);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_qbuf);
int v4l2_m2m_ioctl_dqbuf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_dqbuf(file, fh->m2m_ctx, buf);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_dqbuf);
int v4l2_m2m_ioctl_prepare_buf(struct file *file, void *priv,
struct v4l2_buffer *buf)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_prepare_buf(file, fh->m2m_ctx, buf);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_prepare_buf);
int v4l2_m2m_ioctl_expbuf(struct file *file, void *priv,
struct v4l2_exportbuffer *eb)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_expbuf(file, fh->m2m_ctx, eb);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_expbuf);
int v4l2_m2m_ioctl_streamon(struct file *file, void *priv,
enum v4l2_buf_type type)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_streamon(file, fh->m2m_ctx, type);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamon);
int v4l2_m2m_ioctl_streamoff(struct file *file, void *priv,
enum v4l2_buf_type type)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_streamoff(file, fh->m2m_ctx, type);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_streamoff);
int v4l2_m2m_ioctl_try_encoder_cmd(struct file *file, void *fh,
struct v4l2_encoder_cmd *ec)
{
if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
return -EINVAL;
ec->flags = 0;
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_encoder_cmd);
int v4l2_m2m_ioctl_try_decoder_cmd(struct file *file, void *fh,
struct v4l2_decoder_cmd *dc)
{
if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
return -EINVAL;
dc->flags = 0;
if (dc->cmd == V4L2_DEC_CMD_STOP) {
dc->stop.pts = 0;
} else if (dc->cmd == V4L2_DEC_CMD_START) {
dc->start.speed = 0;
dc->start.format = V4L2_DEC_START_FMT_NONE;
}
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_try_decoder_cmd);
media: v4l2-mem2mem: handle draining, stopped and next-buf-is-last states Since the draining and stop phase of the HW decoder mem2mem bahaviour is now clearly defined, we can move handling of the following states to the common v4l2-mem2mem core code: - draining - stopped - next-buf-is-last By introducing the following v4l2-mem2mem APIs: - v4l2_m2m_encoder_cmd/v4l2_m2m_ioctl_encoder_cmd to handle start/stop command - v4l2_m2m_decoder_cmd/v4l2_m2m_ioctl_decoder_cmd to handle start/stop command - v4l2_m2m_update_start_streaming_state to update state on start of streaming of the de/encoder queue - v4l2_m2m_update_stop_streaming_state to update state on stop of streaming of the de/encoder queue - v4l2_m2m_last_buffer_done to make the current dest buffer as the last one And inline helpers: - v4l2_m2m_mark_stopped to mark the de/encoding process as stopped - v4l2_m2m_clear_state to clear the de/encoding state - v4l2_m2m_dst_buf_is_last to detect the current dequeued dst_buf is the last - v4l2_m2m_has_stopped to detect the de/encoding stopped state - v4l2_m2m_is_last_draining_src_buf to detect the current source buffer should be the last processing before stopping the de/encoding process The special next-buf-is-last when min_buffers != 1 case is also handled in v4l2_m2m_qbuf() by reusing the other introduced APIs. This state management has been stolen from the vicodec implementation, and is no-op for drivers not calling the v4l2_m2m_encoder_cmd or v4l2_m2m_decoder_cmd and v4l2_m2m_update_start/stop_streaming_state. The vicodec will be the first one to be converted as an example. Signed-off-by: Neil Armstrong <narmstrong@baylibre.com> Signed-off-by: Hans Verkuil <hverkuil-cisco@xs4all.nl> Signed-off-by: Mauro Carvalho Chehab <mchehab+huawei@kernel.org>
2020-03-03 15:33:17 +01:00
/*
* Updates the encoding state on ENC_CMD_STOP/ENC_CMD_START
* Should be called from the encoder driver encoder_cmd() callback
*/
int v4l2_m2m_encoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_encoder_cmd *ec)
{
if (ec->cmd != V4L2_ENC_CMD_STOP && ec->cmd != V4L2_ENC_CMD_START)
return -EINVAL;
if (ec->cmd == V4L2_ENC_CMD_STOP)
return v4l2_update_last_buf_state(m2m_ctx);
if (m2m_ctx->is_draining)
return -EBUSY;
if (m2m_ctx->has_stopped)
m2m_ctx->has_stopped = false;
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_encoder_cmd);
/*
* Updates the decoding state on DEC_CMD_STOP/DEC_CMD_START
* Should be called from the decoder driver decoder_cmd() callback
*/
int v4l2_m2m_decoder_cmd(struct file *file, struct v4l2_m2m_ctx *m2m_ctx,
struct v4l2_decoder_cmd *dc)
{
if (dc->cmd != V4L2_DEC_CMD_STOP && dc->cmd != V4L2_DEC_CMD_START)
return -EINVAL;
if (dc->cmd == V4L2_DEC_CMD_STOP)
return v4l2_update_last_buf_state(m2m_ctx);
if (m2m_ctx->is_draining)
return -EBUSY;
if (m2m_ctx->has_stopped)
m2m_ctx->has_stopped = false;
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_decoder_cmd);
int v4l2_m2m_ioctl_encoder_cmd(struct file *file, void *priv,
struct v4l2_encoder_cmd *ec)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_encoder_cmd(file, fh->m2m_ctx, ec);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_encoder_cmd);
int v4l2_m2m_ioctl_decoder_cmd(struct file *file, void *priv,
struct v4l2_decoder_cmd *dc)
{
struct v4l2_fh *fh = file->private_data;
return v4l2_m2m_decoder_cmd(file, fh->m2m_ctx, dc);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_decoder_cmd);
int v4l2_m2m_ioctl_stateless_try_decoder_cmd(struct file *file, void *fh,
struct v4l2_decoder_cmd *dc)
{
if (dc->cmd != V4L2_DEC_CMD_FLUSH)
return -EINVAL;
dc->flags = 0;
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_try_decoder_cmd);
int v4l2_m2m_ioctl_stateless_decoder_cmd(struct file *file, void *priv,
struct v4l2_decoder_cmd *dc)
{
struct v4l2_fh *fh = file->private_data;
struct vb2_v4l2_buffer *out_vb, *cap_vb;
struct v4l2_m2m_dev *m2m_dev = fh->m2m_ctx->m2m_dev;
unsigned long flags;
int ret;
ret = v4l2_m2m_ioctl_stateless_try_decoder_cmd(file, priv, dc);
if (ret < 0)
return ret;
spin_lock_irqsave(&m2m_dev->job_spinlock, flags);
out_vb = v4l2_m2m_last_src_buf(fh->m2m_ctx);
cap_vb = v4l2_m2m_last_dst_buf(fh->m2m_ctx);
/*
* If there is an out buffer pending, then clear any HOLD flag.
*
* By clearing this flag we ensure that when this output
* buffer is processed any held capture buffer will be released.
*/
if (out_vb) {
out_vb->flags &= ~V4L2_BUF_FLAG_M2M_HOLD_CAPTURE_BUF;
} else if (cap_vb && cap_vb->is_held) {
/*
* If there were no output buffers, but there is a
* capture buffer that is held, then release that
* buffer.
*/
cap_vb->is_held = false;
v4l2_m2m_dst_buf_remove(fh->m2m_ctx);
v4l2_m2m_buf_done(cap_vb, VB2_BUF_STATE_DONE);
}
spin_unlock_irqrestore(&m2m_dev->job_spinlock, flags);
return 0;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_ioctl_stateless_decoder_cmd);
/*
* v4l2_file_operations helpers. It is assumed here same lock is used
* for the output and the capture buffer queue.
*/
int v4l2_m2m_fop_mmap(struct file *file, struct vm_area_struct *vma)
{
struct v4l2_fh *fh = file->private_data;
[media] v4l2-mem2mem: drop lock in v4l2_m2m_fop_mmap The v4l2_m2m_fop_mmap function takes the core mutex, but this will result in a potential circular locking dependency: [ 262.517164] ====================================================== [ 262.517166] [ INFO: possible circular locking dependency detected ] [ 262.517169] 4.2.0-rc2-koryphon #844 Not tainted [ 262.517171] ------------------------------------------------------- [ 262.517173] v4l2-compliance/1379 is trying to acquire lock: [ 262.517175] (&dev->dev_mutex){+.+.+.}, at: [<ffffffffa000ddab>] v4l2_m2m_fop_mmap+0x2b/0x90 [v4l2_mem2mem] [ 262.517187] but task is already holding lock: [ 262.517189] (&mm->mmap_sem){++++++}, at: [<ffffffff81159309>] vm_mmap_pgoff+0x69/0xc0 [ 262.517199] which lock already depends on the new lock. [ 262.517202] the existing dependency chain (in reverse order) is: [ 262.517204] -> #1 (&mm->mmap_sem){++++++}: [ 262.517209] [<ffffffff810d0e6b>] __lock_acquire+0x62b/0xe80 [ 262.517215] [<ffffffff810d2095>] lock_acquire+0x65/0x90 [ 262.517218] [<ffffffff811612e5>] __might_fault+0x75/0xa0 [ 262.517222] [<ffffffffa06dead9>] video_usercopy+0x3e9/0x4e0 [videodev] [ 262.517231] [<ffffffffa06debe0>] video_ioctl2+0x10/0x20 [videodev] [ 262.517238] [<ffffffffa06d8663>] v4l2_ioctl+0xc3/0xe0 [videodev] [ 262.517243] [<ffffffff811a8cac>] do_vfs_ioctl+0x2fc/0x550 [ 262.517248] [<ffffffff811a8f74>] SyS_ioctl+0x74/0x80 [ 262.517252] [<ffffffff81a4d2ee>] entry_SYSCALL_64_fastpath+0x12/0x76 [ 262.517258] -> #0 (&dev->dev_mutex){+.+.+.}: [ 262.517262] [<ffffffff810cf464>] validate_chain.isra.38+0xd04/0x1170 [ 262.517266] [<ffffffff810d0e6b>] __lock_acquire+0x62b/0xe80 [ 262.517270] [<ffffffff810d2095>] lock_acquire+0x65/0x90 [ 262.517273] [<ffffffff81a48e3c>] mutex_lock_interruptible_nested+0x6c/0x4b0 [ 262.517279] [<ffffffffa000ddab>] v4l2_m2m_fop_mmap+0x2b/0x90 [v4l2_mem2mem] [ 262.517284] [<ffffffffa06d80ff>] v4l2_mmap+0x4f/0x90 [videodev] [ 262.517288] [<ffffffff8116b06c>] mmap_region+0x38c/0x5b0 [ 262.517293] [<ffffffff8116b585>] do_mmap_pgoff+0x2f5/0x3e0 [ 262.517297] [<ffffffff8115932a>] vm_mmap_pgoff+0x8a/0xc0 [ 262.517300] [<ffffffff81169bab>] SyS_mmap_pgoff+0x1cb/0x270 [ 262.517304] [<ffffffff8100876d>] SyS_mmap+0x1d/0x20 [ 262.517309] [<ffffffff81a4d2ee>] entry_SYSCALL_64_fastpath+0x12/0x76 [ 262.517313] other info that might help us debug this: [ 262.517315] Possible unsafe locking scenario: [ 262.517318] CPU0 CPU1 [ 262.517319] ---- ---- [ 262.517321] lock(&mm->mmap_sem); [ 262.517324] lock(&dev->dev_mutex); [ 262.517327] lock(&mm->mmap_sem); [ 262.517329] lock(&dev->dev_mutex); [ 262.517332] *** DEADLOCK *** Since vb2_fop_mmap doesn't take the lock, neither should v4l2_m2m_fop_mmap. Signed-off-by: Hans Verkuil <hans.verkuil@cisco.com> Tested-by: Mikhail Ulyanov <mikhail.ulyanov@cogentembedded.com> Signed-off-by: Mauro Carvalho Chehab <mchehab@osg.samsung.com>
2015-07-20 04:58:24 -03:00
return v4l2_m2m_mmap(file, fh->m2m_ctx, vma);
}
EXPORT_SYMBOL_GPL(v4l2_m2m_fop_mmap);
__poll_t v4l2_m2m_fop_poll(struct file *file, poll_table *wait)
{
struct v4l2_fh *fh = file->private_data;
struct v4l2_m2m_ctx *m2m_ctx = fh->m2m_ctx;
__poll_t ret;
if (m2m_ctx->q_lock)
mutex_lock(m2m_ctx->q_lock);
ret = v4l2_m2m_poll(file, m2m_ctx, wait);
if (m2m_ctx->q_lock)
mutex_unlock(m2m_ctx->q_lock);
return ret;
}
EXPORT_SYMBOL_GPL(v4l2_m2m_fop_poll);